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Simple Summary: Food eaten by humans or companion animals is broken down by enzymes
produced by the host and also by bacteria present in the large intestine of the host. Many of the
compounds produced can have beneficial effects on the host’s health. Previous studies in dogs
evaluated changes after they ate food containing a fiber bundle made of pecan shells, flax seed, and
powders from cranberry, citrus, and beet. These studies showed that bacteria in the large intestine
switched from digesting mainly protein to digesting mainly carbohydrates resulting in production of
compounds with beneficial properties. The study presented here tested this fiber bundle in cats to
see which compounds and/or bacteria in the feces changed. After cats consumed food containing
the fiber bundle, several compounds associated with beneficial health effects increased, and some
compounds that indicate the breakdown of protein decreased. In contrast, little change in fecal
bacteria was observed following consumption of food with the fiber bundle. Overall, these findings
indicate that, similar to the dog studies, bacteria in the large intestine of cats were able to digest the
fiber bundle to make compounds that may contribute to host health and also shifted to digestion of
carbohydrates instead of protein.

Abstract: Consumption of fiber in its different forms can result in positive health effects. Prior studies
in dogs found that addition of a fiber bundle (composed of pecan shells, flax seed, and powders of
cranberry, citrus, and beet) to food resulted in a shift in fecal bacterial metabolism from proteolysis
to saccharolysis. The present study evaluated the changes in fecal metabolites and microbiota in
healthy cats following the consumption of this fiber bundle. Following a 28-day pre-feed period,
56 healthy adult cats received food with none or one of three concentrations (0%, 1%, 2%, and 4%) of
the fiber bundle for a 31-day period. In cats that consumed the 4% fiber bundle, levels of ammonium
and fecal branched-chain fatty acids (BCFAs) decreased from baseline and compared with the other
groups. Addition of any level of the fiber bundle resulted in increases in beneficial metabolites:
polyphenols hesperidin, hesperetin, ponciretin, secoisolariciresinol diglucoside, secoisolariciresinol,
and enterodiol. Little change in fecal microbiota was observed. Since higher levels of ammonia and
BCFAs indicate putrefactive metabolism, the decreases in these with the 4% fiber bundle indicate a
shift toward saccharolytic metabolism despite little change in the microbiota composition.

Keywords: anti-inflammatory; bioactive metabolite; feline; fiber; microbiota; short-chain fatty
acid; polyphenol

1. Introduction

The gut microbiome produces numerous metabolites that vary depending on the
food intake, microbiome community composition, and underlying health status of the
host. In turn, these bacterially derived metabolites, including short-chain fatty acids
(SCFAs), polyphenol metabolites, and other postbiotic compounds are bioavailable to the
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host. Health benefits to the host via alterations in the production of postbiotics by the gut
microbiota is one goal of nutrition-based interventions [1]. These interventions can possibly
reduce future disease development in healthy hosts or normalize metabolic pathways that
were shifted in disease states, via the production of gut microbiome-produced metabolites,
as changes in the metabolome can appear before the onset of clinical symptoms [1].

Many studies have examined the composition of the gut microbiome and metabolome
in disease states, but some have also characterized them in healthy animals and humans.
While domesticated cats are obligate carnivores, their gut microbiome is similar to that of
omnivores [2]. Fiber is often added to commercially available cat foods [1], and results from
several studies indicate that the gut microbial fermentation of fiber is beneficial in cats [3].
The inclusion of dietary fiber has been shown to result in favorable health outcomes in cats
with diabetes or obesity [4,5]. In addition, positive changes in fecal metabolites, including
increased polyphenols and decreased uremic toxins, were observed with the addition of
dietary fiber in cats that were healthy or had chronic kidney disease [6,7].

Many of the prior studies that examined the effect the addition of fiber to cat food
on the gut microbiome and/or metabolome supplemented food with cellulose and/or
fructooligosaccharides [2,4–9], while few papers have reported the effects on cats of added
dietary fiber-bound polyphenols. However, two prior studies tested the effects of the
addition of a fiber bundle composed of pecan shells, flax seed, and powders of cranberry,
citrus, and beet to dog food over 4-week periods [10,11]. At higher levels (14% w/w),
inclusion of the fiber bundle appeared to shift metabolism from proteolysis to saccharolysis,
as indicated by significant changes in fecal metabolites and the greater abundance of
saccharolytic bacteria [10]. When the fiber bundle was added at lower levels (1%, 2%, or
4% w/w), significant increases in straight-chain SCFAs were observed with the fiber bundle
added to 4%, and concentrations of several polyphenols were significantly higher with
addition of any level of the fiber bundle [11]. These results may indicate positive health
effects since SCFAs show several benefits to the host such as serving as an energy source,
maintaining the integrity of the intestinal barrier, contributing to whole-host metabolism
via fueling of hepatic biosynthesis pathways, and serving as signaling molecules [12].
However, no changes in the fecal microbiota were observed [11].

In the present study, the effects of this fiber bundle were tested at a range of levels
(1%, 2%, or 4% w/w) in a parallel experimental design in healthy cats in order to examine
the effects of these fiber-bound polyphenolic ingredients on fecal metabolites and micro-
biota. Serum biochemistry parameters, fecal SCFAs, selected fecal metabolites, and fecal
microbiota are reported herein.

2. Materials and Methods
2.1. Study Foods

The study foods were produced at the Hill’s experimental food laboratory. The
control food in this study was a complete and balanced food formulated to meet all the
requirements of adult cats. The test foods were similar to the control food except for the
addition of the fiber bundle (ground pecan shells, whole brown flax seed, beet pulp, citrus
pulp, and cranberry pomace) at 1%, 2%, or 4% w/w on a dry matter basis that preserved
the macronutrient composition of the control food (Table 1) by balancing the inclusion of
the fiber bundle with barley, chicken, and chicken fat to account for the flax-derived protein
and fat (Table S1). Comparison of macronutrients shows that the four foods are similar in
moisture, crude protein, crude fat, ash, calcium, phosphorus, sodium, and several lipids
(Table 1). All foods met the Association of American Feed Control Officials maintenance
nutrition recommendations. Total polyphenols, including free and bound forms, were
measured in the fiber bundle using the Folin–Ciocalteu method [13] and reported as gallic
acid equivalents per gram extracted material. Briefly, free polyphenols were extracted
using 80% acetone and bound polyphenols were extracted by the alkaline hydrolysis
method. Based on the individual ingredient polyphenol measurements in the fiber bundle,
polyphenol intakes were calculated as free, bound, and total for the foods used in this study.



Animals 2022, 12, 1654 3 of 16

Table 1. Composition of test foods containing 0, 1, 2, or 4% of microbial-targeted ingredients
(grams/100 g as mixed or as fed, unless otherwise stated).

Fiber Bundle Percentage in Food

Nutrient Parameter Control Food 1% 2% 4%

Moisture 4.97 4.70 4.76 4.30

Crude protein 37.00 36.63 35.81 38.06

Crude fat 19.53 19.31 19.34 19.67

Atwater energy 1 (kcal/kg) 4066 4049 4031 4052

Calories (kcal/kg) 5225 5225 5313 5357

Ash 6.23 6.09 6.41 6.33

Crude fiber 0.6 1.1 1.3 1.7

Nitrogen-free extract 31.7 32.2 32.4 29.9

Total dietary fiber 4.3 5.3 4.6 6.1

Total insoluble fiber 3.2 4.7 4.2 5.3

Total soluble fiber 1.1 0.6 0.4 0.8

Neutral detergent fiber 3.70 5.20 4.20 4.30

Calcium 1.09 1.09 1.18 1.15

Phosphorus 0.87 0.90 0.92 0.90

Sodium 0.33 0.36 0.34 0.34

Omega-3 sum 0.19 0.25 0.28 0.36

Omega-6 sum 3.41 3.55 3.40 3.60

Palmitic acid [16:0] 4.23 4.38 4.43 4.23

Palmitoleic acid [16:1] 1.08 1.13 1.09 1.15

Stearic acid [18:0] 1.08 1.10 1.09 1.15

Oleic acid [18:1] 6.78 7.03 6.82 7.19

Linoleic acid [18:2 (n − 6)] 3.15 3.29 3.15 3.31

Alpha-linolenic acid [18:3 (n − 3)] 0.14 0.20 0.23 0.31

Arachidonic acid [20:4 (n − 6)] 0.12 0.12 0.13 0.14

Lysine 2.01 2.01 2.03 2.34

Threonine 1.37 1.39 1.39 1.44

Methionine 1.29 1.27 1.25 1.35

Cystine 0.51 0.50 0.47 0.49

Tryptophan 0.36 0.35 0.36 0.40
1 Calculated from analytical values using modified Atwater numbers (kcal/g of 3.5 for protein, 8.5 for fat, and 3.5
for nitrogen-free extract).

2.2. Animals and Experimental Design

The study protocol was approved by the Hill’s Institutional Animal Care and Use Com-
mittee (IACUC; CP852a.0.0.0-A-F-D-ADH-MULTI-98-GI) and followed the US National
Research Council’s guide for the care and use of laboratory animals [14].

Fifty-six healthy adult cats (27 female, 29 male), all spayed or neutered and owned
by Hill’s Pet Nutrition, Inc. (Topeka, KS, USA), were included in this study. The cats were
required to have no prior disease conditions (e.g., chronic gastrointestinal disease, renal
disease) and had not received antibiotic interventions for at least one month. Cats with a
history of food allergy or poor eating behavior were excluded from the study. All were
housed with access to unrestricted socialization.
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All cats were fed the control food for 32 days and then were divided into four groups
of 14 based on their sex, age, and body weight to consume the control food or foods with the
fiber bundle added to 1%, 2%, or 4% for 31 days (Figure 1). Feeding each cat the control food
in the pre-feed phase prior to the treatment food phase was intended to reduce individual
effects in the microbiome analysis. Every cat was fed based on caloric requirements as
calculated from body weight. Food was available for 23 h/d. All cats were healthy at the
end of the study and were returned to the colony with no adverse events reported.
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Figure 1. Study design and timeline in which cats consumed foods containing 0%, 1%, 2%, or 4%
of the fiber bundle for 31 days. Blood and fecal samples were collected at days 0, 10, and 31 of the
treatment food phase.

Blood/serum and feces from each cat were collected at the end of the 32-day pre-feed
(day 0) and at days 10 and 31 days in the treatment phase. Cats were sedated prior to
phlebotomy. Blood was separated in serum separator tubes. Fecal samples were collected
within 30 min following defecation and were obtained from 11 cats in the 4% fiber bundle
group and 12 cats in each of the other groups.

2.3. Serum and Metabolite Analyses

Blood count profiles (Sysmex XN 1000-V, Sysmex America, Inc., Lincolnshire, IL, USA)
and serum chemistry (Cobas c501, Roche Diagnostics, Indianapolis, IN, USA) were per-
formed as in the manufacturers’ instructions. Fecal SCFAs and metabolites were analyzed
by Metabolon, Inc. (Morrisville, NC, USA).

2.4. Stool Scoring and Fecal Sample Processing

Fecal scores were determined on a 1–5 scale (1, >75% liquid, no solid form; 2, 50%
solid, 50% liquid, soft; 3, >75% formed and solid, some cylindrical shape; 4, >50% firm,
>75% cylindrical; 5, >80% firm, cylindrical) [15]. Each fecal sample was homogenized
in a Thinky Mixer (Thinky USA, Inc., Laguna Hills, CA, USA) via the Hill’s Pet Nutri-
tion protocol [10], immediately followed by pH measurement and freezing at −70 ◦C
until analysis.

2.5. Fecal Microbiome Analysis and Bioinformatics Processing

Fecal microbiome analysis was performed utilizing the Hill’s Pet Nutrition proto-
cols [16] and as previously outlined [11]. Total DNA was extracted from fecal samples
(PowerFecal DNA isolation kit, MO BIO, Carlsbad, CA, USA) prior to PCR amplification of
the V3-V4 hypervariable regions of the 16S rRNA gene. The Illumina (San Diego, CA, USA)
MiSeq platform was used for sequencing and de-multiplexing. Fast Adaptive Shrinkage
Threshold Algorithm sequence files in text format associated with Quality scores (FASTQ)
sequence files were processed via Mothur software [17], and the Greengenes reference
database [18] was used for taxonomic classification. The Phylogenetic Investigation of
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Communities by Reconstruction of Unobserved States (PICRUSt) protocol [19] corrected
for copy numbers of the 16S genes in operational taxonomic units (OTUs). Functional
attributes were predicted using the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database [20].

2.6. Statistical Analysis

Microbiome data were analyzed at the phylum, family, and genus levels. Only the
OTUs and the PICRUSt-predicted KEGG ortholog (KO) functions that passed the 70%
prevalence cutoff in all of the fecal samples were considered for statistical analysis. The
counts of individual phyla, families, and genera (corrected for 16S copy number) were
analyzed by the negative binomial mixed models to test the effects of food treatments and
collection timepoints (days 10 and 31). A principal coordinate analysis (PCoA) plot was
made using the Manhattan distance of the relative abundances at the genus level at day 31.
Permutational multivariate analysis of variance (PERMANOVA) based on the Manhattan
distance of the relative abundances was used to compare beta diversity at the phylum,
family, and genera levels as well as KEGG pathway functional compositions between food
treatments. The PERMANOVA and all p values were adjusted for false discovery rate (FDR)
by the Benjamini–Hochberg procedure.

For analysis of metabolites, values were natural log-transformed and the change was
calculated by subtracting initial values from final values. The Proc Mixed procedure (SAS
9.4) was used to evaluate mean differences and change over time. Values are reported
in relative fold differences, with significance noted for change from baseline (day 0) and
differences among treatment groups.

3. Results
3.1. Study Design, Animals, and Food

Of the 56 healthy adult cats in this study, the mean ± SD age was 6.6 ± 3.0 years
(range, 2.5–11.3 years). Mean body weight at baseline was 5.3 ± 1.0 kg (range, 3.1–7.7 kg;
Table 2). All cats were fed the control food for 32 days in the pre-feed period prior to
being divided into four groups (n = 14 each) that were fed the control food or test foods
containing 1%, 2%, or 4% of the fiber bundle for 31 days. Food intake among the groups
was similar. However, the intakes of free, bound, and total polyphenol content derived
from the fiber bundle showed an increasing trend based on the fiber bundle inclusion level
in the foods consumed by the cats in this study (Table S2). For example, inclusion of the
4% fiber bundle showed higher intake levels (mg/BW0.75) of free (35.8 ± 5.01), bound
(43.7 ± 6.12) and total (79.5 ± 11.1) polyphenols compared with the other study foods.

After 31 days of the food treatment period, slightly greater weight gain from baseline
was observed in cats in the 2% and 4% fiber bundle groups (0.08 kg and 0.07 kg) but
not in the control or 1% fiber bundle groups (Table 2). Significant decreases from base-
line were observed for total protein and triglycerides in the control and 1% fiber bundle
groups. In addition, all four food groups showed significant decreases from baseline in
urea nitrogen and slight but significant increases from baseline in creatinine. Among
food groups, cholesterol showed a significantly greater decrease from baseline in the
2% fiber bundle group (−15.1 mg/dL) compared with the other three groups (0.1, −2.1, and
6.9 mg/dL). Nevertheless, levels of all of these circulating markers were within clinically
normal ranges.
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Table 2. Body weight and selected serum biochemistry parameters at baseline (Day 0), end of study,
and change from baseline in cats that consumed foods containing 0%, 1%, 2%, or 4% of added
fiber-bound polyphenol ingredients.

Fiber Bundle Percentage in Food

Parameter Control Food 1% 2% 4%

Body weight, kg

Day 0 5.60 ± 0.26 5.60 ± 0.26 5.09 ± 0.26 5.10 ± 0.26

Day 31 5.63 ± 0.25 5.65 ± 0.25 5.17 ± 0.25 5.17 ± 0.25

Change 0.03 ± 0.03 0.05 ± 0.03 0.08 ± 0.03 1 0.07 ± 0.03 1

Food intake, kcal/(body
weight in kg) 0.75 53.0 ± 2.5 55.8 ± 2.5 54.4 ± 2.5 53.5 ± 2.5

Albumin, mg/dL

Day 0 3.34 ± 0.08 3.27 ± 0.08 3.29 ± 0.08 3.30 ± 0.08

Day 31 3.38 ± 0.08 3.29 ± 0.08 3.31 ± 0.08 3.38 ± 0.08

Change 0.03 ± 0.04 0.01 ± 0.04 0.01 ± 0.04 0.08 ± 0.04

Total protein, mg/dL

Day 0 6.59 ± 0.12 6.73 ± 0.12 6.72 ± 0.12 6.55 ± 0.12

Day 31 6.39 ± 0.12 6.46 ± 0.12 6.57 ± 0.12 6.41 ± 0.12

Change −0.20 ± 0.08 1 −0.26 ± 0.08 1 −0.15 ± 0.08 −0.14 ± 0.08

Urea nitrogen, mg/dL

Day 0 22.6 ± 0.9 23.0 ± 0.9 22.5 ± 0.9 22.1 ± 0.9

Day 31 20.1 ± 0.9 20.5 ± 0.9 20.7 ± 0.9 20.8 ± 0.9

Change −1.4 ± 0.4 1 −2.5 ± 0.4 1 −1.9 ± 0.4 1 −1.3 ± 0.4 1

Creatinine, mg/dL

Day 0 1.15 ± 0.05 1.19 ± 0.05 1.11 ± 0.05 1.12 ± 0.05

Day 31 1.25 ± 0.05 1.28 ± 0.05 1.18 ± 0.05 1.22 ± 0.05

Change 0.10 ± 0.03 1 0.10 ± 0.03 1 0.07 ± 0.03 1 0.10 ± 0.03 1

Triglycerides, mg/dL

Day 0 54.4 ± 9.5 54.6 ± 9.5 54.0 ± 9.5 59.8 ± 9.5

Day 31 36.1 ± 10.7 41.4 ± 10.7 41.6 ± 10.7 57.6 ± 10.7

Change −18.2 ± 7.5 1 −15.1 ± 7.5 1 −12.4 ± 7.5 −2.2 ± 7.5

Cholesterol, mg/dL

Day 0 212.9 ± 15.0 208.0 ± 15.0 203.0 ± 15.0 220.6 ± 15.0

Day 31 213.0 ± 15.3 205.9 ± 15.3 187.9 ± 15.3 227.4 ± 15.3

Change 0.1 ± 4.5 a −2.1 ± 4.5 a −15.1 ± 4.5 b,1 6.9 ± 4.5 a

Values are least square means ± standard errors. 1 Significantly different (p < 0.05) from baseline (Day 0). Different
superscripted letters represent significant differences within a row (p < 0.05).

3.2. Fecal Parameters and Metabolites

Fecal moisture significantly differed among some of the test food groups at baseline,
day 10, and day 31, but these changes were relatively minor and were not considered to
be physiologically relevant (Table 3). Levels of fecal ammonium also somewhat differed
among groups, but the 4% fiber bundle group was the only one to show a significant
within-group decrease from baseline at day 31. Fecal pH was similar among all test food
groups, with significant within-group changes from baseline at day 10 in the control and
4% fiber bundle groups, but all groups were similar to baseline by day 31. Stool firmness
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scores were at acceptable levels throughout the study and showed no significant differences
between treatments or time points.

Table 3. Fecal moisture, ammonium, and pH at baseline (Day 0), end of study, and change from
baseline and stool scores in cats that consumed foods containing 0%, 1%, 2%, or 4% of added
fiber-bound polyphenol ingredients.

Fiber Bundle Percentage in Food

Parameter Control Food 1% 2% 4%

Moisture

Day 0 60.0 ± 0.7 a 56.9 ± 0.9 b 62.7 ± 0.7 c 62.9 ± 0.8 c

Day 10, % of Day 0 102 ± 2 b 109 ± 2 a 97 ± 2 b 99 ± 2 b

Day 31, % of Day 0 101 ± 2 a,b 105 ± 2 a 98 ± 2 b 100 ± 2 a,b

Ammonium, mmol/g

Day 0 0.050 ± 0.002 a 0.056 ± 0.002 b 0.045 ± 0.002 c 0.047 ± 0.002 a,c

Day 10, % of Day 0 113 ± 5 a 91 ± 5 b 107 ± 5 a 92 ± 5 b

Day 31, % of Day 0 100 ± 5 93 ± 5 94 ± 5 86 ± 5 1

pH

Day 0 6.04 ± 0.07 6.04 ± 0.07 5.99 ± 0.07 5.97 ± 0.08

Day 10, % of Day 0 94 ± 2 1 96 ± 2 93 ± 2 94 ± 2 1

Day 31, % of Day 0 98 ± 2 98 ± 2 94 ± 2 96 ± 2

Stool score

Day 0 4.91 ± 0.12 5.0 ± 0.12 4.66 ± 0.12 5.0 ± 0.12

Day 10 5.0 ± 0.12 4.91 ± 0.12 5.0 ± 0.12 4.63 ± 0.12

Day 31 4.91 ± 0.12 5.0 ± 0.12 4.75 ± 0.12 4.9 ± 0.12

Values are least square means ± standard errors. 1 Significantly different (p < 0.05) from baseline (Day 0). Different
superscripted letters represent significant differences within a row (p < 0.05).

Some increases in some of the straight-chain SCFAs from baseline to Days 10 and/or
31 were seen, but no clear pattern emerged (Table 4). For example, propionic acid was
significantly higher from baseline at day 10 but not day 31 in the 4% fiber bundle group.
Similarly, butyric acid was significantly greater from baseline at only day 10 in the control
group. Levels of butyric acid were significantly higher from baseline at both timepoints
in the 1% fiber bundle group, but not in the 2% or 4% fiber bundle groups. Valeric acid
and hexanoic acid were significantly greater than baseline at day 31 only in the 2% fiber
bundle group.

In contrast, significant decreases from baseline to day 31 were observed for the
branched-chain SCFAs 2-methylpropionic acid, 2-methylbutyric acid, and 3-methylbutyric
acid in the 4% fiber bundle group (Table 4). In addition, these were all significantly dif-
ferent among the test food groups. A few other significant changes from baseline were
noted, including increases at day 10 in the control food group for 2-methylbutryic acid and
3-methylbutryic acid. The 1% fiber bundle group also showed significant increases from
baseline in 3-methylbutryic acid at days 10 and 31.
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Table 4. Fecal short-chain fatty acids at baseline (Day 0) and days 10 and 31 in cats that consumed
foods containing 0%, 1%, 2%, or 4% of added fiber-bound polyphenol ingredients.

Fiber Bundle Percentage in Food

SCFA Control Food 1% 2% 4%

Acetic acid

Day 0, µg/g 3428 ± 374 3273 ± 374 4106 ± 360 3895 ± 389

Day 10, % of Day 0 91 ± 6 107 ± 6 99 ± 6 111 ± 6

Day 31, % of Day 0 100 ± 6 110 ± 6 98 ± 6 107 ± 6

Propionic acid

Day 0, µg/g 1741 ± 271 1762 ± 282 2138 ± 282 1953 ± 282

Day 10, % of Day 0 104 ± 7 a,b 115 ± 8 a,b 101 ± 8 a 124 ± 8 b,1

Day 31, % of Day 0 92 ± 7 97 ± 7 97 ± 7 111 ± 8

Butyric acid

Day 0, µg/g 2254 ± 282 2216 ± 282 2406 ± 272 2204 ± 294

Day 10, % of Day 0 139 ± 9 a,1 127 ± 8 a,b,1 109 ± 9 b,c 99 ± 9 c

Day 31, % of Day 0 111 ± 9 a,b 119 ± 9 a,1 104 ± 9 a,b 90 ± 9 b

Valeric acid

Day 0, µg/g 1270 ± 161 1234 ± 167 1148 ± 167 1266 ± 167

Day 10, % of initial 147 ± 129 151 ± 135 123 ± 135 151 ± 135

Day 31, % of initial 119 ± 129 b 128 ± 129 b 436 ± 125 a,1 94 ± 135 b

Hexanoic acid

Day 0, µg/g 183 ± 39 258 ± 39 113 ± 38 197 ± 41

Day 10, % of Day 0 199 ± 87 239 ± 92 104 ± 92 258 ± 91

Day 31, % of Day 0 125 ± 87 b 197 ± 88 a,b 395 ± 85 a,1 130 ± 91 b

BCFA

2-methylpropionic acid

Day 0, µg/g 301 ± 21 314 ± 22 244 ± 22 250 ± 22

Day 10, % of Day 0 116 ± 10 110 ± 11 95 ± 11 93 ± 10

Day 31, % of Day 0 86 ± 11 a 114 ± 10 b 118 ± 10 b 76 ± 11 a,1

2-methylbutyric acid

Day 0, µg/g 244 ± 19 276 ± 19 194 ± 19 199 ± 19

Day 10, % of Day 0 124 ± 10 1 114 ± 10 110 ± 10 98 ± 10

Day 31, % of Day 0 87 ± 10 a 115 ± 10 b 116 ± 10 b 74 ± 10 a,1

3-methylbutyric acid

Day 0, µg/g 357 ± 26 394 ± 27 304 ± 27 313 ± 27

Day 10, % of Day 0 125 ± 11 1 124 ± 12 1 101 ± 12 103 ± 12

Day 31, % of Day 0 92 ± 11 a 125 ± 12 b,1 119 ± 11 b 77 ± 12 c,1

1 Significantly different (p < 0.05) from baseline (Day 0). Different superscripted letters represent significant
differences within a row (p < 0.05). BCFA, branched-chain fatty acid; SCFA, straight-chain fatty acid.

Significantly increased fecal levels of several polyphenols were observed with inclu-
sion of the fiber bundle at 1%, 2%, or 4% (Table 5). Hesperidin, hesperetin, ponciretin,
secoisolariciresinol diglucoside (SDG), secoisolariciresinol, and enterodiol were all greater
than baseline at days 10 and 31 for all fiber bundle groups with the exception of no signifi-
cant change in SDG in the 1% fiber bundle group at either timepoint. The levels of each
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of these metabolites also increased significantly with increased levels of the fiber bundle.
Fecal levels of arabinose and ribulose/xylulose were significantly increased from baseline
in both the 2% and 4% fiber bundle groups at day 31. In contrast, the control food group
exhibited significant decreases from baseline in arabinose and ribulose/xylulose at both
timepoints or day 10, respectively.

Table 5. Change from initial concentrations at days 10 and 31 (natural log day 10 or 31—natural log
Day 0) of selected fecal metabolites in cats that consumed foods containing 0%, 1%, 2%, or 4% of
added fiber-bound polyphenol ingredients.

Fiber Bundle Percentage in Food

Metabolite Control Food 1% 2% 4%

Hesperidin

Day 10 ratio 0.04 ± 0.25 a 2.89 ± 0.26 b,1 3.89 ± 0.26 c,1 5.02 ± 0.26 d,1

Day 31 ratio 0.05 ± 0.26 a 2.22 ± 0.25 b,1 3.85 ± 0.24 c,1 4.91 ± 0.27 d,1

Hesperetin

Day 10 ratio 0.62 ± 0.38 a 4.66 ± 0.17 b,1 5.23 ± 0.17 c,1 6.06 ± 0.17 d,1

Day 31 ratio 0.67 ± 0.38 a 4.19 ± 0.17 b,1 5.12 ± 0.16 c,1 5.94 ± 0.18 d,1

Ponciretin

Day 10 ratio 0.25 ± 0.14 a 3.51 ± 0.14 b,1 3.90 ± 0.14 c,1 5.06 ± 0.14 b,1

Day 31 ratio 0.12 ± 0.15 a 3.21 ± 0.14 b,1 4.06 ± 0.13 c,1 4.86 ± 0.15 b,1

Secoisolariciresinol
diglucoside

Day 10 ratio 0.00 ± 0.15 a 0.27 ± 0.16 a 0.46 ± 0.16 b,1 1.14 ± 0.16 c,1

Day 31 ratio 0.00 ± 0.16 a 0.20 ± 0.15 a 0.90 ± 0.15 b,1 1.58 ± 0.17 c,1

Secoisolariciresinol

Day 10 ratio 0.05 ± 0.16 a 2.28 ± 0.17 b,1 2.49 ± 0.17 b,1 3.41 ± 0.17 c,1

Day 31 ratio 0.20 ± 0.17 a 1.77 ± 0.16 b,1 2.29 ± 0.16 c,1 3.42 ± 0.18 d,1

Enterodiol

Day 10 ratio 0.13 ± 0.14 a 1.99 ± 0.14 b,1 2.93 ± 0.14 c,1 3.26 ± 0.14 c,1

Day 31 ratio 0.08 ± 0.14 a 2.29 ± 0.14 b,1 3.12 ± 0.14 c,1 3.27 ± 0.14 c,1

Arabinose

Day 10 ratio −0.60 ± 0.22 a,1 −0.08 ± 0.23 b −0.17 ± 0.23 a,b 0.19 ± 0.23 b

Day 31 ratio −0.46 ± 0.22 a,1 −0.41 ± 0.22 a 0.71 ± 0.21 b,1 0.91 ± 0.23 b,1

Ribulose/xylulose

Day 10 ratio −0.65 ± 0.30 a,1 −0.36 ± 0.31 a,b −0.54 ± 0.31 a 0.40 ± 0.31 b

Day 31 ratio −0.45 ± 0.32 a −0.28 ± 0.30 a 0.87 ± 0.29 b,1 0.96 ± 0.33 b,1

1 Significantly different (p < 0.05) from baseline (Day 0). Different superscripted letters represent significant
differences within a row (p < 0.05).

3.3. Fecal Microbiota

The PCoA plot showed no separation among any of the food types in the fecal micro-
biome (Figure 2). In addition, PERMANOVA analysis of the fecal microbiome composi-
tion at the phylum, family, and genera levels showed only a significant difference at the
family level (p = 0.044; Figure 3), but no clear pattern emerged when examining individ-
ual family abundances among the treatments. None of the examined KEGG pathways
showed significant differences in their compositions after multiple test corrections using the
Benjamini–Hochberg method. However, the propionate pathway and enzymes involved in
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the modification and breakdown of polysaccharides (carbohydrate active enzymes) showed
significant differences between treatments before multiple test correction.
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4. Discussion

As observed in the studies in dogs [10,11], consumption by cats of a fiber bundle
with fermentable fibers (hemicellulose, pectin), moderately fermentable fibers (rhamno-
galacturonan, arabinoxylan polysaccharides) [21], insoluble bulking fiber (lignin) along
with polyphenols (flavanones, flavonols, lignans) at levels of at least 4% (w/w) appeared
to shift fecal microbial metabolism away from proteolysis and toward saccharolysis as
indicated by decreased branched-chain fatty acids (BCFAs) and ammonium along with
increased presence of monosaccharides derived from indigestible polysaccharide fibers.
In addition, increased levels of fecal metabolites, including polyphenols and lignans with
known beneficial health effects, were seen when the fiber bundle was consumed at any of
the levels tested in cats.

Although the results of studies of this fiber bundle in cats and dogs [10,11] all indicate
a shift toward saccharolytic metabolism in the fecal microbiota, the mechanisms appear to
be different. Here, fecal ammonium significantly decreased (by 14%) at day 31 compared
with baseline levels in the 4% fiber bundle group, and a decrease in fecal ammonia with
consumption of resistant starch has also been observed in humans [22]. In contrast, am-
monium was relatively unchanged in feces from dogs that consumed the fiber bundle [11].
In the dog study testing the fiber bundle at 1–4%, the only changes observed in SCFAs
were significant increases from baseline at day 31 in the straight-chain SCFAs butyric acid,
valeric acid, and hexanoic acid, all in the 4% fiber bundle group. In contrast, increases from
baseline in straight-chain SCFAs in cats did not follow a clear pattern. However, levels of
the BCFAs 2-methylpropionic acid, 2-methylbutyric acid, and 3-methylbutyric acid in cats
were all significantly decreased from baseline at day 31 and were significantly different
from the other test food groups in the 4% fiber bundle group. Increased ammonia and
BCFAs are characteristic of putrefactive metabolism, indicating that consumption of the
fiber bundle in cats at levels of at least 4% shifts the gut microbial metabolism away from a
putrefactive state. This discrepancy between canine and feline responses to the fiber bundle
may be associated with the different levels of dietary protein in their respective foods. Cats
require higher dietary protein inclusion, perhaps leading to susceptibility towards fiber
decreasing putrefaction of undigested protein in this species, whereas the higher dietary
starch levels in dog foods may have enabled the increased saccharolysis observed in the
previous study [11].

In contrast to the changes observed in SCFAs, the changes in selected fecal metabolites,
including the polyphenols hesperidin, hesperetin, ponciretin, SDG, secoisolariciresinol,
and enterodiol, were largely similar in both the dogs and cats that consumed food with the
fiber bundle at 1–4%. Fiber-bound polyphenols arrive largely intact to the large intestine,
where they are metabolized by intestinal microbiota [23]. Several lines of evidence indicate
that food-derived polyphenols interact with the gut microbiota to benefit host health.
Flavonoids are a class of polyphenols, and their consumption appears to lower the risk
of cardiovascular diseases, cancer, metabolic diseases, and neurodegenerative diseases in
humans [24,25]. Notably, three flavonoids found in or derived from citrus fruits (hesperidin,
hesperetin, and ponciretin) were significantly increased in feces from cats that consumed
any level of the fiber bundle in this study.

Hesperidin reduces inflammation via regulation of proinflammatory cytokines and
decreases oxidative stress, thus conferring a variety of health benefits [26]. Supplementation
with the citrus polyphenols hesperidin and naringin led to decreases in inflammatory
markers produced by peripheral blood mononuclear cells in obese cats [27]. In the CITRUS
trial in humans, consumption of orange juice supplemented with 600 mg hesperidin for
12 weeks appeared to result in the downregulation of six proinflammatory genes [28],
decreased blood pressure [29], and lowered levels of several uremic toxins in the urine [30].
Other randomized, double-blind clinical trials showed that consumption of flavonoid-rich
orange juice benefitted cognitive function in middle-aged [31] and older adults [32]. In rats
fed an obesogenic diet, supplementation with hesperidin for 8 weeks resulted in decreased
total cholesterol, blood pressure, and insulin sensitivity. Improvements were also observed
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in markers of inflammation, lipid profile, and metabolites related to oxidative stress [33].
Similar beneficial effects of hesperidin on inflammation, lipid profiles, oxidative stress, and
hypertension were observed in humans [26,34]. Hesperidin also appears to have promising
anticancer effects from in vitro experiments and in rodent models [35].

Hesperidin is metabolized to hesperetin by intestinal bacteria [36]. The higher bioavail-
ability of hesperetin likely results in its greater anti-inflammatory and antioxidant abilities
compared with hesperidin [26]. In fact, many of the in vivo effects observed with hes-
peridin supplementation may be due to its conversion to hesperetin. As with hesperidin,
supplementation with hesperetin has been shown to lead to decreased inflammation and
oxidative stress [37], effects that contribute to observed improvements in hypertension,
metabolic disorder, and diabetes [34].

Both hesperidin and hesperetin have been shown to protect neurons against induced
cytotoxicity in vitro and improve cognitive and motor impairments in animal models,
including those for epilepsy, Huntington disease, Alzheimer disease, and Parkinson dis-
ease [24,38]. In addition, both metabolites appear to enhance gastrointestinal health
by improving intestinal barrier integrity and colitis symptoms in vitro and in rodent
models [25,39].

Ponciretin is a flavonoid metabolized by gut bacteria from its citrus-derived precur-
sor poncirin [36,40]. Like the other citrus flavonoids, ponciretin also appears to have
antiinflammatory [40,41] and anticancer [36] effects.

SDG is the predominant lignan in flaxseed and can be converted to secoisolariciresinol,
enterodiol, and enterolactone by the gut microbiota [42–44]. Similar to this study and
the ones testing the same fiber bundle in dogs [10,11], greater fecal levels of SDG and
secoisolariciresinol were observed with increasing consumption of fiber [45]. Production of
the postbiotic enterodiol is observed in a subset of humans [46]. The current study in cats as
well as the preceding publications with canine subjects [10,11] provide evidence that both
of these companion animal species, like some humans, harbor the gut microbes that lead to
the enterodiol-producing phenotype. Like the citrus-derived polyphenols, SDG has anti-
inflammatory [47,48] and antioxidant [49] properties and appears to have beneficial effects
on several health states, including cancer, cardiovascular disease, and diabetes [42,43,50,51].
Both SDG and enterodiol have shown anticancer effects in vitro [50,51]. Long-term intake
of lignans in people in the US was associated with a significantly lower risk of coronary
heart disease, with a 13% risk reduction with secoisolariciresinol supplementation [52]. In
addition, there may be a neuroprotective role for lignans. Patients with Alzheimer disease
have lower levels of the neurotransmitter acetylcholine, which leads to memory loss, so
it is hypothesized that dietary supplementation with lignans such as secoisolariciresinol,
which can inhibit acetylcholinesterase, could offer neuroprotection [53].

In addition to the polyphenols, there were significant increases in fecal levels of
arabinose and ribulose/xylulose following consumption of the fiber bundle at 2% or 4% in
cats. These pentose sugars likely are the result of the metabolism of the fiber bundle, which
included flax that contains arabinoxylan fibers [21], and are similar to the results observed
in dogs that consumed the fiber bundle [11].

The relative lack of change in the gut microbiota in this study is not altogether sur-
prising, given the prior results of lower levels of this fiber bundle in dogs [11] and the
observations that dietary changes in the microbiota of healthy animals are often not as
pronounced as disease-induced changes in microbiota [54]. However, the changes in fecal
metabolites observed following consumption of the fiber bundle indicate that the exist-
ing gut microbiota were able to metabolize the fiber bundle. The composition of the gut
microbiota did shift toward saccharolytic bacteria when the fiber bundle was included at
levels of 14% (w/w) in dogs [10], so it is plausible that a shift in the gut microbiota may be
observed in cats if the fiber bundle were included at levels greater than 4%.

This study may also have been limited by the relatively short 31-day feeding period
with the fiber bundle, as additional changes in fecal metabolites and/or microbiota may be
observed with a longer trial. A very long-term trial, though difficult to execute, would show
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whether consumption of the fiber bundle over months or years may result in a decreased
risk of developing certain health conditions. In addition, consumption of the fiber bundle in
cats with a health condition such as chronic kidney disease, diabetes, or gastroenteritis may
result in more obvious changes and/or benefits to health. Some prior work has indicated
that supplementation with other fibers leads to changes in the metabolome and microbiome
in cats with chronic kidney disease and lowers serum glucose concentrations in cats with
diabetes [4,6,55]. However, further investigation will be required to investigate how the
specific fiber sources improve host health through impacting microbial metabolism on each
targeted disease or condition.

5. Conclusions

In this study, a fiber bundle included at levels from 1–4% in cat food was evaluated
for its effects on fecal metabolites and microbiota. Several fecal metabolites, including
hesperidin, hesperetin, ponciretin, SDG, secoisolariciresinol, and enterodiol, all of which
have established positive effects on health, were increased with addition of the fiber bundle
at any level. Feces from cats that consumed the 4% fiber bundle exhibited decreases in
ammonium and BCFAs, indicative of a shift away from proteolytic metabolism. There was
little to no effect on the fecal microbiota following consumption of the fiber bundle at the
levels tested. Overall, the results indicate that consumption of the fiber bundle by cats
led to a shift toward saccharolytic metabolism by changing the physiology of the micro-
biota and transforming fiber-bound polyphenols into bioactive metabolites for beneficial
health effects.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ani12131654/s1, Table S1: Formulations of the foods used in this study. Table S2: Polyphe-
nol intakes specifically derived from the fiber bundle inclusion in the foods consumed by cats in
this study.
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