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Abstract

Sub-networks can expose complex patterns in an entire bio-molecular network by extracting interactions that depend on
temporal or condition-specific contexts. When genes interact with each other during cellular processes, they may form
differential co-expression patterns with other genes across different cell states. The identification of condition-specific sub-
networks is of great importance in investigating how a living cell adapts to environmental changes. In this work, we
propose the weighted MAXimum clique (WMAXC) method to identify a condition-specific sub-network. WMAXC first
proposes scoring functions that jointly measure condition-specific changes to both individual genes and gene-gene co-
expressions. It then employs a weaker formula of a general maximum clique problem and relates the maximum scored
clique of a weighted graph to the optimization of a quadratic objective function under sparsity constraints. We combine a
continuous genetic algorithm and a projection procedure to obtain a single optimal sub-network that maximizes the
objective function (scoring function) over the standard simplex (sparsity constraints). We applied the WMAXC method to
both simulated data and real data sets of ovarian and prostate cancer. Compared with previous methods, WMAXC selected
a large fraction of cancer-related genes, which were enriched in cancer-related pathways. The results demonstrated that our
method efficiently captured a subset of genes relevant under the investigated condition.
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Introduction

A central problem in network biology is the identification of

genes and pathways involved in the same biological processes or

physiological conditions. The details of control mechanisms in

biological processes can be understood by analyzing interacting

neighbors and local patterns. Network structures often have been

used to describe these complex bio-molecular pathways and

functional modules by representing a whole set of interactions as

overlapping sub-networks, each associated with a specific condi-

tion [1,2].

Many methods have been developed to construct bio-molecular

networks by comparing multiple sets of microarray data under

different conditions. Because expressions of different genes in a

series of biological conditions influence each other, correlations

between genes have been widely used to analyze microarray gene-

expression measurements. Waaijenborg and Zwinderman [3]

developed a penalized canonical correlation analysis method to

extract a subset of variables that capture the common features

among genes by maximizing a canonical correlation between

expression of genes. Witten and Tibshirani [4] presented some

extension formulas to the sparse canonical correlation analysis as a

supervised method, which resulted in the identification of linear

combinations of sets of variables that are correlated and associated

with its outcome.

To fully understand the complex biological processes, the

effective integration of diverse sets of data and knowledge is

required. Protein-DNA interaction and gene expression data were

combined for regulatory network identification [5]. Integrating

protein-protein interaction (PPI) data with gene expression data

has also been attempted for the identification of biologically

meaningful and cancer-related networks in cancer studies [6–9].

The integration increases the accuracy in identifying genes jointly

regulated in the same condition. Guo et al. [10] developed an

edge-based scoring function for gene-gene co-expression by using

both gene expression and PPI data. However, in this method, PPI

information is used to define existence of edges in the bio-

molecular network so that only gene pairs that are included in the

existing PPI network are considered in the scoring function. Lai et

al. [11] extended the traditional F-statistic to obtain an expected

conditional F-statistic (ECF-statistic), which measures the connec-

tivity between genes. The ECF-statistic was used in a COSINE

method [12] to measure gene-gene co-expression from gene

expression data. For the use of the PPI information in COSINE,

only the number of interactions in a selected sub-network was

considered in their scoring function to calculate its sub-network

adjust score, instead of using each interaction in the PPI network.
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A mixed integer linear programming model [13] and an integer

linear programming approach [14] were developed to identify

differentially expressed pathways using both data sets. However,

these two integer linear programming approaches have used

expression values of individual genes without accounting for

correlation or co-expression information, which might be less

informative.

Figure 1. Workflow of WMAXC. (1) Gene expression data consisting of normal and cancer samples (1A) and the PPI network (1B) are used as
inputs. (2) We begin by constructing two responsive networks under the investigated condition: In (2A), we use two statistic measurements to
construct a bio-molecular network. For each gene, Ti is used to measure activity of gene i (a node score) and for each pair of genes Mij is used to
measure connectivity relationship between gene i and gene j (an edge score). In (2B), for each interaction in PPI network, DBTij is used to measure
activity of interaction behavior between gene i and gene j (an edge contribution score from PPI) and for each gene, Degi is used to measure the
weighted degree of gene i (a node contribution score from PPI) under the condition. (3) We then combine the two responsive networks to construct
the background network by assigning node and edge scores to a set of genes. Orange edges represent gene-gene co-expression estimated from only
gene expression data and green edges represent activity of interactions in the PPI network. In the process of combining two networks, new edges are
included to (2A) although they are not in the existing PPI network. (4) Finally, we solve the constrained optimization problem to obtain the single
optimal sub-network.
doi:10.1371/journal.pone.0104993.g001
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Finding a sub-network that maximizes the score of differential

expressions of genes and differential co-expression of gene pairs

can be formulated as a combinatorial optimization problem. In

practice, bio-molecular networks are often large in scale [15].

Hence, it is impossible to exactly solve a large combinatorial

optimization problem within a reasonable time. For examples, in

the COSINE method [12], a genetic algorithm was used to find a

binary vector, in which 1 or 0 represents presence or absence of a

gene in the sub-network, and its space complexity is exponential as

2p, where p is the total number of genes. In the edge-based method

[10], a searching procedure based on simulated annealing was

used to find the sub-network. It iteratively tests whether the

addition or removal of an edge will increase their sub-network

adjust score during the annealing process, and its space complexity

is also exponential as 2q, where q is the number of possible edges

(edges in the PPI network). Ideker et al. [6] also used the simulated

annealing approach; however, it tended to produce a large sub-

network that was often difficult to interpret. Although Rajagopalan

and Agarwal [16] and Nacu et al. [17] offered several

improvements, they were also based on heuristic techniques with

combinatorial selection and required the estimation of additional

parameters. Various graph theory-based approaches, such as

sequential greedy heuristics [18,19], have been presented. These

heuristics generate a maximal scoring sub-network through the

repeated addition of a vertex into a partial sub-network, or by the

repeated deletion of a vertex from a sub-network. In addition to

heuristics, several local optimization-based approaches have been

presented to extract condition specific sub-networks. A method

developed by Wang and Xia [15] was inspired by a KKT

condition and was used to iteratively find a local minimum from a

predetermined initial solution. A large number of local solutions

can be found for the non-convex problem. Depending on the

selection of the initial solution, many of them might not be

significant under the investigated condition, which may give rise to

false positives.

In our work, we reformulate the sub-network identification

problem as a constrained optimization problem for continuous

variables. It is an approximation of the general combinatorial

problem, based on the theorem posed by Motzkin and Straus [20].

To construct a background network under investigated condition,

we used two statistical measurements to represent activity of each

genes and interaction behaviors of each pair of genes; a modified

T-statistic as the differential expression of each gene and a

conditional expectation of the modified T-statistic as the differen-

tial gene-gene co-expression. In our first experiment, we used the

two measurements to construct the background network that

represents the weight parameters of the optimization problem. We

then employed a continuous genetic algorithm, which has the

advantage of being capable of jumping out of local solutions, and

used a projection procedure that maximizes our objective function

under a sparsity constraint. In the second experiment, we

reconstructed the background network by integrating PPI

information with the gene expression profiles for each gene pair,

and obtained a more robust estimation of the neighbors of each

gene in the network. We first tested the performance of our

method using simulated data sets, and then applied the method to

analyze human ovarian and prostate cancer data sets. The results

demonstrated that our method efficiently captures relevant

interaction behaviors under the investigated conditions. An

overview of the workflow is presented in Figure 1, and more

detailed descriptions are given in the Methods section.

Methods

We first describe scoring functions to measure gene expression

differences and gene-gene correlations for given two conditions,

which generate weight values of nodes and edges in a background

network. We then introduce an optimization model to identify the

maximal scoring sub-network. Finally, the proposed model is

extended to include PPI interactions.

Scoring function of WMAXC
The entire background network is represented as a graph

G~(V,E), where a set of nodes V represents genes, and a set of

edges E represents the connectivity relationships among these

genes. Let V be a set of k genes. For each gene, n and m denote

the numbers of samples in two different conditions, such as normal

and cancer. We then have a gene expression data set, given as two

matrices with sizes of n|k and m|k. A modified T-statistic is

used as a scoring function to measure the differential expression of

each gene. For each node in V, the differential expression value of

the corresponding gene Y is computed as

TY ~
mYN

{mYCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s2

YN
zs2

YC
)(

1

n
z

1

m
)

nzm{2

vuut
zsv

, ð1Þ

where mYN
, mYC

and sYN
, sYC

are the sample means and

standard deviations of gene Y in the normal and cancer

conditions, respectively, and sv is a constant chosen to minimize

the coefficient of variation of T-statistic [21] (see more descriptions

and Figure S1 in File S1).

For each edge in E, the conditional expectation of the modified

T-statistic is used to measure differential gene-gene co-expressions

across two conditions. To measure the gene-gene correlations for a

pair of genes, we assume that samples of genes are jointly normal

distributed in a particular condition, such as normal (N) or cancer

(C). By the assumption, a bivariate normal distribution of two

genes Y and Z in the normal condition is

(YN ,ZN )*N (mYN
,mZN

),
s2

YN
rNsYN

sZN

rNsYN
sZN

s2
ZN

 ! !
:

The conditional distribution of YN given ZN~z is

YN DZN~z*N mYN
zrN (z{mZN

)
sYN

sZN

,s2
YN

(1{r2
N )

 !
: ð2Þ

Similarly, the conditional distribution of YC given ZC~z in the

cancer condition is

YC DZC~z*N mYC
zrC(z{mZC

)
sYC

sZC

,s2
YC

(1{r2
C)

 !
, ð3Þ

where rN and rC are the sample correlations of a pair of genes

(Y ,Z) in the normal and cancer conditions, respectively. By

replacing mean and variance in Equation (1) with the correspond-

ing conditional means and variances from Equations (2) and (3),

we obtain a conditional T-statistic as follows.
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TY DZ~z~

mYN
zrN (z{mZN

)
sYN
sZN

{mYC
{rC(z{mZC

)
sYC
sZCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½s2
YN

(1{r2
N )zs2

YC
(1{r2

C)�( 1

n
z

1

m
)

nzm{2

vuut
zsv

: ð4Þ

For gene Z, let fZN
(z)*N (mZN

,s2
ZN

) and fZC
(z)*N (mZC

,s2
ZC

)

be the probability density function of the normal and cancer

conditions, respectively. Then, the probability density function of

Z is fZ(Z)~pNfZN
(z)zpCfZC

(z), where pN~
n

nzm
and

pC~
m

nzm
are the probabilities that a sample is selected from

the normal or cancer conditions. By calculating the expectation

over all samples of gene Z, we obtain the connectivity relationship

between gene Y and gene Z as follows.

M(TY jZ~z)~

ð
Z

TY jZfZ(z)dz

~

ð
Z

(pNTY jZ~zfZN
(z)zpCTY jZ~zfZC

(z))dz

ð5Þ

As we described above, TY DZ , fZN
(z) and fZC

(z) are functions of

z so that the integration in Equation (5) can be numerically

computed over all samples in the normal and cancer conditions.

In summary, the modified T-statistic is used to measure the

differential expression of each gene, and the conditional expecta-

tion M(TY DZ~z) is used to measure differential co-expression of

each pair of genes across two conditions. Note that we calculated

the differential co-expression patterns M(TY DZ) for all pairs of

nodes in the background network because the co-expression of two

genes might be significant although each gene may not be

differentially expressed. In this work, we will use a matrix notation

Mij for M(TY DZ) and a vector notation Ti for TY , and the matrix

M is symmetric, in which its entries represent weights of

undirected edges and the entries in the vector T represent weights

of nodes in the background network.

Optimization model
A remarkable connection between the maximum clique

problem and a certain standard quadratic programming problem

was established [20] by providing an alternative proof of a slightly

weaker version of the fundamental theorem [22].

Let �GG~(�VV,�EE) be an unweighted and undirected graph, and D
denotes the standard simplex in the k-dimensional Euclidean space

Rk, and DS~fx[D : xi~0 if i 6[Sg is the face of D corresponding

to a subset S(�VV. A characteristic vector xS denotes the vector in

D defined by xS
i ~1=ESE if i[S and xS

i ~0, otherwise. The

maximum clique problem can then be formulated as the following

quadratic programming problem.

f (x)~xT A�GGx?max ,

D~fx[Rk : xi§0, Vi[�VV, eT x~1g,
ð6Þ

where eT denotes the transpose of the vector e consisting of unit

entries, A�GG~(aij)i,j[�VV is the adjacency matrix (binary matrix) of �GG,

and x� is a global solution of f on D. Motzkin et al. [20] proved that

the clique number of �GG is related to f (x�) in the following formula.

v( �GG)~
1

1{f (x�)
§

1

1{f (x)
, Vx[D, ð7Þ

where v( �GG) is the size of the maximum clique in �GG. Essentially, they

proved that a subset of nodes S is a maximum clique of �GG if and

only if its characteristic vector xS is a global solution of f on D (for a

comprehensive review, see [23]).

Based on the theoretical validation, we reformulate the sub-

network identification problem as a continuous optimization

problem that is an approximation of the general combinatorial

problem and a generalization of the problem in Equation (6). The

proposed method relates the densest part (a maximum scored

clique) of a weighted graph to the optimization of a quadratic

function under sparsity constraints. A weaker formula of the

maximum clique problem, the optimization problem for identify-

ing a condition-specific sub-network from a bio-molecular

network, can be formulated as follows.

lxT Wxz(1{�l)vT x?max,

D~fx[Rk : xi§0, Vi[V, eT x~1g,
ð8Þ

where v is a vector in which vi represents a node score measuring

differential expression for gene i, W is a symmetric matrix in

which Wij represents an edge score measuring the connectivity

strength between gene i and gene j, and l is a positive parameter

to balance and to integrate the two terms of the objective function

in Equation (8). A k-dimensional non-negative vector

x~(x1,x2,:::,xk), determined by solving our optimization prob-

lem, represents the contribution to each gene belonging to the

condition specific sub-network. Particularly, xi indicates whether

its corresponding node is contained in a selected sub-network

(xiw0) or not (xi~0). Since we maximize the interconnectivity of

sub-network, a gene i with both a high node confidence score in v
and high confidence scores in Wij should be selected in the sub-

network and its corresponding xi should be assigned to have a high

contribution score. Therefore, the subset of variables correspond-

ing to the nonzero elements in the optimal solution x� forms the

maximum scored sub-network in the background network.

Moreover, the genes that have higher contribution scores are

more likely to be related to the phenotype (cancer) being analyzed.

Sub-network identification from gene expression and PPI
network data

We extend our model to incorporate the assumption that the

significance score of one gene or its interactions in a network

depends not only on its own gene expression profile but also on the

profiles of its neighbors in the PPI network. Some interactions in

the PPI network are activated under the investigated condition

while others are not activated. If two genes interact with each

other under a particular condition, the expression distance

between them might be significantly changed across two

conditions (a normal condition and a cancer condition). Based

on this assumption, we propose a scoring function called the

distance-based T-score to measure the change in gene expression

distances across two conditions for each pair of genes in the PPI

network. This function is used to test the significance score of each

interaction in the PPI network.

As described in the section of scoring function of WMAXC, the

gene expression profile data are given as two matrices with sizes of

n|k and m|k. Let (g1
1i,g

1
2i,g

1
3i,:::,g

1
ni)

T and (g2
1i,g

2
2i,s

2
3i,:::,g

2
mi)

T

be the samples of gene i in normal and cancer conditions,
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respectively, and PPI denote a set of pair indexes of genes with

interactions in the PPI network. For a pair (i,j)[PPI, let

DN
ij ~

1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

l~1
(g1

li{g1
lj)

2
q

and DC
ij ~

1

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

l~1
(g2

li{g2
lj)

2
q

be

the normalized distances between gene i and gene j in the normal

and cancer conditions, respectively. Then, the distance-based T-

score, DBTij , can be formulated as follows.

DBTij~

DN
ij

{DC
ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n � (VN
ij )2zm � (VC

ij )2

nzm{2
(
1

n
z

1

m
)

s , (i,j)[PPI

0, (i,j) 6[PPI,

8>>>><
>>>>:

ð9Þ

where VN
ij and VC

ij are the geometric averages of the standard

deviations of samples of gene i and gene j in the normal and

cancer conditions, respectively (see more descriptions and Figure

S2 in File S1). One of the advantages of using DBT score is that

less relevant interactions in the PPI network under the investigated

condition can be thinned out. Since both the conditional

expectation of the modified T-statistic and the distance-based T-

score are estimated from the same population, we reconstruct our

background network by integrating the two types of information.

To quantify absolute changes of expression under the investigated

condition, we transformed Ti, Mij , Degi and DBTij in their

absolute values. The weight parameters of the objective function in

Equation (8) are then calculated as follows.

Wij~DMij Dza � DDBTij D, vi~DTi Dzb �Degi, ð10Þ

where Degi~
P

j DDBTij D is a weighted degree for gene i in the

PPI network, i,j~1,2,:::,k are gene indexes, a and b are positive

scaling parameters defining the contribution of PPI information to

the condition-specific network. We set a~
maxi,jfMijg

maxi,jfDBTijg
and

b~
maxifTig

maxifDegig
, where a ensures that the maximum of entries in

the M matrix is equal to the maximum of entries in the DBT

matrix and similar normalization is applied to b.

The PPI network is very sparse; the percentage of interacting

protein pairs is only 0.0888% for the ovarian cancer data and

0.1280% for the prostate cancer data. Moreover, some interac-

tions in the existing PPI network might not be significantly

activated under the investigated condition. In this case, they might

have very small values in DBTij (near to zero). Therefore, the

DBT score matrix becomes more sparse, and only the entries

corresponding to significant interactions in the PPI network have

observable contributions to the matrix W and the vector v.

However, the weight matrix M and the weight vector T are not

sparse, because until now we used all differential expression and

co-expression values without considering the significance of them.

Therefore, genes with non-significant changes and correlations in

expression values contribute their weights to W and v. In other

words, all non zero entries in W and v can influence the behavior

(slope) of the continuous objective function even though their

values are not high. The influence in the objective function may

lead the solution to a local maximum. To avoid the local

convergence, we define two hard thresholds as follows.

Ti~
jTij, jTijvmv

0, otherwise,

�
Mij~

jMij j, jMij jvmW

0, otherwise,

�
ð11Þ

where mv is the mean value of T , computed as mv~
1

k

Xk

i~1
DTi D,

and mW is the maximum of mW1
,mW2

,:::,mWk
, and for each i,

mWi
~

1

k

Xk

j~1
DMij D.

Estimation of weight parameter l
A reasonable balance between the quadratic and linear terms of

the objective function in Equation (8) is essential for the stability

and robustness of the optimization result. Unfortunately, it is

difficult to define an objective criterion for biological relevance.

Regarding optimization, the term with greater value should be

more informative in our task. To achieve the stability of the

solution, we compared the magnitudes of edge and node scores in

terms of statistical distributions of score values. Because of the

restrictions imposed by the sparsity constraint, the sub-network

scores are not affected by their size. For both score terms, sub-

network scores of different sizes behave similarly, and the

majorities of edge and node score values fall in the region around

their means. Therefore, the edge and node score values of a

randomly selected sub-network have more chances to fall around

the mean (distribution plots are given in Figures S3 and S4 in File

S1), which allows the possibility of estimating the magnitudes that

make the solution more stable. To estimate the magnitudes of the

two terms, we used the following procedure: 1) Randomly sample

a large number of sub-networks by selecting points on D. Each

point xi[D presents a sub-network, and the edge and node scores

of the sub-network are calculated as xiT

Wxi and vT xi, respec-

tively; 2) Compute the means mW and mv, standard deviations sW

and sv of two score terms; 3) The magnitudes of both edge and

node score terms are defined as follows: MW ~
mW

sW

, Mv~
mv

sv

; and

then 4) We set l~
MW

MW zMv

.

Searching for condition specific sub-network
If the matrix {W is positive definite, the objective function in

Equation (8) is concave (concave maximization is equivalent to

convex minimization), and any local solution can also be the global

maximum. Unfortunately, in the WMAXC method, the weight

matrix W is generally indefinite. There are a large number of local

maxima, each representing a densely connected subgraph.

Because of the high complexity of the problem, it is a common

practice to solve it using metaheuristics, such as evolutionary

algorithms. This study implements a combination of a continuous

genetic algorithm [24] and a projection procedure [25–27] to

avoid the local maxima and reduce computational costs.

The continuous genetic algorithm is a parallel search procedure

commonly used in a high-dimensional global optimization

problem. For constrained optimizations, depending on the shape

of the constraint and the dimension of the problem, the

implementation of a genetic algorithm should be adapted to a

particular problem. Because the standard simplex D5Rk is a

subspace of the l! ball ½0,1�k5Rk (see Figure S5 in File S1), we

first apply the continuous genetic algorithm to maximize the

objective function in Equation (8) over ½0,1�k and find a single

optimal solution. Let x̂x be the global maximum of Equation (8) over

½0,1�k. We then project the solution x̂x onto D in the Euclidean space

Rk using the algorithm [26] to obtain a sparser solution [27]. Since

projection of any point onto convex set is unique (see the projection

theorem and Figure S6 in File S1) and the D is convex, the problem

of finding the Euclidean projection of a vector x̂x[Rk onto D can be

described by the following convex optimization problem.

WMAXC: A Method for Identifying Condition-Specific Sub-Network
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x�~ arg min
x[D

Ex{x̂xE2, ð12Þ

where x is a k-dimensional vector used as an optimization variable,

and x�~(x�1,x�2,:::,x�k) is the projection of x̂x onto D (see File S1). In

view of the Lagrangian duality, the optimal solutions of the primal

and dual problems are equal to a saddle point. In our task, the

optimization variable of the dual problem is simply a scalar. Hence,

it is more efficient to solve the dual problem instead of directly

solving the primal problem in Equation (12). By considering the

well-known result of the projection onto standard simplex [25], the

optimal projection x� is expressed as follows.

x�i ~
x̂xi{h, x̂xiwh

0, otherwise,

�
ð13Þ

where the dual optimal point h� is given by the root of the following

equation:

D’(h)~
Xn

i~1

maxf0,x̂xi{hg{1~0: ð14Þ

The root h� of Equation (14) can be numerically found using the

algorithm from [26] and is used in Equation (13). The solution of

Equation (13) represents the optimal solution of the problem in

Equation (8). After the procedure is completed, the nodes

corresponding to non-zero entries in the solution vector are

selected to represent the subset of genes forming the condition-

specific sub-network.

Data sets

N Protein-protein interaction data: We used the Human Protein

Reference Database released in 2010 [28]. There were 39,240

binary protein-protein interactions involving 9,617 genes.

After excluding self-interactions, 37,080 interactions remained.

N Ovarian cancer data: Gene expression data was collected from

the TCGA project [29]. It contains 17,814 genes with the

expression profiles of 587 cancer samples and 62 normal

samples. For the cancer samples, we only considered 332

samples without missing values. For the normal samples, we

imputed the missing values in the samples using the Weighted

K-Nearest Neighbors method, based on available observations

in the samples. For the analysis of ovarian cancer, we

considered only the genes that were included in the PPI

network, which consists of 8,721 genes and 33,771 interac-

tions.

N Prostate cancer data: Gene expression data was collected from

[30] with gene expression omnibus (GEO) accession number

GSE3933. It contains the gene expression profiles of 71 cancer

samples and 41 normal samples. The gene expression data was

initially used in COSINE [12]. In order to compare our results

with the results of COSINE using the same data, we used the

data set prepared by the authors of COSINE. This data set

consists of 5,335 genes with 18,234 interactions in the PPI

network.

Results

Simulation studies
We showed the performance of WMAXC on simulated data by

comparing it with COSINE [12], because COSINE was initially

compared to several other methods, including jActiveModules [6],

an edge-based method [10], and a local method [15]. We

constructed five simulation data sets from multivariate normal

distributions: four case data sets and one reference data set.

Each data set consisted of 1,000 variables (genes) for 50 samples.

For each gene i, we draw the mean mi and the standard deviation

si from the uniform distribution on the observed range of normal

data [20.5,0.5], and then estimated the correlation coefficient rij

for each pair of genes (i,j). Let m~(m1,m2,:::,m1000) denote the

mean vector, and S~fsijgi,j~1,:::,1000 denote the covariance

matrix, where sij~rij � si � sj is the covariance between gene i

and gene j.

We first simulated the reference data from joint normal

distribution N(m,S), and the reference data was compared to

each of the four case data sets. In each of four case data sets, 200 of

1,000 genes were selected as significant genes. For the particular

genes, some shifts in the mean expressions and higher correlations

among the genes were assigned to represent significant alterations

in expression values. Let II denote the set of indexes for the

significant genes.

m̂mi~
mizk, i[I

mi, i6[ I,

�
r̂ri~

rijzr, i,j[I

rij , i,j6[I,

(
ð15Þ

In each of four case data sets, the expression data was simulated

from jointly normal distribution N(m̂m,ŜS), where

m̂m~(m̂m1,m̂m2,:::,m̂m1000) is the mean vector, and ŜS~fŝsijgi,j~1,:::,1000

is the covariance matrix and its entries were calculated as

ŝsij~r̂rij � si � sj . For case data 1, k~0:6 and r~0:65 were used

in Equation (15), k~0:3 and r~0:65 for case data 2, and k~0:6
and r~0:35 for case data 3, and k~0:3 and r~0:35 for case data

4. Compared to the results of COSINE, WMAXC provided

higher accuracy in sub-network size, recall, precision, and F-

measure (Table 1). In the simulated data, the sub-network sizes

identified by COSINE were smaller than desired, whereas

WMAXC identified approximately 200 genes. Regarding the

running time, WMAXC was much faster than COSINE; in the

analysis on simulated data, it took 10 minutes to convergence,

while COSINE took around 30 hours.

Comparison with other methods on real data sets
We applied the WMAXC method on gene expression profiles of

two real data sets to identify a cancer type specific sub-network.

Then, the performance of WMAXC was compared to other

methods, COSINE [12] and BMRF [5].

Comparison on ovarian cancer. To evaluate whether the

genes in the identified sub-network are related to ovarian cancer,

we used a set of 379 experimentally verified ovarian cancer-related

genes from the Dragon Database of Genes [31] as reference genes.

Among the 379 genes, 315 were included in the 8,721 genes of our

data set. For WMAXC, the initialization parameters of the genetic

algorithm were set as follows: the number of iterations = 60,000,

mutation rate = 1/(k+1) and crossover rate = 0.5, where k is the

number of optimization variables (the number of genes). We first

applied our method using only the gene expression profile data,

and then integrated the PPI network with gene expression profiles

WMAXC: A Method for Identifying Condition-Specific Sub-Network
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using the Distance Based T-score as described in the Methods

section. Performances of the two approaches are shown in

Table 2. The fold enrichment of the genes selected among the

ovarian cancer-related genes had increased from 1.828 to 2.454

when the PPI network was integrated with the gene expressions,

compared to using only the gene expressions. A list of 100 genes

with the highest contribution scores to the condition-specific

network is given in Table S1 in File S1. Using a CPU with 3.40

GHz and 32 GB RAM, it took 26 hours to search for the maximal

scoring sub-network. To test whether the genetic algorithm

reached the convergence, we quantified the variations in objective

function values for the population in each iteration. For both

ovarian and prostate cancer data, the variation was almost zero

after running 60,000 iterations, and the minimum values of the

objective function became stable in the last 10,000 iterations. This

result suggests that the solution had reached convergence.

For the COSINE method, both gene expression profile and PPI

data were used. After five different l’s were tried, the l giving the

highest adjusted score of the scoring function was used. As a result,

the sub-network with a size of 806 was selected. The fold

enrichment was 1.237, and it took around 56 hours with 1,000

iterations. For the BMRF method, both gene expression profile

and PPI data were used. In addition, a set of hub genes related to

the investigated condition was required as an input. Hence, we

collected a set of 209 hub genes from KEGG, consisting of genes

included in the ovarian cancer-related pathways, such as ubiquitin,

coagulation, and hedgehog signaling pathways. BMRF extracted

the sub-network of the size of 916 genes, and the fold enrichment

was around 1.75. However, its accuracy was depending on the

choice of the set of hub genes; for a set of randomly selected genes,

the fold enrichment was decreased to 1.041. Overall, the

comparison demonstrated that WMAXC outperformed both the

COSINE and BMRF methods on the real data set.

Comparison on prostate cancer. For the method evalua-

tion, 703 genes related to prostate cancer from the Dragon

Database of Genes [32] were used as reference genes. Among the

703 genes, 400 were included in our dataset. l~0:041 was used

for the WMAXC method, and the initialization parameters of the

genetic algorithm were the same as those used in the analysis of the

ovarian cancer data. WMAXC extracted a sub-network of the size

539 and a fold enrichment of 2.35. A list of 100 genes with the

highest contribution scores to the condition specific network is

given in Table S2 in File S1. COSINE selected a relatively smaller

network with the size of 243 and a fold enrichment of 1.262 [12].

With a set of hub genes included in the mark signaling pathway

from KEGG, BMRF selected the sub-network with the size of 601

genes and a fold enrichment of 2.086. However, for a set of

randomly selected genes, the fold enrichment was decreased to

0.98. Performances of methods are summarized in Table S3 in File

S1, confirming that WMAXC outperformed the other two

methods.

Analysis on real data
Although only 57 out of 643 genes forming the condition-

specific sub-network were included in DDOC as shown in

Table 2, some ovarian cancer-related genes might not be included

in DDOC. Hence, we manually checked whether 20 candidate

genes with the highest contribution scores were ovarian cancer-

related genes. Among them, 16 genes were known to be related to

ovarian cancer by DDOC or the manual literature search (Table

S4 in File S1). The remaining four genes are SELL, UBAP2L,

TFEB and DPPA4. Although there were no evidences of their

involvements in ovarian cancer development, these four genes

were highly co-expressed with other ovarian cancer and cancer
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related genes in the condition specific network. As shown in

Figure 2, they directly shared significant co-expression patterns

with 159 neighbors. Surprisingly, 59.1% (94/159) of neighbors of

these four genes are ovarian cancer-related genes and 35.8% (57/

159) are other cancer-related genes. A list of these genes with their

literature evidences is shown in Table S5 in File S1. For only 5%

(8/159) of neighbor genes, we cannot find literature evidences

showing their relevance to cancer. We further investigated that

these four genes were actively involved in the other cancer types

and biological phenomenon. L-selectin, SELL, is a member of a

family of adhesion receptors that play important roles in

lymphocyte-endothelial cell interactions. Resto et al. [33] inves-

tigated adhesive interactions between lymphocytes and head and

neck cancer cells (HNSCC cells) under shear stress, and the

interactions can be mediated by L-selectin. Kuiper et al. [34]

investigated that upregulation of the transcription factor TFEB in

some particular chromosomal position may play an important role

in the regulation of renal cancer progression. Maldonado-Saldivia

et al. [35] provided an evidence that DPPA4 is downregulated

during fetal germ line progression and this process might be

required to facilitate appropriate germ line differentiation.

Moreover, it may provide an implication in the development of

germ cell cancer in human. Although there was no much evidence

of their involvements in ovarian cancer, our results suggest that

these genes might be closely related to ovarian cancer progression.

By applying the WMAXC method to the ovarian cancer data,

we identified a biologically meaningful sub-network involved in

many ovarian cancer related pathways. Measured using Database

for Annotation, Visualization and Integrated Discovery (DAVID)

[36], 60 pathways were significantly enriched by the KEGG

pathway, including the ErbB signaling pathway, the Notch

signaling pathway, and the TGF-b signaling pathway (Table S6

in File S1). The epidermal growth factor receptor (EGFR) is a

member of the ErbB family of tyrosine kinase receptors.

Overexpression of EGFR and its downstream targets are

associated with resistance to chemotherapy for ovarian cancer

[37]. Ovarian cancer cells, in which Notch3 was frequently

amplified and overexpressed, are dependent on the Notch3

signaling pathway for cellular survival and growth. Notch3

expression is also associated with chemo resistance in ovarian

high-grade serous carcinoma [38]. The TGF-b signaling pathway

is activated in ovarian cancer, and the inhibition of this pathway

by a small molecule is a promising strategy in the treatment of

ovarian cancer [39].

The sub-network identified using the prostate cancer data

included 62 significantly enriched KEGG pathways, including

prostate cancer, neurotrophinn signaling, MAPK signaling, Wnt

signaling, TGF-b signaling, chemokine signaling pathways, and

the regulation of actin cytoskeleton (Table S7 in File S1). For

instance, it has been demonstrated that the progression of prostate

cancer is affected by changes in the expression of auctocrine

neurotrophins [40]. MAPK signaling is shown to be activated in

prostate cancer, especially in later stages of the disease [41–43],

and it was recently suggested that the MAPK signaling pathway

may be a target for prostate cancer therapy, if it is inhibited

simultaneously with other pathways, such as PI3K/AKT signaling

[44]. The upregulation of some Wnt pathway members was

observed in ERG-positive prostate cancers, and it has been shown

that knockdown of the ERG gene in VCaP prostate cancer cells

causes an activation of cell adhesion and expression changes in

Wnt signaling. These findings were validated by gene expression

data from both clinical prostate cancer samples and from ERG

over-expressing non-transformed prostate epithelial cells [45].

Several studies have shown that changes in the levels of TGF-b
pathway components are related to prostate cancer progression

and cellular responses [46], [47], and [48]. In addition, chemokine

signaling pathways and the regulation of actin cytoskeleton have

been studied and experimentally validated to be associated with

prostate cancer [15,49].

In summary, the analysis of both simulated and real data

provides evidence that the WMAXC method can yield new

insights that contribute to a better understanding of diseases.

Discussion

Our main goal was to design an algorithm that reveals a subset

of genes closely related to a particular disease. Based on an

optimization framework, we proposed an effective method,

WMAXC, for identifying a condition-specific sub-network under

a particular condition. WMAXC has the following advantages: (1)

It extracts the global optimal sub-network that exhibits significant

alterations across two phenotypes; WMAXC considers the

weighted contributions of both expression difference for each

single gene and the differential correlation of each pair of genes. (2)

WMAXC effectively integrates diverse sets of data and knowledge

to construct the background network under a particular condition.

(3) An optimization formulation with strong theoretical validation

is used to represent a continuous version of the general

combinatorial problem for identifying a condition-specific sub-

network. (4) WMAXC considers all nodes and edges at the same

time to search a single optimal sub-network. (5) Genetic algorithm

and a projection procedure are combined to approximate the

Table 2. Performance on ovarian cancer data.

Methods COSINE BMRF WMAXC1 WMAXC2

l 0.871 - 0.173 0.2715

Selected genes 806 916 567 643

Recovered interactions 275 635 483 2015

Recovered genes 36 58 38 57

Fold enrichment 1.237 1.753 1.828 2.454

WMAXC1 represents the results obtained using only gene expression profile data, whereas the WMAXC2 results were obtained by integrating gene expression profiles

and PPI network data. ‘Fold enrichment’ was used to evaluate the performance of the methods and was calculated as
‘Recovered genes’ � ‘All genes’

‘Selected genes’ � ‘Reference genes’
, where

‘Selected genes’ is the number of selected genes by the method, ‘Reference genes’ is the number of reference genes from the Ovarian Cancer Dragon Database of
genes, ‘Recovered genes’ is recovered genes by the method among the reference genes, and ‘All genes’ represents all genes in the entire network. ‘Recovered
interactions’ represents the number of interactions recovered from the PPI network.
doi:10.1371/journal.pone.0104993.t002
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global solution to our problem. (6) A weight parameter l is chosen

to make the solution stable to the problem, and it is also adaptive

to the specific dataset being analyzed.

WMAXC integrates gene expressions and the PPI network, and

the positive scaling parameters a and b in Equation (10) are

contribution factors of the PPI network in identifying disease-

specific genes. We expect that for larger a and b values, the

accuracy will increase with a high-quality PPI network, while false

positive genes might be included with a low-quality PPI network.

In the Results section, we used a high-quality PPI network, and

a~
maxi,jfMijg

maxi,jfDBTijg
~26:336 and b~

maxifTig
maxifDegig

~31:242 pro-

vide a stable performance, and the fold enrichment is relatively

high as around 2.45. To show how the performances of the

method are affected depending on PPI data quality and scaling

parameters, we simulated three PPI data sets with different

qualities by randomly removing a fraction of existing edges from

the PPI network and randomly adding the same numbers of edges

into the PPI network. Then, the simulated PPI data sets were used

with three different sets of scaling parameters in our model and

corresponding results for each scaling parameter are given in

Table 3. For relatively high-quality data sets such as the original

PPI and data set-1, the fold enrichment was increased with larger

values of a and b. On the other hand, for the low-quality PPI data

sets such as data set-3, the fold enrichment was decreased with

larger values of a and b.

WMAXC is flexible. It can be simply adapted to directed

graphs or even to the integration of gene expression and pathways.

For example, instead of using a PPI network, the union of

regulatory pathways can be used to represent directed interaction

and to compute the DBT score for a pair of genes. In this case, the

weight matrix W is non-symmetric, and only slight modifications

are required to construct a bio-molecular network from the gene

expression profile. The solution to the constrained optimization

problem can be approximated by combining the genetic algorithm

and the projection procedure.

Figure 2. The four candidate genes for ovarian cancer and their neighbor genes in the condition specific network. The four candidate
ovarian cancer-related genes are colored in red, ovarian cancer-related genes in green, cancer-related genes in blue and the remaining genes in pink.
Edges represent significant co-expressions between genes in the given ovarian cancer.
doi:10.1371/journal.pone.0104993.g002

Table 3. Performances on simulated PPI data with different scaling parameters.

Parameters Original PPI network PPI data set-1 PPI data set-2 PPI data set-3

a~5, b~6 2.2704 1.7681 2.0443 1.7569

a~26:336, b~31:224 2.454 2.3092 2.2176 1.615

a~50, b~60 2.4592 2.3843 2.1657 1.5638

For the PPI data set-1, set-2 and set-3, 30%, 50% and 70% of edges from the original data are randomly removed and then the same number of edges are randomly
added, respectively. Performances are measured using the fold enrichment, which is described in Table 2.
doi:10.1371/journal.pone.0104993.t003
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