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Rod metabolic demand drives progression in retinopathies
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a b s t r a c t

Various factors are thought to cause the development and progression of disease in macular degener-
ation, diabetic retinopathy, and retinitis pigmentosa. Some of the deleterious processes include oxidative
stress, hypoxia, metabolic derangement, genetics, and vasculopathy. In this review, we present a unified
theory for the pathophysiology of several retinopathies based on the unique and intense metabolism of
rod photoreceptors.
Copyright © 2015, The Ophthalmologic Society of Taiwan. Published by Elsevier Taiwan LLC. All rights

reserved.

1. Introduction

Rod photoreceptors consume more energy in darkness than in
light.1 Unlike most other neurons, rods do not fire action potentials.
Rather, in darkness they exhibit a continuous depolarized state of
the rod membrane potential that allows constant neurotransmitter
release to activate second-order neurons in the visual pathway.2

The “dark current” is maintained by cyclic-nucleotide-gated
(CNG) channels that allow inward flow of cations, approximately
80% Naþ and 15% Ca2þ. The Ca2þ influx is balanced by a Naþ/
Ca2þeKþ exchanger that exchanges four Naþ inward for one Ca2þ

and one Kþ outward, and the large Naþ influx is balanced by a Naþ/
Kþ ATPase at the inner segment.3 Rods consume up to four times as
much adenosine triphosphate (ATP) in darkness as that in light to
support the high energy demand of these transporters; one ATP is
consumed per Ca2þ exported and one ATP is consumed per three
Naþ exported.3 Photoexcitation closes the CNG channel, preventing
influxof Naþ and Ca2þ and causing hyperpolarization across the rod
membrane, which reduces neurotransmitter release. For reviews of
phototransduction, see theworks of Yau and Hardie3 and Fain et al.4

Briefly, in rod phototransduction, light activates rhodopsin, which
activates the G protein transducin, which in turn activates phos-
phodiesterase, which hydrolyzes cyclic guanosine monophosphate
(cGMP) to guanosine monophosphate (GMP).5e9 Removal of cGMP
from the CNG channel causes channel closure and prevents the
influx of cations.3,4

The high energy demand for maintaining the “dark current”
causes rods to consume the highest amount of energy among all
cell types in the body.10e12 A large amount of ATP and Nicotinamide
adenine dinucleotide phosphate (NADPH) are needed for recovery
of cGMP from photoexcitation and its resynthesis in darkness.1 In
darkness, to meet the ATP demands of ion transporters, rods use
large amounts of O2 and glucose that are metabolized by both
glycolysis and oxidative phosphorylation (Fig. 1).13,14 In light,
however, consumption of O2 by rods was shown to decrease by
approximately 30% in macaques and approximately 50e70% in
cats,10e12 indicating a marked reduction in oxidative phosphory-
lation in light compared with that in darkness (Fig. 1). In light, there
is increased anabolic activity14; mRNA levels are increased four to
10 times,15,16 and outer segments appear to follow a circadian
pattern, in which discs are shed more at the onset of light in a 12-
hour lightedark cycle irrespective of whether the lights are turned
on or not, which is accompanied by an increase in outer segment
renewal,17,18 presumably fueled by increased lipid and protein
production.
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2. Dark-adapted rod metabolism and the Warburg effect

The anabolic state of light-adapted rods is similar to the War-
burg effect seen in cancer cells and stem cells, in which aerobic
glycolysis is the exclusive catabolic process used to produce
massive amounts of biomolecules for cell growth and division.19,20

Conversely, dark-adapted rods exhibit glycolysis as well as oxida-
tive phosphorylation, which, similar to conventional neuronal
metabolism, consumes large amounts of glucose and O2.21 Much of
the understanding of the Warburg effect can potentially be applied
to rod photoreceptors in light adaptation. The shift from oxidative
phosphorylation to glycolysis allows for the production of two
NADPH molecules per glucose molecule via the pentose phosphate
pathway, which fuels the anabolic processes of the cell, and syn-
thesis of amino acids, nucleic acids, lipids, and carbohydrates.22

3. Cellular control of metabolism via hypoxia inducible factor
1 and SIRT6

Recently, new details of the molecular basis for the switch from
aerobic respiration to aerobic glycolysis have been uncovered. It has
longbeenknown that a state of hypoxia or lownutrients induces cells
to use glycolysis alone, rather than continuing catabolism through the
tricarboxylic acid (TCA) cycle and oxidative phosphorylation. This
switch to glycolysis is eponymously referred to as the “Pasteur effect.”
Recently, some molecular details have been uncovered. The low-
oxygen sensing transcription factor, hypoxia inducible factor 1
(HIF1), was shown to activate transcription of genes, the products of
which inhibit the TCA cycle and promote glycolysis.23,24 HIF1 drives
anaerobic glycolysis and regulates cancermetabolism, and it hasbeen
a target for cancer therapy.25,26 The histone deacetylase SIRT6, a

member of the sirtuin family, has been shown to have the opposite
effect of HIF1 on metabolism and to function as a tumor suppres-
sor.27,28 While SIRT6 and HIF1 have both been touted as possible
cancer therapy targets, their role in retinal diseases has yet to be
explored. We postulate that activation of HIF1 or inhibition of SIRT6
can cause rods to switch from oxidative phosphorylation to aerobic
glycolysis, reducing cellular consumption of ATP and O2 to promote
survival by preventing ischemia and oxidative damage.

4. Rod energy demand drives retinal degenerative diseases

The high energy cost and O2 demand of dark-adapted rod cells
are the bases for a recently developed theory for the mechanism of
age-related macular degeneration (AMD), diabetic retinopathy
(DR), and retinopathy of prematurity.29 During dark adaptation,
partial pressure of oxygen nears zero at the ellipsoid zone where
the rod mitochondria reside, which was shown in cats, monkeys,
and rats.10,12,30 In low-oxygen settings, such as at a high elevation,31

and in diseases such as polycythemia vera32,33 and partial carotid
occlusion,34 loss of dark adaptation is one of the first symptoms to
manifest, indicating the high sensitivity of rods to hypoxic insult.
Because rods operate in a near hypoxic state, any reduction in the
oxygenation of the retina causes release of hypoxic factors, notably
vascular endothelial growth factor (VEGF), which leads to neo-
vascularization of either the choroidal (in AMD) or the retinal (in
retinopathy of prematurity and DR) vasculature.29

5. Rod metabolism in AMD

Early pathological changes observed in AMD are thickening of
Bruch's membrane and deposition of subretinal drusen.35 These

Fig. 1. (A) In darkness, photoreceptor metabolism is similar to adult neurons. Glucose is catabolized through glycolysis, the TCA cycle, and oxidative phosphorylation, generating
NADþ and a large amount of ATP along with ROS. (B) In light, photoreceptor metabolism is similar to that of stem cells. Glucose undergoes glycolysis to form pyruvate, which is not
further catabolized by the TCA cycle but is metabolized by the pentose phosphate pathway, generating several molecules of NADPH. NADPH is used for anabolic production of fatty
acids, proteins, nucleic acids, and 11-cis retinal. ADP ¼ adenosine diphosphate; ATP ¼ adenosine triphosphate; HIF1 ¼ hypoxia inducible factor 1; NFkB ¼ nuclear factor kappa beta;
PKM ¼ pyruvate kinase muscle isozyme; ROS ¼ reactive oxygen species; TCA ¼ tricarboxylic acid; NADH ¼ nicotinamide adenine dinucleotide (reduced); NADþ ¼ nicotinamide
adenine dinucleotide (oxidized); PDH ¼ pyruvate dehydrogenase; pAMPK ¼ phosphorylated adenosine monophosphate activated protein kinase; NADPH ¼ nicotinamide adenine
dinucleotide phosphate; Ser ¼ serine; Gly ¼ glycine; GSSG ¼ glutathione disulfide; GSH ¼ glutathione.
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lead to a decrease in diffusion capacity of O2 from the chorioca-
pillaris to the retinal pigment epithelium (RPE), causing ischemia in
the retina. In early disease stages, a manifestation of the ischemic
injury is that dark adaptation is reduced compared with healthy
age-controlled adults.36 This finding suggests that in AMD, rod
function is actually impaired before macular degeneration occurs
and before cone function is lost. The histological evidence that rods
are lost in the parafoveal region of the retina where they are in the
highest density and O2 consumption is greatest37 also supports the
theory that hypoxic/ischemic injury causes degeneration of the
macula. Subsequent cone photoreceptor death is generally
accepted to be caused by rod death, with a rod-derived cone
viability factor thought to play a prominent role in this process.38

The RPE releases VEGF normally to sustain the choriocapillaris,
and without it, the choriocapillaris atrophies in normal aging.39 In
“wet” AMD, usually the late-stage form of the disease, there is
substantial neovascularization and subsequent capillary leakage, as
opposed to in “dry” AMD, in which RPE atrophy predominates.
Anti-VEGF therapies were successful taking advantage of this
mechanism to suppress neovascularization in wet AMD.40 In
addition, in patients treated for DR with panretinal photocoagula-
tion, the development of wet and dry AMD was shown to have
reduced compared with patients with DR without panretinal
photocoagulation treatment.41 This may be due to the dramatic
decrease in the number of rods, lowering the burden of oxygen-
ating the retina.29 A novel approach to treating AMD, which com-
bats the high energy consumption by rods in darkness, is light
therapy, in which patients are exposed to constant low levels of
light. This has produced promising results in an early-stage AMD
clinical trial.42

6. Rod metabolism in DR

Similarly to AMD, it has been well established that the clinical
development of DR begins with a decade-long pre-nonproliferative
phase, followed by a nonproliferative phase that continues or be-
comes proliferative in the end-stage disease.43 The molecular
pathophysiology is under constant debate; however, the impor-
tance of elevated glucose levels to initiate the disease and VEGF
release to cause neovascularization is largely accepted in the field.44

Hyperglycemia has been shown to induce vascular changes in early
and late stages of DR through retinal capillary damage from peri-
cyte loss and possible alterations in retinal blood vessel diameter,
retinal oxygenation, and retinal blood flow.45 Prolonged elevation
of glucose level and advanced glycation products have been shown
separately to increase VEGF release in RPE.46,47 Arden and
others29,42,48,49 have advocated that VEGF release induced by
elevated glucose levels and hypoxia is caused by the high energy
demand of rod photoreceptors in dark adaptation. In support of
their hypothesis, Arden and colleagues50 showed that patients with
concurrent diabetes and retinitis pigmentosa (RP) do not develop
DR, which, according to them, is due to a decrease in energy de-
mand as a result of loss of rod photoreceptors. Arden and col-
leagues42 have also proposed light therapy for treatment of DR,
which showed benefit in early disease stages. Other methods to
lower energy demand from rod photoreceptors need to be explored
to validate the hypothesis that rod energy consumption drives DR.

7. Rod metabolism in RP

The pathophysiological basis of photoreceptor loss in RP can also
be due to excessive energy demand from being in a state that
mimics dark adaptation or “equivalent darkness.” Rhodopsin is the
most commonly mutated gene responsible for the disease, and
mutation of rhodopsin and other phototransduction genes such as

the phosphodiesterase (PDE) subunits causes impairment of
photoexcitation.51 Mutations of PDE6 that reduce enzyme activity
have been shown to cause a disease state in mice that mimics RP
and similar diseases,8,9 which may be rescued by the introduction
of a wild-type copy of the gene via gene therapy.52 This leads to
increased opening of the CNG channel and increased oxidative
phosphorylation by rod photoreceptors in a state that mimics dark
adaptation. Oxidative phosphorylation creates reactive oxygen
species that may cause autophagy or apoptosis.53,54 In addition, one
of the earliest histopathological signs of disease is shortening of the
outer segments.55 As described above, light-induced outer segment
turnover is one of the most important anabolic functions of rod
cells, and if the cells are primarily using oxidative phosphorylation,
they may not have adequate energy directed for rebuilding the
outer segments. Many structural genes, ciliopathy genes, and pro-
tein trafficking genes known to be genetically responsible for RP,51

likely contribute to the disease by also preventing adequate outer
segment renewal. RP exhibits a characteristic pattern of rod loss
beginning at the midperiphery of the retina where rod density is
high, and occasionally a bull's-eye pattern of rod loss is formed in
the parafoveal region of highest rod density.51,56 This predilection
for atrophy in areas of high rod density further supports the notion
that a rod process gone awry causes the disease, and we believe
that rod cells succumb to the mutations that cause increased en-
ergy demand or other insults to the ability to renew outer seg-
ments. Treating RP with an agent that maintains rods in a state that
mimics light adaptation, in which only glycolysis is used without
oxidative phosphorylation, may allow for increased preservation of
rod cells' ability to maintain outer segments and survive. In pre-
clinical studies using mice as models of RP, increased mammalian
target of rapamycin (mTOR) signaling has been shown to prolong
photoreceptor survival.57,58 The mTOR signaling is also known to
induce aerobic glycolysis,59 which may explain why increased
mTOR signaling is protective for RP.

8. Conclusion

The above evidence gives credence to the theory that over-
burdening rod metabolism causes several retinopathies. More
studies must be performed to further understand the mechanism
by which oxidative phosphorylation leads to rod death, and to
determine the treatment options based on this knowledge.
Whether this theory can be applied to other retinal degenerative
diseases is currently being explored.
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