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Simple Summary: Tumor heterogeneity can greatly influence therapy outcome and patient survival.
In this study, we aimed at unraveling inter- and intra-patient heterogeneity of colorectal cancer liver
metastases (CRLM). To this end, we comprehensively characterized CRLM using state-of-the-art
high-throughput technologies combined with bioinformatics analyses. We found a high degree
of inter- and intra-patient heterogeneity among the metastases, in particular in genes of the WNT
and EGFR pathways. Through analyzing the master regulators and effectors associated with the
regulation of these genes, we identified a specific gene signature that was highly expressed in a large
cohort of colorectal cancer patients and associated with clinical outcome.

Abstract: Seventy percent of patients with colorectal cancer develop liver metastases (CRLM), which
are a decisive factor in cancer progression. Therapy outcome is largely influenced by tumor hetero-
geneity, but the intra- and inter-patient heterogeneity of CRLM has been poorly studied. In particular,
the contribution of the WNT and EGFR pathways, which are both frequently deregulated in colorectal
cancer, has not yet been addressed in this context. To this end, we comprehensively characterized
normal liver tissue and eight CRLM from two patients by standardized histopathological, molecular,
and proteomic subtyping. Suitable fresh-frozen tissue samples were profiled by transcriptome se-
quencing (RNA-Seq) and proteomic profiling with reverse phase protein arrays (RPPA) combined
with bioinformatic analyses to assess tumor heterogeneity and identify WNT- and EGFR-related
master regulators and metastatic effectors. A standardized data analysis pipeline for integrating
RNA-Seq with clinical, proteomic, and genetic data was established. Dimensionality reduction of the
transcriptome data revealed a distinct signature for CRLM differing from normal liver tissue and

Cancers 2022, 14, 2084. https://doi.org/10.3390/cancers14092084 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers14092084
https://doi.org/10.3390/cancers14092084
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-8188-0163
https://orcid.org/0000-0003-2262-9056
https://orcid.org/0000-0003-0244-1646
https://orcid.org/0000-0003-4683-3174
https://orcid.org/0000-0002-9856-7050
https://orcid.org/0000-0002-7729-8453
https://orcid.org/0000-0001-6509-2143
https://doi.org/10.3390/cancers14092084
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers14092084?type=check_update&version=2


Cancers 2022, 14, 2084 2 of 23

indicated a high degree of tumor heterogeneity. WNT and EGFR signaling were highly active in
CRLM and the genes of both pathways were heterogeneously expressed between the two patients as
well as between the synchronous metastases of a single patient. An analysis of the master regulators
and metastatic effectors implicated in the regulation of these genes revealed a set of four genes
(SFN, IGF2BP1, STAT1, PIK3CG) that were differentially expressed in CRLM and were associated
with clinical outcome in a large cohort of colorectal cancer patients as well as CRLM samples. In
conclusion, high-throughput profiling enabled us to define a CRLM-specific signature and revealed
the genes of the WNT and EGFR pathways associated with inter- and intra-patient heterogeneity,
which were validated as prognostic biomarkers in CRC primary tumors as well as liver metastases.

Keywords: colorectal cancer; liver metastasis; intratumoral heterogeneity; EGFR; WNT; high-
throughput profiling

1. Introduction

Colorectal cancer (CRC) is the third most common cancer in the more-developed
regions worldwide [1]. Recent data from an autopsy study showed that approximately
70% of CRC patients will develop liver metastases (CRLM), a major cause of cancer-related
death, during the course of their disease [2]. There is an interdisciplinary consensus that
surgical resection of such metastases is the only treatment offering long-term survival and
a potential cure, but, unfortunately, only one-third of patients are suitable for primary
metastasis resection [3]. As shown by the CELIM trial, for example, secondary resectability
can be achieved in an additional third by preoperative systemic chemotherapy including
anti- epidermal growth factor receptor (EGFR) or anti-vascular endothelial growth factor
(VEGF)-targeted therapy based on the individual RAS mutational status [4].

EGFR has been reported as one important factor involved in the development and
progression of CRC [5]. Ligand binding induces receptor homodimerization and activation
followed by signal transduction through Signal transducer and activator of transcription
(STAT) proteins, Phosphatidylinositol 3-kinase (PI3K)-RAC-alpha serine/threonine-protein
kinase (AKT), Mitogen-activated protein kinase (MAPK), and Proto-oncogene tyrosine-
protein kinase Src (SRC) family kinases, which leads to increased cell proliferation, growth,
and inhibition of apoptosis [6]. At the cellular level, EGFR mRNA expression was shown
to be deregulated in CRLM compared to the primary tumor, and CRC cells overexpressing
EGFR showed a metastatic phenotype [7,8], suggesting that EGFR plays an important role
in CRLM.

EGFR signaling can crosstalk with the WNT pathway, which is considered the main
molecular driver of CRC tumorigenesis. The binding of a canonical WNT ligand (e.g.,
WNT3A) to a receptor of the Frizzled (FZD) family and the co-receptor Low-density lipopro-
tein receptor-related protein 5/6 (LRP5/6) induces the release of β-catenin/CTNNB1 from
the destruction complex comprised of AXIN, Glycogen synthase kinase-3 (GSK-3), Casein
kinase 1 (CK1), and the tumor suppressor Adenomatous polyposis coli protein (APC).
Subsequently, CTNNB1 translocates into the nucleus where it binds to transcription fac-
tors of the Transcription factor 7 (TCF)/Lymphoid enhancer-binding factor 1 (LEF) family
and activates the expression of target genes involved in proliferation and differentiation.
CRC patients often harbor mutations in APC, CTNNB1, or RNF43, which cause aberrant
activation of the pathway and drive oncogenic transformation [9]. Alternatively, some
WNT ligands (e.g., WNT5A) can also induce CTNNB1-independent, non-canonical signal
transduction that mostly results in cytoskeletal rearrangements and increased cell motility
and invasiveness [10]. Recent data suggest that both WNT subpathways are active in CRC
cells [11].

Around 20% of CRC patients present with synchronous metastases at the time of
diagnosis and 40% will develop metachronous metastases after resection of the primary tu-
mor [12]. When comparing changes in gene expression in synchronous and metachronous
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metastases, the EGFR pathway was shown to be significantly upregulated in metachronous
metastases, whereas processes related to angiogenesis were mainly affected in synchronous
metastases [13]. The role of the WNT signaling pathway has not yet been investigated
in this context, but the important role of the non-canonical WNT pathway has already
been demonstrated in breast cancer metastasizing to the liver and brain [14–16]. Interest-
ingly, in some patients with multiple CRLM, the metastases have been observed to react
differentially to targeted chemotherapy. Furthermore, CRLM in a single patient share
malignant features but also show heterogeneity and can differ in their mutational status of
KRAS, NRAS, BRAF, or PIK3CA [17–19]. A high degree of intra-patient, inter-metastatic
heterogeneity was shown to be associated with significantly shorter overall survival and is
believed to arise from not only heterogeneity within the tumor itself, but also from clonal
evolution [20]. Given that in the current clinical routine the decision for targeted therapy,
e.g., the use of anti-EGFR antibodies, is commonly based on the RAS-mutational status
of a single tumor biopsy, inter-metastatic heterogeneity is likely to greatly influence the
treatment outcomes of CRLM.

Whole exome sequencing of brain metastases has revealed that genetic heterogeneity
not only exists between metastases, but also between the primary tumor and its metas-
tases [21]. Since most previous studies have focused on comparing the primary tumor
with one single metastasis [22,23], gene and protein expression profiles of metachronous
and synchronous metastases from individual patients are scarce but could give valuable
information about the development of intra-patient heterogeneity, as well as identify pos-
sible drivers of tumor progression. In order to analyze inter-metastatic heterogeneity, we
profiled and compared metachronous and synchronous liver metastases as well as normal
liver tissue from two, clinically well-annotated CRC patients. There, we put our special
focus on the two commonly deregulated pathways, EGFR and WNT. The samples were
characterized at the gene and protein expression level by transcriptome sequencing and
proteomic profiling via reverse phase protein arrays (RPPA), as well as by standardized
histopathological and molecular subtyping. Using these means, we aimed at identifying
master regulators that could drive metastasis as well as intra-patient heterogeneity.

2. Materials and Methods
2.1. Patients and Tissue Samples

For this pilot study, approved by the local ethics committee of the University of
Medicine, Göttingen, Germany (21/3/11), and with the informed consent of the patients,
tissue samples were collected from two patients with CRC and synchronous hepatic metas-
tases. Samples comprised material from the primary tumor (P), from synchronous and
metachronous metastases (M), as well as from normal liver tissue (L). Metastasis and nor-
mal liver tissue were stored as fresh-frozen (FF) and formalin-fixed and paraffin-embedded
(FFPE) samples. The primary tumor tissue (P) had been stored as FFPE and was not used
for RNA-Seq and RPPA profiling. The samples were coded using patient number (I or II),
tissue type (P, M, or L), time point (1, 2, 3), and which metastasis (a, b, etc.). A detailed
description of the samples is given in Figure 1.
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Figure 1. Timeline of patient treatment and course of the disease including obtained samples.
Sequenced samples are displayed in bold.

2.1.1. Patient I

Patient I was a 78-year-old male diagnosed in June 2012 with locally advanced rectal
cancer and bilobar synchronous liver metastases involving segments II, IVa, V, and VI.
Initial surgery consisted of low anterior resection with total mesorectal excision (TME) and
resection of the superficial liver metastases in segment II (FFPE: I-P; FFPE: I-M1a (hepar)).
Histopathological classification at this time was pT3c pN2b (11/25) pM1 (hepar) G2. The
patient was then treated with three cycles of systemic chemotherapy with FOLFIRI and
cetuximab. In February 2013, a relaparotomy was performed but the liver volume that
would have remained after the planned extended right hemihepatectomy was deemed
insufficient. Therefore, the liver metastasis in segment IVa was resected (FF: I-M2b (hepar))
and the right branch of the portal vein was ligated to induce contralateral liver hypertrophy.
Two months later the left lobe had hypertrophied sufficiently to allow the secondary
right hemihepatectomy. Histopathological analysis revealed three metastases (FF: I-M3c-
e (hepar)). In addition, two samples of normal liver tissue were stored (FF: I-L3a + b).
The patient remained tumor-free until February 2014, but died four months later due to
tumor progression.

2.1.2. Patient II

Patient II was a 72-year-old male who had been diagnosed with clinically non-
metastasized rectal cancer in May 2012. A previously undetected solitary liver lesion
was found in segment IV/V during the initial low anterior resection with TME. This le-
sion was identified as a metastasis by intraoperative biopsy. The initial tumor stage was
thus pT3 pNx pM1 (hepar) (FFPE: II-P). The patient received systemic chemotherapy with
FOLFOX and cetuximab. The follow-up computed tomography (CT) scan showed a good
regression of the hepatic metastasis with no signs of extrahepatic disease. A non-anatomic
liver resection was performed in October 2012. The histopathological workup showed two
adenocarcinoma metastases (FFPE: II-M1a + b (hepar)). In March 2014, recurrent intrahep-
atic metastases were diagnosed. Bisegmentectomy of segment VII/VIII and non-anatomic
resection of segments II and III revealed four metastases, which were resected R0 (FF:
II-M2c-f (hepar)). In addition, a normal liver tissue sample was obtained (FF: II-L2a). Three



Cancers 2022, 14, 2084 5 of 23

cycles of systemic chemotherapy with FOLFIRI and bevacizumab were administered post-
operatively. In November 2014, a singular intrapulmonary metastatic lesion was diagnosed
and resected in toto (FFPE: II-M3g (lung)). The patient has been tumor-free since.

Expression of selected genes in a larger patient cohort was analyzed in normal colon
tissue (n = 377), primary colon tumors (n = 1450), and colon cancer metastases (n = 99) on
microarray data using the TNMplot database (https://www.tnmplot.com/, last accessed
on 10 March 2022) [24]. The prognostic significance of the identified six MRs and MEs
differentially expressed in both CRC patients was assessed in a cohort of rectal cancer
patients (n = 165) from the Cancer Genome Atlas (TCGA) using the kmplot database
(https://kmplot.com/, last accessed on 10 March 2022) [25].

2.2. Histopathological Assessment of Tissue Samples and Mutational Analysis

The patients were comprehensively characterized both clinically as well as by stan-
dardized histopathological and molecular subtyping prior to transcriptome sequencing.
The method described by van Dam et al. was used to characterize the histopathological
growth pattern of the individual metastases [26]. All samples were assessed by an expe-
rienced pathologist with regard to tumor cell content, amount of stroma, inflammatory
infiltration, and necrosis. Only tumors containing >60% tumor cells were analyzed further.
For mutation analysis, DNA was isolated from formalin-fixed tumor tissue followed by
library preparation using a QIAseq targeted DNA custom panel. Target regions include
KRAS exon 2–4, NRAS exon 2–4, BRAF exon 11 and 15, PIK3CA exon 2, 5, 6, 8, 10, and 21,
and TP53 exon 5–11. Next-generation sequencing was performed on an Illumina NextSeq
instrument (San Diego, CA, USA) with subsequent data analysis on the CLC Genomics
Workbench (Qiagen, Hilden, Germany).

2.3. Proteome Profiling

In order to specifically analyze EGFR and WNT signaling in normal and metastatic
tissue, 110 antibodies against the core proteins of both pathways (Table S1) were selected.
Samples of normal liver tissue and metastases were cryosectioned to obtain 10 µM slices.
Tissue protein extraction reagent (T-PER, Pierce Biotechnology, Rockford, IL, USA) was
complemented with 1 mM EDTA, 5 mM NaF, 2 µM staurosporine, PhosSTOP phosphatase
inhibitor cocktail (Sigma-Aldrich, St. Louis, MO, USA), and complete mini protease
inhibitor cocktail (Roche Diagnostics, Basel, Switzerland). Ice-cold tissue lysis buffer
was added to each aliquot (10 µL buffer per 1 mg tumor) and thawed on ice for 5 min. A
stainless-steel bead was added to each tube, and the samples were homogenized for 4 min
at 30 Hz in a bead mill (Qiagen, Hilden, Germany). After lysis, the samples were placed on
ice for 5 min and then placed on dry ice. The frozen tumor lysates were thawed on wet
ice and centrifuged at 16,000× g for 10 min at 4 ◦C. The supernatants were transferred to
homogenizer tubes (QIAshredder, Qiagen, Hilden, Germany) and centrifuged at 16,000× g
for 1 min at 4 ◦C. Total protein concentration was determined using a modified bicinchoninic
acid assay. The homogenized tumor lysates were aliquoted and stored at−80 ◦C. For further
processing, the aliquots were thawed on wet ice and the total protein concentration was
adjusted to 0.8 µg/µL. Prior to printing, the samples were mixed with 4× printing buffer
(10% glycerol, 4% SDS, 10 mM DTT, 125 mM Tris, pH 6.8) and heated for 5 min at 95 ◦C.
An amount of 24 µL of each sample was transferred to a 384-well plate and centrifuged for
2 min at 200× g. Samples were printed as technical triplicates in two identical subarrays
on nitrocellulose-coated glass slides (Oncyte Avid, Grace Bio-Labs, Bend, OR, USA) using
a contact printer (2470 Arrayer, Aushon Biosystems, Billerica, MA, USA) equipped with
185 µM solid pins employing 4 × 3 pins with 4.5 mm pin spacing. The humidity during
the printing run was kept at 80%. The slides were stored afterward with desiccant at
−20 ◦C. They were then mounted in 2-pad incubation chambers (Pepperprint, Heidelberg,
Germany) and blocked for 2 h at room temperature with a modified fluorescent Western
blotting blocking buffer (Rockland Immunochemicals, Limerick, PA, USA) mixed 1:1 with
TBS (pH 7.6) containing 5 mM NaF, and 1 mM Na3VO4. Each subarray was subsequently
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probed overnight with primary antibody at 4 ◦C or incubated without primary antibody as
blank control. The slides were washed four times for 5 min with TBST. Primary antibodies
were detected with Alexa Fluor 680 F(ab’)2 fragments of goat anti-mouse IgG or anti-rabbit
IgG at a dilution of 1:8000 for 1 h at room temperature. The slides were washed again
in TBST (4 × 5 min) followed by a final rinse with ultrapure water for 5 min before air-
drying. Separate slides were stained with Fast Green FCF for total protein quantification as
described previously. The slides were scanned at an excitation wavelength of 685 nm and
with a resolution of 21 µm using the Odyssey Infrared Imaging System (LI-COR Biosciences,
Bad Homburg, Germany).

2.4. RNA Extraction and Gene Expression Analysis

For the transcriptome analyses, total RNA was extracted from FF material using Trizol
(Thermo Fisher Scientific, Waltham, MA, USA) reagent. For this, ten 5 µm sections were
cut at −20 ◦C under RNase-free conditions, and the extracted RNA was stored according
to the manufacturer’s instructions (Life Technologies, Carlsbad, CA, USA). The RNA was
resuspended in RNase-free water and stored at −80 ◦C. RNA integrity was assessed by
microfluidic electrophoresis with the Agilent Bioanalyzer 2100 (Agilent Technologies, Santa
Clara, CA, USA). Only samples with comparable RNA integrity numbers (RIN) greater than
7.0 were selected for deep sequencing. A 1 µg sample of total RNA was used as starting
material for library preparation (TruSeq Stranded mRNA Sample Prep Kit, #RS-122-2101,
Illumina, San Diego, CA, USA) for RNA sequencing (RNA-Seq). Accurate quantitation of
cDNA libraries was performed with the QuantiFluor dsDNA System (Promega, Madison,
WI, USA). The size range of cDNA libraries was determined using the DNA 1000 chip on
the Bioanalyzer 2100 (280bp). The cDNA libraries were amplified and sequenced with
the cBot and HiSeq 2000 from Illumina (SR, 1 × 51 bp, 8–9 gigabases > 40 Mio reads
per sample). Sequence images were transformed with the Illumina software BaseCaller
to bcl-files and then demultiplexed to FASTQ files with CASAVA (v1.8.2). Quality was
checked using FastQC (v0.10.1, Babraham Bioinformatics). The RNA-Seq data have been
uploaded to the GEO repository under the identifier GSE162960. The expression of selected
genes was validated by quantitative real-time PCR (qRT-PCR). An amount of 1 µg of RNA
was transcribed into cDNA with the iScript cDNA synthesis kit (Bio-Rad, Feldkirchen,
Germany) and gene expression was measured from 10 ng cDNA at the QIAquant 384 5plex
qRT-PCR system (Qiagen, Hilden, Germany) using SYBR green detection and primers
listed in Table S2. For normalization, the housekeeping gene GNB2L1 was used.

2.5. Detection of Differentially Expressed Proteins and mRNAs

Bioinformatic analyses were conducted with the free statistical software R (v3.2.1;
available from: www.r-project.org, accessed on 10 March 2022) (R Core Team. R: A language
and environment for statistical computing. (2014). at http://www.r-project.org/, accessed
on 10 March 2022). The RNA-Seq pipeline is illustrated as part of Figure 2. The quality
check of FASTQ files yielded a GC content of 48–51%. Single-end 50-basepair reads were
mapped against the Ensembl human reference genome GRC38.78 using STAR (v2.1.0a) [27].
The unique mapping length was 49.83 bp with a mapping rate of 84%. Counting was
performed with RSEM (v1.2.19) [28], and the R package ‘edgeR’ (v3.8.6) [29] was used
for differential expression analysis. P-values were adjusted for multiple testing with
the method of Benjamini and Hochberg [30]. In downstream analysis, a false discovery
rate (FDR) of up to 5% was considered significant. The principal component plot was
generated with the R package ‘ggplot2’ (v2.0.0) [31]. Different gene sets comprising all
significant genes were selected for the gene ontology (GO)-based enrichment analysis. The
R package ‘topGO’ (v2.18.0) was used to detect significant levels of GO terms (p < 0.05)
with the weighted Fisher’s exact test in the package. Gene set enrichment analysis (GSEA)
was performed using the R package ‘clusterProfiler’ (v4.2.1) [32] to identify gene sets
(≥20 genes) associated with the GO category biological process (BP) using the log2 fold
changes obtained from differential expression analysis for each gene. GSEA interprets

www.r-project.org
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the degree of enrichment using normalized enrichment scores (NES) [33]. A positive NES
indicates pathway activation, whereas a negative NES indicates pathway suppression.
An adjusted p of <0.05 (Benjamini–Hochberg method) was used to define GO BP terms
with significant enrichment. Enrichment results were visualized using the R package
‘enrichplot’ (v1.14.1). RPPA data were analyzed as described elsewhere [34,35]. Differential
expression analysis at the protein level was performed with R package ‘limma’ (v3.26.9) [29].
Heatmaps were generated using correlation distance and complete linkage; normal tissue
was used as the reference for protein levels.
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Figure 2. Analysis pipeline integrating RNA-Seq data with clinical and proteomic data from normal
liver and metastatic tissues. RNA-Seq data was processed after initial quality check by mapping with
STAR and counting with RSEM. Differential gene expression analysis was performed with ‘edgeR’.
Differentially expressed genes (DEGs) were supplied to master regulator and effector workflows in
the geneXplain platform (TRANSPATH) and candidates were filtered for their involvement in WNT
and/or EGFR signaling. Risk transcription factors (TFs) associated with metastatic effectors and gene
expression data were provided to network inference to create transcriptional regulatory networks
(TRN). Regulon enrichment analysis with DEGs as input was performed to identify transcriptional
drivers of metastasis, which were compared with available clinical data.

2.6. Estimating Intratumor Heterogeneity (ITH)

Genes with zero read counts across all samples (8 CRLM and 3 normal liver controls)
in the RSEM read count data were removed before analysis. RSEM normalized counts were
then obtained by dividing each read count by the 75th percentile of the read counts in its
sample multiplied by a factor of 1000. The DEPTH algorithm in the R package ‘DEPTH’
(v1.0) was used to estimate the tumor heterogeneity level of each metastatic sample based
on log2 transformed RSEM normalized data [36].

2.7. EGFR and WNT Pathway-Related Gene Collections and WNT Pathway
Overrepresentation Analysis

An EGFR pathway-related gene collection was generated from TRANSPATH® 2013.4 [37]
by merging the “EGF pathway” (TRANSPATH® ID: CH000000722) and the “ErbB3 −→
survival” pathway (TRANSPATH® ID: CH000004191) within the geneXplain platform, re-
sulting in a list of 164 gene symbols (Table S3). WNT pathway-related gene collections were
generated as described in [38] and are provided in Table S4. Canonical and non-canonical
WNT gene sets were further tested for overrepresentation of differentially expressed pro-
teins using the Wilcoxon rank sum test. If antibodies reacted with multiple proteins of the
same family, only one corresponding gene ID was used.

2.8. Search for Master Regulators (MRs) and Metastatic Effectors (MEs) in WNT and EGFR
Signaling Pathways

Master regulators (MRs) and metastatic effectors (MEs) were searched for upstream
and downstream, respectively, of the discovered differentially expressed genes (DEGs),
utilizing analysis workflows of the geneXplain platform (https://genexplain.com/, ac-
cessed on 10 March 2022). MRs are defined as molecules that sit at the top of the regulatory
hierarchy in signal transduction pathways and potentially orchestrate the changes in gene

https://genexplain.com/
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expression observed at several levels or steps. In contrast, MEs are defined as molecules
that sit at the very bottom of the regulatory hierarchy and, thus, their activity is modulated
by any of the upstream molecules. For a set of genes of interest, MRs and MEs are searched
for by applying a modified shortest-path algorithm that explores the graph for possible
common regulators or key nodes using the pathway knowledge of the TRANSPATH®

database. The MRs’ core algorithm has been previously described in [39,40], whereas an
inverted version of this algorithm is applied in the case of the MEs. In our analyses, we
used the MR and ME search workflow (each with FDR < 0.05) called ‘Find master regu-
lators in networks (TRANSPATH®)’ and ‘Find effectors in networks (TRANSPATH®)’, of
the geneXplain platform web edition 6.2 (https://genexplain.gwdg.de/bioumlweb/, last
accessed on 22 June 2021). Workflows were run with a maximum search radius of 10 steps
upstream and downstream of significantly up- and downregulated DEGs (|log2FC| > 2,
FDR < 0.05) to obtain significant MRs and MEs.

2.9. Network Inference and Regulon Enrichment Analysis

We performed network inference to investigate the regulatory relationships between
risk transcription factors (TFs) included in the list of MEs and their potential target genes.
To this end, an integrative network-based approach was applied to the gene expression data
of CRLM to reveal putative transcriptional drivers of the DEGs discovered in the patients’
pairwise comparison. Prior to network inference, RSEM read count data was pre-filtered
to exclude genes, where there are less than four samples with read counts greater than or
equal to 10. The read count data were then normalized using the regularized-logarithm
transformation (rlog) function in the R package ‘DESeq2′ (v1.32.0) with option blind set as
‘True’ [41].

The normalized gene expression data and a list of risk TFs (MEs in EGFR and
WNT pathway-related gene collections) were provided as inputs to the R package ‘RTN’
(v2.16.0) [42,43] with default options. Briefly, the RTN algorithm assesses the statistical
dependence between gene expression data and TFs for the reconstruction of transcrip-
tional regulatory networks (TRNs). Regulatory units (regulons) consisting of TF-target
pairs are inferred using the ARACNe algorithm [44], which is re-implemented in the RTN
package. Furthermore, the regulatory relationship (positive or negative) in a TF-target
pair is inferred using Spearman’s correlation. Prior to applying the ARACNe algorithm,
RTN performs permutation (1000 permutations, BH-adjusted p-value < 0.01) to eliminate
non-significant TF-target pairs, followed by bootstrapping (100 bootstraps, 95% consensus)
and the data-processing inequality filter (eps = 0) to eliminate unstable TF-target pairs and
indirect TF-target pairs, respectively. The R package ‘RedeR’ (v1.40.0) [45] was used to
visualize the TRN. Finally, we applied the MR analysis implemented in RTN with default
options to assess whether the observed regulons are enriched for the DEGs (|log2FC| > 2,
FDR < 0.05) in the patients’ pairwise comparison, filtering down our initial list of risk TFs
to potential metastasis-relevant TFs.

2.10. Survival Analyses

Overall survival (OS) analyses were conducted for 43 patients with CRLM (n = 51).
Prior to analysis, normalized gene expression (rlog, ‘DESeq2′) was averaged over samples
related to the same patient. High/low groups were created based on gene expression levels
for single genes (GNAO1, IGF2BP1, PIK3CG, PRKCB, SFN, SMAD3, and STAT1) by using
an optimal cutoff value determined using the surv_cutpoint function in the R package
‘survminer’ (v0.4.8). The log rank test was used to compare different survival rates between
the groups using Kaplan–Meier analysis. The R package ‘survival’ was used to calculate
P-values and hazard ratios (HR).

2.11. Immunohistochemistry

Immunohistochemical staining to assess microsatellite instability (MSI) and TP53
expression was performed on FFPE tissue samples as described previously [46]. Briefly,

https://genexplain.gwdg.de/bioumlweb/
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tissue sections cut into 2 µM-thick slices were incubated in EnVision Flex Target Retrieval
Solution, pH high (Dako/Agilent, Santa Clara, CA, USA) followed by incubation of primary
antibodies against MutL homolog 1 (MLH1) (#IR079), MutS Homolog 2 (MSH2) (#IR085),
MutS Homolog 6 (MSH6) (#IR086), PMS1 Homolog 2, Mismatch Repair System Component
(PMS2) (#IR08761), and tumor protein p53 (TP53) (#GA61661, all from Dako/Agilent, Santa
Clara, CA, USA) at room temperature for 20 min. To visualize the sites of immunoprecipita-
tions, secondary antibodies coupled to HRPO peroxidase (EnVision Flex+) and DAB (both
from Dako/Agilent, Santa Clara, CA, USA) were applied, and stainings were evaluated by
light microscopy after counterstaining with Meyer’s haematoxylin. For immunohistochem-
ical staining of SMAD3, heat epitope retrieval was performed for 60 min at 100 ◦C followed
by incubation with the SMAD3 antibody (#25494-1-AP, Proteintech, Planegg-Martinsried,
Germany) for 36 min after preconditioning with CC1 for 31 min. The OptiView DAB IHC
Detection Kit (Ventana Medical Systems, Oro Valley, AZ, USA) was used as a secondary
antibody. The slides were screened at a low magnification for the pattern and distribution
of the staining.

3. Results
3.1. The Metastases Did Not Differ in Their Histopathological Growth Patterns in the
Individual Patients

Both patients were comprehensively characterized histopathologically and by molecu-
lar subtyping (Table 1). All primaries and CRLM were shown to be KRAS, NRAS, BRAF,
and PIK3CA wild-type. The CRLM of both patients showed no signs of microsatellite insta-
bility (MSI), but displayed an overexpression of TP53 (Figure S1), which was associated
with the inactivating TP53 Arg273His mutation in patient I. The samples that were included
in RNA-Seq and RPPA profiling consisted of at least 60% vital tumor cells with no more
than 40% necrosis. The growth pattern analysis allocated the metastases of patient I to the
aggressive replacement type and that of patient II to the more favorable desmoplastic type,
which corresponds well with the clinical outcome in both patients. Of note, no marked
difference in histopathological subtype was seen between the metastases of each patient.

Table 1. Histopathological characterization of metastatic samples.

Sample Inflammatory
Infiltrate (%) Stroma (%) Tumor (%) Necrosis (%) Growth Pattern

I-M2b 10 20 70 25 n.a.
I-M3c 10 30 60 40 Replacement
I-M3d 10 20 70 10 Replacement
I-M3e 10 20 70 5 Replacement
II-M2c 10 10 80 10 Desmoplastic
II-M2d 10 10 80 0 Desmoplastic
II-M2e 10 20 70 0 Desmoplastic
II-M2f 15 20 65 0 Desmoplastic

n.a. = not available.

3.2. Healthy Liver Tissue of Both Patients Exhibited a Higher Degree of Similarity Than the
Metastases from an Individual Patient

To compare the degree of heterogeneity of the CRLM with that of normal liver tissue,
we characterized the gene expression patterns by RNA-Seq. Unsupervised, hierarchical
clustering of the data revealed a greater similarity between the metastatic samples of both
patients compared to the respective adjacent normal liver. Of note, the correlation between
the normal liver tissue samples from the two patients was stronger than the correlation
between the different metastatic samples from an individual patient, thus hinting at a
greater heterogeneity within the metastases (Figure 3A). The principal component analysis
confirmed large differences between the normal liver and metastatic samples yet separated
two metastatic samples (II-M2f and II-M2c) from the other CRLM (Figure 3B). We cannot
exclude that this separation might be attributed to different sequencing batches, and batch
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information was therefore taken into account for subsequent differential gene expression
analyses. The comparison of the normal liver tissue with the metastatic samples resulted in
3287 significant (FDR < 0.05) DEGs (Table S5). GO term enrichment analysis was performed
to pinpoint the differences between CRLM and normal liver tissue on a functional level.
In line with the known high metabolic activity of hepatocytes, the analysis revealed that
particular pathways related to metabolism were among the most significant GO terms
(Figure S2). This tissue-specific difference was confirmed by the analysis of the top 30
DEGs (Figure 3C), which comprised the two well-studied intestinal transcription factors
CDX1 and CDX2 that were absent in normal liver tissue but highly expressed in all CRLM
samples. In line with the histopathological characterization (Table 1), this observation
supports the assumption that the gene expression pattern of the metastatic tissue is indeed
largely attributable to intestinal CRC cells. Other transcripts present at high levels in all
CRLM were the WNT pathway activator FERMT1, the cell cycle protein CDCA7, and
the pro-metastatic RNA-binding protein ESRP1 [47–49], which underlines the malignant
phenotype of the metastasized CRC cells. RAB25, which has been described as acting
primarily as a tumor suppressor in CRC primary tumors, but as an oncogene in other
cancer subtypes [50], was present at high levels in all metastatic samples of patients I and II.
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Figure 3. Gene expression signature of CRLM compared with normal liver tissue. (A) Complete
linkage-based dendrogram of all measured transcripts comprising normal liver samples (green) and
CRLM of patients I and II (purple). (B) Principal component analysis of normal liver tissue and
CRLM samples from patients I and II. (C) Heatmap displaying log2 transcripts per million (TPM) of
the top 30 transcripts differentially expressed in normal liver (green) and CRLM (purple). Metastatic
drivers include CRC markers such as CDX1 and CDX2, and WNT-pathway genes (VANGL2, PLCB4).

As both the WNT and the EGFR signaling pathways are known to be highly active in
primary CRC tumors, we next asked whether the same held true for CRLM. Therefore, we
focused our analysis on DEGs associated with either of the pathways (Figure S3). In total,
12 genes of the EGFR pathway and 110 genes of the WNT pathway displayed significantly
different expression patterns in CRLM compared with normal liver tissue, and most of
them were highly upregulated in CRLM. With regard to the WNT pathway, the top 30 DEGs
comprised several genes associated with CTNNB1-independent signaling (e.g., CAMK2B,
VANGL2), however, the majority of DEGs were known target genes of the classical CTNNB1-
dependent, canonical pathway (e.g., AXIN2, LGR5, TCF7, CDX1), which is consistent with
its known role as a driver of tumorigenesis in CRC. Interestingly, with regard to EGFR
signaling the DEG analysis demonstrated an upregulation of several associated intracellular
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kinases (e.g., SRC, MAPK3, PIK3C2B), whereas the differences in the EGFR expression itself
were rather minimal. Taken together, these observations revealed a distinct gene expression
signature of CRLM, which includes known drivers of CRC progression as well as WNT
and EGFR signaling, and clearly separates the CRLM from normal liver tissue.

3.3. The Metastases of Patient I Displayed a Higher Degree of Intra-Tumoral Heterogeneity

In order to further analyze the intra-tumoral heterogeneity of the CRLM in relation to
the normal liver tissue, we calculated the individual DEPTH scores (Table 2). This score is
a measure of the deviation in the gene expression compared to the mean gene expression
values of the normal tissue and has been shown to correlate well with genomic instability,
immunosuppression, and unfavorable tumor phenotypes [36]. In line with this, MSI and
mutation of the tumor suppressor gene TP53 are associated with higher DEPTH scores.

Table 2. Intra-metastatic heterogeneity measured by DEPTH score.

Sample Inflammatory Infiltrate (%)

I-M3b 14.43
I-M3c 14.07
I-M3d 9.03
I-M3e 10.39
II-M2c 11.43
II-M2d 8.21
II-M2e 6.92
II-M2f 8.62

Indeed, all metastases from the TP53-mutated patient I displayed consistently higher
DEPTH scores than the metastases from patient II (median patient I: 12.3, median patient II:
8.42), with the exception of metastasis II-M2c. The analysis furthermore revealed largely
different DEPTH scores among the metastases from one individual patient, pinpointing
a high degree of inter-metastatic heterogeneity. In comparison, melanoma as one of the
cancer types with the highest tumor mutational burden (TMB) was shown to display a
median DEPTH score of 17.73, whereas prostate adenocarcinomas with low TMB possessed
a median DEPTH score of 2.95 [36].

When we compared the DEGs of the metastases of the two patients, the GO term
enrichment analysis revealed immune response and inflammatory and oxidation-reduction
processes to be among the top ten significant GO terms (Figure 4A, Table S6). Likewise,
GSEA confirmed the enrichment of pathways associated with metabolism, the immune
system, and development (Figure S4A, Table S6). These tissue differences cannot be
attributed solely to different tumor cell contents, but also reflect general tissue differences
between the patients and could point to different immune reactions within the tumor of
the individual patients, as already suggested by the DEPTH score.

The analysis of single DEGs in the metastases of the two patients revealed 2,254 genes
with significantly differential expression (Table S7), among them the DNA repair gene
MGMT as one of the most significant DEGs that was lost in all metastases of patient I. As
MGMT is important for maintaining the integrity of the genome, its loss could contribute
to the higher genomic instability observed in this patient. Interestingly, the metastases in
patient I were further characterized by a significant downregulation of PTPRO, a negative
regulator of EGFR signaling that is associated with poor prognosis in CRC patients [51,52].
Taken together, the data suggested a high degree of inter-metastatic heterogeneity in CRLM
with a possible link to activated EGFR signaling in poor-outcome patient I.
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Figure 4. Inter- and intra-patient heterogeneity of metastases. (A) Results of GO term enrichment
analysis showing the main differences between the metastases of the two patients with regard to
immune response, inflammatory response, and metabolic processes. Listed are the top ten significant
GO terms. (B) Heatmaps displaying log2 transcripts per million (TPM) of the top differentially
expressed transcripts comparing patient I (brown) against patient II (green). The upper panel
shows all differentially expressed genes related to EGFR signaling, the lower panel shows the top
15 differentially expressed genes related to WNT signaling. (C) Variance component analysis of
metastases for selected transcripts of interest.

3.4. WNT and EGFR Genes Are Associated with Inter-Patient and Inter-Metastatic Heterogeneity

Since the gene expression analyses had suggested deregulation of the EGFR as well as
the WNT pathways, which both play pivotal roles in CRC, we focused on the expression
pattern of genes related to both pathways in the CRLM of the two patients (Figure 4B). A
total of 10 genes of the EGFR pathway and 61 genes of the WNT pathway were found to be
differentially expressed between the two patients. With regard to the WNT gene expression
pattern, the metastases of each patient clustered together, although sample I-M2b had
been resected two months prior to the other metastases in patient I. This suggested large
inter-patient, rather than inter-metastatic, expression differences in WNT genes. In contrast,
the expression of EGFR-related genes revealed larger inter-metastatic differences, as the
two metastases II-M2c and II-M2f from patient II exhibited a greater similarity with the
metastases of patient I than with the other two metastases of patient II.

A closer analysis of the WNT-related DEGs suggested that, in particular, CTNNB1-
independent WNT signaling was differentially activated in the CRLM of both patients since
the two non-canonical WNT ligands, WNT11 and WNT5B, were identified among the most
significant DEGs (Figure 4B). Both have already been linked to the invasive properties of
CRC cells and poor patient survival [53–55]. Intriguingly, all CRLM of patient II (favorable
outcome) were characterized by a strikingly high expression of the WNT pathway-related
immunoproteasome gene PSMB9, which has been associated with enhanced lymphocyte
infiltration and longer survival in breast cancer patients [56].

To determine the influence of patient-specific differences, proportional contributions
of different effects that can be attributed to the variance in gene expression were eval-
uated. Therefore, a variance component analysis of selected genes from the EGFR and
WNT pathways was performed (Figure 4C). Variance contributions from batches, patients,
and residual components were discriminated; the latter being expected to include inter-
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metastatic effects. In the set of selected EGFR pathway-related genes, particularly SMAD2
and SMAD3 showed large residual effects, which implies a link to TGFB1 signaling. In
the selected set of WNT pathway-related genes, the key components AXIN1, DVL1, and
DVL2 as well as the WNT receptors FZD1, FZD4, FZD6, and FZD7 showed large residual
effects suggesting large inter-metastatic differences. This also applied to PORCN, which
is crucial for WNT secretion, as well as JUN and WNT5B, which are associated with ac-
tivation of non-canonical WNT signaling. Of note, we also found a high residual effect
for GSTM1 and VIM, two genes known to support tumor progression and metastasis.
In contrast, great patient–effect contributions were found for ERBB2 and PTEN among
the EGFR pathway-related genes and for DKK2, DVL3, TCF7, and WNT5A among the
WNT pathway-related genes. Taken together, this approach identified several genes of
the WNT and EGFR pathways that contribute to the observed inter-patient as well as
inter-metastatic differences.

3.5. EGFR and WNT Signaling Are Active in CRLM, in Particular in Poor-Prognosis Patient I

In both the EGFR as well as the WNT pathways, extracellular signals are transmit-
ted through intracellular downstream kinases activating distinct signaling responses. In
order to assess whether the observed gene expression changes in the metastases of the
two patients were mirrored at the protein level, we characterized the normal liver and
CRLM samples by RPPA. As in the results from the RNA-Seq, the normal tissue sam-
ples from both patients clustered together and were clearly distinct from the metastases
(Figures 5A,B and S4B). Out of the 93 tested proteins, 27 were significantly (p < 0.05) dif-
ferentially expressed (Table S8). With the exception of the two samples I-M3e and II-M2e,
the proteins of both pathways, WNT and EGFR, seemed to be rather highly-expressed at
the total protein level as well as in their respective phosphorylated forms compared to
the normal liver tissue. Sample II-M2c showed a strikingly elevated expression in all the
investigated total and phosphorylated proteins. Of note, the same sample had displayed
the highest DEPTH score among the CRLM of patient II, suggesting that it differs from the
other synchronous metastases of the patient at both the transcriptomic and proteomic levels.

Testing for the enrichment of proteins associated with either the non-canonical or the
canonical WNT pathway revealed a significant (p = 0.047) or nearly significant (p = 0.059)
overrepresentation, respectively. Again, this indicated that not only classical canonical but
also non-canonical WNT signaling plays a role in CRLM. Compared with the gene expres-
sion analysis, RPPA profiling revealed a much greater heterogeneity in many of the tested
proteins in synchronously occurring metastases from the same patient (e.g., for I-M3c-e or
II-M2c-f). Vimentin (VIM) was more highly expressed in CRLM than in normal liver tissue,
which fits well with its role as a biomarker for epithelial-to-mesenchymal transition (EMT),
an essential step in successful metastasis. Furthermore, a particularly strong upregulation
of the tyrosine kinase SRC, which is associated with active EGFR as well as WNT signaling,
was detected in the metastases (Table S8). In parallel, the protein Succinate Dehydroge-
nase Complex Flavoprotein Subunit A (SDHA) was significantly downregulated in the
metastatic tissue. SDHA has recently been shown to inhibit canonical WNT signaling, and
consequently the proliferation and invasion of cancer cells [57], suggesting that the loss of
SDHA in CRLM could be linked to hyperactive WNT signaling. Fostering this hypothesis,
PRKCD (PKCδ) and PRKCA (PKCα), two negative modulators of canonical WNT signal-
ing [58,59], were among the most significantly downregulated proteins in CRLM. Enhanced
activity of PRKCA has been shown to inhibit the transcriptional activity of CTNNB1 and
induce apoptosis in CRC cells [59]. PRKCA was not only differentially expressed in CRLM
compared with the healthy liver but also when the differentially expressed proteins in
the CRLM of both patients were compared (Figure 5A,B, Table S9). The metastases of
poor-outcome patient I displayed particularly low levels of both the total PRKCA protein
as well as its active forms with phosphorylation at S657, T638, and T641, again suggesting
hyperactive WNT signaling with enhanced proliferation and invasion in the metastases
of this patient. The comparison further identified higher levels of phosphorylated (S9,
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S21), and thus inactivated, GSK3 in patient I which would not support the hypothesis of a
particularly strong activation of the WNT pathway. However, this result was only observed
with one antibody, whereas the other two showed strong signals in the metastases of both
patients, thus arguing against a reproducible effect. In summary, both pathways, WNT and
EGFR, seemed to be active in CRLM, whereas the data point toward a particularly strong
activity of canonical WNT signaling in poor-outcome patient I.
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Figure 5. RPPA data reveal high inter-metastatic heterogeneity in WNT- and EGFR-related proteins,
but clearly separate CRLM from normal liver. (A,B) Normal liver samples (green) and CRLM from
both patients (purple) were characterized by RPPA for the expression of total proteins (A) and
phosphorylated proteins (B) associated with either the WNT or the EGFR signaling pathway. Protein
levels were normalized to the median of the normal tissue samples.

3.6. WNT- and EGFR-Associated Master Regulators and Metastatic Effectors of CRLM Are
Highly Upregulated in a Large Cohort of CRC Patients

We next aimed at identifying common master regulators and effectors associated with
CRLM. To this end, active signal transduction pathways were studied on the basis of prior
knowledge of signaling pathways to determine the regulatory link between gene expression
and gene abundance. First, upstream master regulators (MRs) and downstream effectors (MEs)
of significantly up- and downregulated DEGs (|log2FC| > 2, FDR < 0.05) were identified
based on the comparison of the healthy liver vs. CRLM. To study the relevance of WNT and
EGFR signaling in this context, we restricted the identified MRs and MEs to genes that have
been associated with one of the pathways. This gave 52 MRs and 91 MEs (Table S10). To
confirm the results, we aligned these two gene sets with the genes that were included in the
input list of DEGs (normal liver vs. CRLM) for the MR and ME analyses (Figure 6A,B). The
resulting 11 genes, which showed a significantly strong upregulation in CRLM (|log2FC| > 2,
FDR < 0.05) and have potential relevance in the formation of CRLM, were then analyzed for
their expression in normal colon tissue, primary colon tumors, and colon cancer metastases in
a larger patient cohort using the TNMplot database [24] (Figure 6C).

With the exception of SFN and MAPK13, all other genes were upregulated in colon can-
cer primary tumors compared with normal colon tissue and/or in colon cancer metastases
compared with the primary tumor. To further confirm these findings, we measured the
expression of the remaining 9 genes in matched samples of CRLM and normal liver tissue
from five CRC patients by qRT-PCR (Figure 6D). Although TPM2 and IGF2BP1 expression
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was not detectable in these patients, there was a significant upregulation of UBE2C and
NFAT5 in CRLM compared to the normal liver as well as a trend for SYK and INCENP. This
implies that our approach had indeed identified a set of MRs and MEs, which are highly
expressed in a large number of patients and can be linked to tumor growth and metastatic
spread in colorectal cancer.
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Figure 6. Master regulators and metastatic effectors implicated in CRLM are upregulated in a large
cohort of patients with metastatic colon cancer. (A,B) Comparison of the gene expression pattern
of normal liver tissue and CRLM: VENN diagram (A) depicting the overlap of the DEGs with the
identified WNT- and EGFR-related master regulators (MRs) and metastatic effectors (MEs). The MRs
and MEs that were identified among the significant DEGs and displayed a |log2 fold change| >2 are
listed in (B) with an annotation of their known function and significance in CRC. (C) Expression of
the identified MRs and MEs was analyzed in normal tissue (n = 377), primary colon tumors (n = 1450),
and colon cancer metastases (n = 99) using the TNMplot database (TNMplot.com). Significance was
calculated with a Dunn’s test. No data were available for IGF2BP1. (D) Expression of the indicated
genes was analyzed in matched CRLM and normal liver samples from five CRC patients by qRT-PCR
(line: median, * p < 0.05, ** p < 0.01, n.e.: not expressed). Significance was calculated with a two-sided
t-test. Missing values relate to absent expression of certain genes in some patients.

3.7. Analysis of Gene Regulatory Networks Identifies WNT- and EGFR-Associated Master
Regulators and Metastatic Effectors Associated with Poor Survival in CRC

As both patients in our study differed in their clinical outcome, we were interested
in identifying genes associated with inter-patient heterogeneity that might explain the
difference in tumor aggressiveness. Thus, the analysis of WNT- and EGFR-related MRs
and MEs was performed as explained above based on the comparison of the CRLM of
patients I and patient II (Table S11). This resulted in 12 MRs and MEs that were significantly
differentially expressed between both patients, out of which six displayed a |log2FC| > 2
(Figure 7 A,B). Interestingly, SFN and IGF2BP2, which were more highly expressed in the
metastases of poor-outcome patient I, were also associated with shorter overall survival
in a large cohort (n = 165) of rectal cancer patients based on data from the Kaplan–Meier
plotter database [25]. In contrast, high expression of STAT1 and PIK3CG, which were
upregulated in the metastases of patient II, was associated with a more favorable outcome
(Figure 7C). Likewise, the same trend was observed for PRKCB (p = 0.057). No clear effect of
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GNAO1 expression was observed on patient survival. To confirm the prognostic relevance
of the identified MR and ME genes in a second independent dataset, we performed an
RNA-Seq of 43 CRLM and correlated the expression level of the six genes with patient
survival. The results confirmed that high expression of SFN and IGF2BP2 was linked
to poor outcome, whereas high expression of STAT1 and PIK3CG was associated with
prolonged survival (Figure S5). No significant difference in patient survival was observed
for PRKCB or GNAO1.
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Figure 7. SMAD3 is a master regulator in the metastases of poor-outcome patient I. (A,B) Comparison
of the gene expression patterns of patients I and II: VENN diagram (A) depicting the overlap of the
DEGs with the identified WNT- and EGFR-related master regulators (MRs) and metastatic effectors
(MEs). The MRs and MEs that were identified among the significant DEGs and displayed a |log2 fold
change| > 2 are listed in (B) and the enrichment in the respective patient is indicated. (C) Kaplan–
Meier plots depicting overall survival of rectal cancer patients (n = 165) depending on the expression
of the identified MRs and MEs. The data were obtained from the Kaplan–Meier plotter database
(kmplot.com). (D) Transcriptional regulatory networks of the two identified regulons inferred by
ARACNe. Edges in blue: positive regulatory relationship in TF-target pair; edges in red: negative
regulatory relationship in TF-target pair. (E) Expression of SMAD3 in normal tissue (n = 377), primary
colon tumors (n = 1450), and colon cancer metastases (n = 99) was analyzed using the TNMplot
database (TNMplot.com). Significance was calculated with a Dunn’s test. (F) IHC staining of SMAD3
expression in the metastases of patient I at different magnifications.
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Several of the discovered WNT- and EGFR-associated MEs corresponded to transcrip-
tion factors (TFs) (CEBPB, CTNNB1, ELK1, EP300, FOS, FOXO4, HDAC1, MITF, NFATC1,
PPARD, PPARG, RXRA, SMAD2, SMAD3, SP1, STAT1, STAT3) that could act as tran-
scriptional drivers of processes relevant for CRLM. To further investigate the regulatory
relationships between these 17 risk TFs and their potential target genes, we reconstructed
regulatory units (regulons) consisting of TF-target pairs inferred by the ARACNe algo-
rithm [44]. As a result, only two significant and stable regulons were obtained for SMAD3
and STAT3 (Figure 7D). We then performed an enrichment analysis to assess whether the
observed regulons are enriched for the DEGs observed in CRLM of both patients and
found significant enrichment for SMAD3 (adj. p = 0.017), but not for STAT3 (adj. p = 1).
SMAD3, a downstream transcription factor of the TGFB1 pathway, was also significantly
overexpressed in a large number of metastases from colon cancer patients compared with
the primary tumors based on the TNMplot database (Figure 7E); however, it was downreg-
ulated when the primary tumor was compared with normal tissue. This context-dependent
expression of SMAD3 fits well with its established dual role as a tumor suppressor in
early cancer and a tumor promoter in late-stage tumors in which it supports invasion and
metastasis [60]. As the selected antibody panel in the RPPA measurements did not target
SMAD3, immunohistochemical staining of the patients’ metastatic samples was performed
to validate the expression of SMAD3 also in poor-outcome patient I. Indeed, SMAD3 was
highly upregulated in patient I at the protein levels, although this was not the case at the
level of gene expression (Figure 7F). Taken together, our data provide valuable insight into
the gene regulatory networks present in CRLM and identify several candidate genes with a
potential role in the formation and aggressiveness of CRLM.

4. Discussion

Cancers are known to become increasingly heterogeneous during the course of the
disease. As a result, the genetic and phenotypic makeup of metastases tends to differ from
the primary tumor and can lead to therapy failure and poor clinical outcome. However,
inter- and intra-patient heterogeneity in the context of CRLM has so far been poorly
investigated. In this study, we addressed this issue by comprehensively characterizing
eight synchronous and metachronous CRLM from two CRC patients using high-throughput
profiling to decipher their transcriptional and proteomic landscape. Our analysis identified
a CRLM-specific signature that clearly discriminated metastatic samples from normal liver
tissue and revealed a high degree of tumor heterogeneity in the genes of the EGFR and the
WNT pathways, which have previously been associated with poor survival in CRC.

A comparison of the general gene expression profile of CRLM and normal liver
tissue suggested a greater inter-patient similarity in gene expression in the metastases
of the two patients than between samples of normal liver and metastases of the same
patients. This pattern has also been observed previously [22,23] and implies a common
molecular metastatic profile. Many of the DEGs belonged to the WNT pathway, the main
molecular driver of CRC tumorigenesis. Considering that the expression of common
WNT-negative regulators (e.g., SDHA, PRKCD, PRKCA) was lost in CRLM, while at the
same time activators (e.g., FERMT1, VANGL2, SRC) were highly upregulated, this implies
that WNT signaling is hyperactive not only in primary CRC but also in CRLM. SRC was
overexpressed in CRLM both at the transcriptional as well as the protein level. This
corresponds to earlier observations in mouse models [61]. SRC is a tyrosine kinase with
proto-oncogene characteristics that is well-characterized in CRC [62] and that can enhance
nuclear translocation and the transcriptional activity of CTNNB1 [63]. There is evidence
that high expression of SRC is associated with poor clinical outcome, and initial studies
showed a role of non-receptor tyrosine kinases of the SRC family (e.g., SFK) in later steps of
CRC as well, even if it is not yet well understood how they act in metastasis formation [64].

We furthermore identified LGR5, TCF7, CDX1, and AXIN2 among the top WNT
pathway-related genes enriched in CRLM. All of them are target genes of CTNNB1-
dependent, canonical WNT signaling. In particular, AXIN2 has been described as a strong
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tumor promoter for CRC in vivo by inducing EMT [65]. Interestingly, the data also pointed
towards an activation of CTNNB1-independent WNT signaling in CRLM. Although non-
canonical WNT signaling has long been neglected in CRC, it was recently shown that
WNT ligands can activate both canonical as well as non-canonical WNT signaling in this
tumor entity [11]. Although there seems to be a general trend toward the enrichment of
non-canonical WNT proteins in CRLM, high inter-patient heterogeneity was observed for
its two ligands, WNT5B and WNT11, and high inter-metastatic heterogeneity for several of
the associated FZD receptors. As WNT downstream signaling is known to depend on the
ligand–receptor–coreceptor combination, this suggests that different signaling responses
could be induced in the individual patients and the individual metastases after ligand
stimulation due to this difference in receptor status.

In order to identify upstream regulators and downstream effectors that could explain
the differences in gene expression between normal liver tissue and CRLM, we performed an
analysis of potential MRs and MEs which identified a set of 11 genes that were significantly
enriched in CRLM. Of these genes, eight (MMP2, PRKCG, UBE2C, SYK, NFAT5, TPM2,
PLCB1, INCENP) were found to be upregulated in a large patient cohort with primary
and/or metastatic colon cancer and four (UBE2C, NFAT5, SYK, INCENP) could be further
validated by qRT-PCR in CRLM samples. These genes require further functional validation
as they could represent promising effectors involved in CRC development and progression.

Inter-patient analyses were performed to pinpoint tumor heterogeneity between the
two CRC patients and analyze its relevance to their clinical outcomes. By comparing
the metastases of patients I and II, genes involved in metabolic processes, inflammatory
response, and extracellular matrix organization were found to be discriminative. Can-
cer cell metabolism is strongly associated with tumor and metastasis formation [66,67],
and exploiting metabolic vulnerabilities has been discussed as a treatment strategy [68].
Immune-related processes could be influenced by chemotherapy but might also be linked
to general discrepancies in the immune system of the two patients or to different anti-
genic responses to the tumor. In line with the latter, a comparison of the specific WNT
pathway-related DEGs identified PSMB9 as the most highly-expressed gene in CRLM of
favorable-outcome patient II. In breast cancer, high levels of such immunoproteasome genes
have been correlated with the abundance of tumor-infiltrating lymphocytes and a favorable
prognosis [56]. Although the histopathological assessment had not revealed any notable
differences in the immune infiltrates in the metastases of the two patients in our study,
this finding could support the hypothesis of a stronger immune evasion phenotype in the
metastases of patient I contributing to the poorer clinical outcome. This idea is supported
by the higher DEPTH score observed in the CRLM of patient I, which is not only a measure
for tumor heterogeneity and genomic instability but also for immunosuppression [36].

A high degree of heterogeneity in primary CRC has been shown to be associated
with metastatic spread and shorter disease-free survival [69]. Another study analyzed
intra-patient inter-metastatic heterogeneity in 134 CRLM samples from 45 CRC patients
and found it to be of strong prognostic relevance [20]. Our study likewise revealed a high
degree of intra-patient inter-metastatic heterogeneity in CRLM mirrored by the differences
in DEPTH scores and RPPA profiles between the metastases from each individual patient.
Moreover, the CRLM of patient I not only displayed a higher degree of heterogeneity, po-
tentially caused by the detected inactivating TP53 mutation and loss of MGMT expression,
but were characterized by a concordant loss of WNT- and EGFR-negative regulators (e.g.,
PTPRO, SFN, PRKCA) [51,52,59,70] as well as a gain of WNT effectors (e.g., IGF2BP1) [71]
which might have fostered hyperactive WNT/EGFR signaling and caused the poor clinical
outcome. To gain insight into the underlying gene regulatory networks, we calculated the
MRs and MEs based on the DEGs between both patients. Of note, genes associated with
poor survival (SFN, IGF2BP1) were highly expressed in patient I, whereas genes associated
with longer survival (PRKCB, STAT1, PIK3CG) were enriched in patient II. SFN and IGF2BP1
are both associated with cell survival. In contrast, upregulation of STAT1 and PRKCB has
been linked to favorable outcome in CRC [72,73]. Likewise, an IHC study demonstrated
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a downregulation of PIK3CG in 85% of human CRC patients that was associated with
increased invasion and metastasis [74].

Focusing on transcription factors responsible for the differential expression pattern
of the identified MRs and MEs, we identified SMAD3 as the main MR and confirmed its
expression in the CRLM of patient I by IHC. SMAD3 showed high inter-metastatic, but also
high inter-patient heterogeneity. It is known as an important downstream transcription
factor of the TGFB1 pathway and can directly interact with CTNNB1. This interaction
protects CTNNB1 from degradation and enhances its nuclear translocation [75], thereby
synergistically promoting CRC progression with the WNT pathway. Again, this might point
to a particularly strong canonical WNT activity in the CRLM of poor-outcome patient I. It
must be mentioned that TGFB1 can act both as a tumor suppressor and a tumor promoter,
depending on the cellular context. In late-stage cancer, cells seem to become resistant to its
anti-mitotic effects and TGFB1 was instead observed to stimulate EMT by upregulating
mesenchymal markers (e.g., VIM, CDH2) and downregulating epithelial markers (e.g.,
CDH1) [60]. In line with this, in our RPPA analyses VIM was enriched in CRLM compared
with normal liver tissue.

5. Conclusions

Taken together, our analyses have revealed a high degree of tumor heterogeneity at
several levels: (1) between the normal liver tissue and CRLM, (2) between the CRLM of the
two patients, and (3) between the individual CRLM from each patient. Genes of the WNT
and EGFR pathway were identified as contributors to this heterogeneity, and although
more mechanistic studies are needed to validate the underlying molecular mechanisms,
the results suggest that strong WNT activity, genomic instability, and an immune evasion
phenotype are associated with the poor outcome in patient I. Finally, based on the high-
throughput profiling and bioinformatic analysis of the CRLM of both patients, we were
able to identify SFN and IGF2BP1 as genes that were upregulated in CRC metastasis and
associated with poor survival in two independent cohorts of CRC patients, whereas STAT1
and PIK3CG indicated a more favorable prognosis.
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