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Abstract

Brain serotonin (5-HT) neurotransmission plays a key role in the regulation of mood and has been implicated in a variety of
neuropsychiatric conditions. Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in the biosynthesis of 5-HT. Recently,
we discovered a second TPH isoform (TPH2) in vertebrates, including man, which is predominantly expressed in brain, while
the previously known TPH isoform (TPH1) is primarly a non-neuronal enzyme. Overwhelming evidence now points to TPH2
as a candidate gene for 5-HT-related psychiatric disorders. To assess the role of TPH2 gene variability in the etiology of
psychiatric diseases we performed cDNA sequence analysis of TPH2 transcripts from human post mortem amygdala samples
obtained from individuals with psychiatric disorders (drug abuse, schizophrenia, suicide) and controls. Here we show that
TPH2 exists in two alternatively spliced variants in the coding region, denoted TPH2a and TPH2b. Moreover, we found
evidence that the pre-mRNAs of both splice variants are dynamically RNA-edited in a mutually exclusive manner. Kinetic
studies with cell lines expressing recombinant TPH2 variants revealed a higher activity of the novel TPH2B protein compared
with the previously known TPH2A, whereas RNA editing was shown to inhibit the enzymatic activity of both TPH2 splice
variants. Therefore, our results strongly suggest a complex fine-tuning of central nervous system 5-HT biosynthesis by TPH2
alternative splicing and RNA editing. Finally, we present molecular and large-scale linkage data evidencing that deregulated
alternative splicing and RNA editing is involved in the etiology of psychiatric diseases, such as suicidal behaviour.
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Introduction

Serotonin (5-hydroxytryptamine, 5-HT) is a monoaminergic

neurotransmitter involved in multiple facets of behavioural control

[1], and it has been known for more than four decades that

tryptophan hydroxylase (TPH; EC 1.14.16.4) perfoms the first-step

and rate-limiting step in its biosynthesis [1,2]. The serotonergic

projection system is the most extensive monoaminergic system in

the brain of vertebrates, with its roots in a handful of 5-HT-

synthesizing neurons within the midbrain, pons, and medulla

oblongata, which altogether constitute the raphe nuclei B1–B9 [1].

These few serotonergic raphe neurons innervate most cortical and

subcortical brain areas, including the amygdala, a brain structure

critically involved in the modulation of emotional behaviour related

to anxiety, fear and reward [3,4]. Dysregulations in the serotonergic

system in the brain have been implicated in a variety of psychiatric

disorders, such as depression, suicide, schizophrenia and addiction,

which are accompanied by abnormal amygdala function [5].

Recently, a second TPH gene (TPH2) was identified, which

encodes for the main 5-HT-synthesizing enzyme in neurons,

whereas the previously known TPH gene (TPH1) is predominantly

expressed in peripheral tissues [1,6]. While TPH1 is still

intensively investigated with regard to its role in developmental

processes in embryos and nourishing mothers [7,8], cancer [9,10],

platelet functions in primary haemostasis [11], liver regeneration

[12], insulin secretion [13], and pulmonary hypertension [14],

psychiatric 5-HT research now mainly focuses on TPH2

[1,6,15,16,17,18,19]. Although TPH1 has a higher catalytic rate

than TPH2 [20] and since in several human brain areas, TPH1

mRNA is more abundant than TPH2 [21], TPH1 protein was not

detectable by immunohistochemistry [22]. Thus, TPH1 seems not

to contribute to brain 5-HT biosynthesis but it cannot be ruled out

that impaired TPH1 activity leads to psychiatric illness due to

metabolic disorders, such as diabetes [13] or impaired liver

function [12].

Numerous studies have identified associations of single nucle-

otide polymorphisms (SNPs) in the human TPH2 gene with

psychiatric diseases [16,17,18,19]. These studies mainly focused

on non-coding SNPs and only few functional data exist. For

example, we previously reported the association of a TPH2
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promoter SNP (-614T.A; rs11178997) with reduced transcrip-

tional activity [23], whereas another allelic TPH2 promoter

variant (-844G.T; rs4570625) was shown to associate with

amygdala hyperexcitabilty in reaction to emotional stimuli

[24,25]. A functional coding Tph2 SNP was first described in

mouse, where the highly conserved proline447 is changed to

arginine by the SNP C1473G resulting in a 55% decrease of 5-HT

biosynthesis when expressed in PC12 cells [26]. Consistently,

BALB/cJ and DBA/2J mouse strains, homozygous for the allele

1473G, showed substantially reduced 5-HT-synthesizing activity

in the brain [26]. To date, three non-synonymous TPH2 SNPs

have been associated with psychiatric disorders in humans, which

severely impair TPH2 enzymatic activity by causing the amino

acid substitutions p.P206S (c.757C.T; exon 6), p.W303R

(c.907C.T; exon 7), and p.R441H (c.1322G.A; also known as

1463G.A; exon 11) [27,28,29]. Interestingly, we and others tried

to confirm the SNP c.1322G.A at the genomic level in more than

5,000 patients of matched collectives without any success

[15,29,30,31,32,33]. In addition, splice variants in the non-coding

39-UTR were described, but no functional effects were detected on

5-HT biosynthesis by them [34]. As brain 5-HT biosynthesis is

regulated by TPH2 [6,26], and TPH2 SNPs increase the risk for

psychiatric disorders [27,28,29], we decided to further analyze the

polymorphic variability of the human TPH2 gene and focused on

its coding region.

Here we show by cDNA sequence analysis of post mortem RNA

samples obtained from the human amygdala that TPH2

transcripts exist in at least two alternatively spliced variants in

the coding region, namely TPH2a and TPH2b. Moreover,

extensive RNA editing of both TPH2 isoforms leads to protein

variants with distinct catalytic properties. Finally, our data indicate

that drug abuse may disturb RNA editing and that imbalanced

RNA editing might be involved in the pathogenesis of psychiatric

disorders.

Results and Discussion

Human TPH2 Is Alternatively Spliced
To identify functional SNPs in the human TPH2 gene, we

analyzed post mortem brain samples from drug abuse and suicide

victims, schizophrenic patients, and controls without a psychiatric

history (a full description of the collectives is included in methods).

RNA samples were obtained from the amygdala and transcribed

into cDNA to amplify, clone and sequence the TPH2 open reading

frame and parts of the untranslated regions. By alignment of the

obtained sequences to the TPH2 mRNA reference sequence

(GenBank NM_173353), we detected multiple SNPs in nearly all

TPH2 exons (Figure 1A; Table S1). Among these, only three were

known previously, namely the database SNPs rs7305115

(c.936A.G) and rs4290270 (c.1125A.T) and the recently

reported SNP c.1322G.A (also known as G1463A) [29].

Most notably, we detected a 6 bp insertion (c.439_440ins-

GCAAGG) between exons 3 and 4 by this procedure, which

corresponds to a novel splice isoform. Intron 3 starts with a non-

canonical GC splicing donor site (SDS), leading to the fusion of

exons 3a and 4 (Figure 1B). However, another GT dinucleotide

exists 6 bp downstream of the GC SDS, which operates as an

alternative SDS, leading to the inclusion of two additional triplets

coding for the amino acids Gly and Lys (exon 3b; Figure 1B). We

called this novel TPH2 splice isoform, TPH2b, to discern it from

the known TPH2 reference sequence (GenBank NM_173353),

which is now referred to as TPH2a.

Interestingly, intron 3 of all higher vertebrates starts with a non-

canonical GC SDS (Table S2). Exceptions are fishes, which carry

a canonical GT SDS at the same position, suggesting evolutionary

conservation of this GC-AG intron for at least 450 million years.

GC-AG introns occur with a frequency of only about 0.7% in the

human genome, but 60% of them are involved in alternative

splicing, especially during embryogenesis [35,36]. Thus, our

findings of alternative TPH2 splicing suggests that this intron

might be important for developmental processes, as 5-HT is

known to be involved even in pre-neuronal growth regulation

[8,37,38]. Notably, the alternative GT SDS found in humans is

also present in primates and rats, but not in mice (Table S2),

excluding the latter as an animal model for the investigation of

TPH2 alternative splicing.

At the protein level, the Gly-Lys insertion (p.146_147insGK)

leads to the interruption of a negatively charged stretch of Glu

residues by the positive Lys in the hinge structure between the

regulatory and catalytic domains (Figure 1B). The hinge region is

crucial for substrate accessibility in all aromatic amino acid

hydroxylases [2] and it was recently shown that human TPH2 is

no exception in this regard [39]. Hence, this structural feature of

TPH2B predicted an impact on its hydroxylating activity (see

below).

TPH2b transcripts can be found in every individual, even

without a psychiatric history, using a splice-specific primer

(Figure 1B–D). Moreover, TPH2b transcripts are also readily

detectable in rat brain and human small cell lung carcinoma

SHP77 cells, which express TPH2 (Figure 1D) together with other

neuroendocrine markers. Therefore, our data indicate that

TPH2B is an isoform that contributes to the brain 5-HT

biosynthesis in a hitherto undefined manner.

TPH2a and TPH2b Pre-mRNAs Undergo Editing
Most notably, the analysis of TPH2 gene variability revealed

two distinct patterns of synonymous and non-synonymous base

exchanges in dependence of the c.439_440insGCAAGG insertion

(Figure 1A; Table 1). Thus, the majority of TPH2a transcripts are

characterized by the SNPs c.-42T.C (59-UTR; exon 1),

c.711A.G (p.R237; exon 6), c.1297A.G (p.R433G; exon 10),

and c.1322G.A (p.R441H; exon 11), whereas TPH2b transcripts

contained four other polymorphisms, namely c.385C.T

(p.Q129X; exon 3), c.804A.G (p.K268; exon 6), c.830C.T

(p.P277L; exon 7), and c.1403A.G (p.Q648R; exon 11). Both

isoform-specific polymorphism patterns appeared almost without

exception together with the database SNPs rs7305115 and

rs4290270 (Figure 1A). Interestingly, the TPH2b polymorphism

c.385C.T is a nonsense base exchange, which creates a

premature stop codon upstream of the catalytic domain of

TPH2 [39] and would represent a null mutation with regard to

enzymatic activity. This variant would be expected to be a

substrate for nonsense-mediated mRNA decay (NMD) [40,41],

but this is obviously not the case given the ease of its detection

(Figure 1D).

The isoform-specific polymorphism patterns were detected in

the vast majority of TPH2a and TPH2b transcripts, but they

cannot be explained by the presence of only two TPH2 alleles.

Therefore, our results prompted us to hypothesize posttranscrip-

tional modification of TPH2 transcripts by RNA editing, a

mechanism known to regulate the activity of many neuronal

proteins [42,43,44,45].

Posttranscriptional RNA editing of primary transcripts alters

genomically encoded sequences and enables multiple transcripts

from a single gene, thereby generating proteomic diversity from a

limited number of genes [46]. In humans, RNA editing was first

described for the apolipoprotein B (APOB) [47,48,49]. A cytidine

deaminase of the apolipoprotein B mRNA editing enzyme

TPH2 Splicing and Editing
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Figure 1. Human TPH2 exists in two splice variants. (A) Sequencing strategy of TPH2 cDNA clones obtained from human amygdala of patients
with psychopathological disorders and controls. Sequence alignments with the TPH2 mRNA reference sequence (GenBank NM_173353) led to the
identification of 29 SNPs and a 6 bp insertion in exon 3 (n = 104 independent sequences). A compilation of representative TPH2 cDNA clones (1–8) and
the positions of all found SNPs are shown; red boxes indicate the presence of a SNP in the corresponding clone. Eight SNPs were present in dependence
of the insertion, forming two mutually exclusive polymorphism patterns. SNPs detectable in presence of the insertion (TPH2a) are indicated in dark blue,
light blue SNPs were found only in their absence (TPH2b). The SNPs at the green positions correspond to the known SNPs rs7305115 and rs4290270. The
insertion is a product of alternative splicing of intron 3. (B) Schematic representation of the alternative splicing of TPH2 pre-mRNA. In higher vertebrates
splicing of intron 3 usually occurs at the highly conserved GC splicing donor site (SDS) resulting in the known TPH2, now called TPH2a. In humans,
primates and rats a GT dinucleotide exists 6 bp downstream of the GC SDS, and acts an alternative SDS leading to the inclusion of two additional amino
acids, Gly and Lys. This longer TPH2 isoform is now referred to as TPH2b. (C) Specificity of splice-specific TPH2 primers on plasmid DNA. (D) RT-PCR using
splice-specific primers showed the presence of TPH2b transcripts in normal human and rat brain and also human neuroendocrine SHP77 cells.
doi:10.1371/journal.pone.0008956.g001
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catalytic polypeptide (APOBEC) family converts a cytidine to

uridine in the APOB primary transcripts by hydrolytic deamination

[50]. This C-to-U editing (C.U) of APOB transcripts changes a

glutamine codon to a premature stop codon in the intestine, giving

rise to a functionally important, truncated 48 kDa protein,

whereas the non-edited APOB100 is expressed in liver. In

mammals, base exchanges from adenosine-to-inosine (A.I)

represent the most common RNA editing mechanism, which

influences neurotransmission by modulating the functional

properties of glutamate receptors [44], serotonin receptors [43]

and potassium channels [42]. The best studied example, the 5-

HT2C receptor, is dynamically edited at five positions (A to E) in

exon V, leading to multiple receptor isoforms, which differ in

constitutive activity and intracellular signal transduction efficacy,

thereby modulating the strength of 5-HT neurotransmission

[43,51,52]. A.I editing is catalyzed by deaminases of the

adenosine deaminase acting on RNA (ADAR) family and inosine

is recognized as guanosine by the translation machinery [46].

Given that RNA editing mediates fine-regulation of central

nervous system (CNS) neurotransmission, dysregulations of RNA

editing have been associated with brain disorders [53].

To assess for TPH2 editing, we cloned and sequenced the

corresponding TPH2 exons from the genomic DNA of individuals,

in whom we detected TPH2 polymorphisms. However, neither the

polymorphisms c.-42T.C, c.711A.G, c.1297A.G and

c.1322G.A (TPH2a) nor c.385C.T, c.804A.G, c.830C.T

and c.1403A.G (TPH2b) were found in any of these samples.

Only the database SNPs rs7305115 and rs4290270 could be

detected at the genomic level and were confirmed as genuine SNPs

(Figure 2A and 2B). Thus, we found that TPH2a and TPH2b pre-

mRNAs are extensively RNA-edited by a yet unidentified

mechanism, which involves mutually exclusive RNA editing

patterns (indicated by Arabic numbers) and leads to the expression

of the corresponding TPH2a 1234 and TPH2b 1234 transcripts,

respectively (Figure 2C and 2D). Moreover, detection of partially

edited TPH2a (TPH2a 2, TPH2a 134) and TPH2b (TPH2b 1,

TPH2b 234) transcripts (Figure 1A) suggests a dynamic TPH2

RNA editing machinery in analogy to 5-HT2C receptor editing

[43]. This results in a wide variety of different TPH2 isoforms, and

increases the biochemical diversity and complexity of central 5-

HT biosynthesis.

Furthermore, we observed TPH2a editing exclusively in the

amygdala, whereas TPH2b was edited in all brain regions analyzed

(Table 1), and also in SHP77 cells (data not shown). Accordingly,

our data underscore previous findings that RNA editing is often

restricted to discrete brain regions [54].

RNA editing of human TPH2 transcripts is remarkably

miscellaneous (Figure 2) and comprises all editing mechanisms

known for mammals, including rare U.C editing [55], which we

found for TPH2a position 1 (c.-42T.C; 59-UTR). Interestingly,

we also found RNA editing for the c.1322G.A (R441H)

polymorphism, which has been associated with major depression

[29]. This SNP is currently a matter of major debate, since it could

not be confirmed at the genomic level neither in our study

(Figure 2A), nor in laboratories worldwide [15,29,30,31,32,33].

Thus, its tempting to speculate that the detection of c.1322G.A in

blood DNA samples by Zhang et al. [29] might be due to a rare de

novo mutation in elderly patients. It is conceivable that this G.A

transition may have resulted from deamination of a methy-

lated cytosine, as c.1322G is part of a CpG dinucleotide, the

major target of DNA methyltransferases [56]. The transition

c.1322G.A might also have resulted from somatic hypermuta-

tion, which was shown to modulate genomic DNA by edited RNA

in B cells [57]. However, our results strongly favour RNA editing

for c.1322G.A by an extremely rare mechanism, which thus far

was only described for the proviral RNA of the human

immunodeficiency virus [58]. Thus, TPH2a transcripts might

offer a unique possibility to study G.A editing in a physiological

context. Furthermore, to our knowledge, most mammalian pre-

mRNAs are edited by only one mechanism [42,43,44,45]. Thus,

TPH2 transcripts might offer an interesting target for the

investigation of how different editing machineries act in concert

on a single transcript.

Editing Defines the Kinetics of TPH2A and TPH2B
Isoforms

Alternative splicing and RNA editing of human TPH2

transcripts generate multiple protein variants with potentially

different properties. To address this question, we stably expressed

TPH2a and TPH2b and their edited isoforms in rat pheochromo-

cytoma PC12 cells and performed kinetic studies with the cellular

lysates (Figure 3A–D). Instead of TPH2b 1234 we analyzed a

TPH2b 234 cDNA, which we also detected in our samples

(Figure 1A, Table 1), but lacks nonsense editing at position 1

(c.385C.T; p.Q129X) and enables the expression of a full-length

TPH2B 234 protein.

It has been helpful to use synthetic analogues of TPH cofactors

to discern catalytic differences between TPH enzymes isolated

from different tissues (Table S3), because the differences are rather

small if the natural cofactor tetrahydrobiopterin (BH4) is

used [2,20]. Therefore, we used 6-methyl-tetrahydrobiopterin

(6MPH4), which provides the highest resolution of kinetic

differences, and obtained hyperbolic plots for TPH2A, TPH2B,

TPH2A 1234 and TPH2B 234, according to the Michaelis-

Menten equation (Figure 3A and 3B). The analysis of kinetics by

double-reciprocal Lineweaver-Burk plots allowed determination of

the Michaelis constants (Km) for Trp of the indicated TPH2

variants (Figure 3C and 3D). The Km(Trp) values for TPH2A and

TPH2B were nearly similar (Table 2), but significantly higher for

the edited variants, indicating a reduced affinity for the substrate

Trp (Table 2). However, Km(Trp) values for TPH2A and TPH2B

Table 1. Amygdala-specific editing of TPH2a transcripts.

TPH2
Isoform

Genotype
rs4290270

No.
Clones

Editing Position and Percentual
Distribution in the Respective
Transcripts

1 2 3 4

Amygdala

TPH2a A 48 33% 31% 33% 33%

T 17 0% 0% 0% 0%

TPH2b A 27 78% 96% 96% 96%

T - - - - -

other brain areasa

TPH2a A 8 0% 0% 0% 0%

T 19 0% 0% 0% 0%

TPH2b A 11 100% 100% 100% 100%

T - - - - -

The percentual distribution of edited positions in TPH2a/b transcripts revealed
that TPH2a is only edited in the amygdala, while TPH2b editing is detectable in
all investigated brain areas. Note that in presence of SNP rs4290270 A neither
TPH2a editing could be observed nor expression of TPH2b.
aCortex, thalamus, hypothalamus, hippocampus, cerebellum, median raphe,
pons, and striatum.

doi:10.1371/journal.pone.0008956.t001

TPH2 Splicing and Editing

PLoS ONE | www.plosone.org 4 January 2010 | Volume 5 | Issue 1 | e8956



were close to the previously reported constants and consistently

higher than for TPH1 (Table S3) [20,39].

PC12 cells have been used to directly assess 5-HT synthesis of

recombinant TPH2 mutants [29]. The expression of the four

TPH2 variants in PC12 cells revealed equal 5-HT contents for

TPH2A and TPH2B, and, unexpectedly, also for TPH2B 234, for

which we had expected lower activity (Figure 3E). However, it was

previously shown that PC12 cells can only store limited

neurotransmitter amounts in their vesicles [59]. Thus, it is

conceivable that the TPH2 activity in these three stable cell lines

by far exceeded their vesicular 5-HT storage capacity. Interest-

ingly, TPH2A 1234-expressing cells did not produce significantly

elevated 5-HT levels compared to mock-transfected cells, which

contained comparable 5-HT amounts of about 18% of the

maximal levels detected (Figure 3E). Therefore, our data indicate a

major loss of TPH2A 1234 enzymatic activity by RNA editing and

support the recently reported 80% reduction of 5-HT synthesis in

PC12 cells expressing the TPH2-R441H mutant [29]. This

mutant corresponds to a TPH2A 4 protein, but cumulative effects

of the remaining editing positions might also contribute to TPH2A

1234 inactivation. However, our results raise the question whether

the 20% residual activity of TPH2-R441H might simply reflect a

low intrinsic 5-HT synthesis capacity of PC12 cells, either due to a

low endogenous TPH expression or the known substrate

promiscuity of tyrosine hydroxylase [2], which is highly expressed

in these catecholaminergic cells.

To circumvent any above-mentioned artefactual influences of

PC12 cells, we determined the Km(Trp) values of the TPH2

variants also in non-neuronal HEK293 cells using the natural

cofactor BH4 (Table 2). As expected, kinetics with BH4 resulted in

a lower resolution of the Km(Trp) values of the four TPH2 variants

(Table 2), but revealed major differences in the relative maximal

velocities (Vmax) of the corresponding enzymes. At physiological

Trp concentrations of 30 to 50 mM, all TPH2 variants obeyed the

Michaelis-Menten equation, but showed significant substrate

inhibition at higher concentrations (Figure 3F). TPH2A 1234

presented the lowest Vmax with 5% of TPH2A and confirmed its

enzymatic inactivation by RNA editing, as shown by 5-HT

measurements (Figure 3E). Interestingly, TPH2B presented the

highest Vmax, which was twice as high as for TPH2A and well in

Figure 2. TPH2a and TPH2b undergo extensive mRNA editing. (A, B) Alignment of genomic TPH2 sequences and corresponding cDNA traces of
TPH2a and TPH2b transcripts revealed that neither the TPH2a SNPs c.-42T.C, c.711A.G, c.1297A.G and c.1322G.A (A) nor the TPH2b
polymorphisms c.385C.T, c.804A.G, c.830C.T and c.1403A.G are encoded genomically (B), indicating posttranscriptional RNA editing for those
positions. Only the SNPs rs7305115 (c.936A.G) and rs4290270 (c.1125A.T) could be verified as genuine SNPs at the genomic level. (C, D) The editing
patterns for TPH2a and TPH2b transcripts are mutually exclusive. Four edited positions exist in each alternatively spliced variant, indicated by arabic
numbers. Schematic representation of TPH2a 1234 (C) and TPH2b 1234 (D) transcripts. Synonymous and non-synonymous base substitutions are
indicated in black and red, respectively; SNPs are shown in green.
doi:10.1371/journal.pone.0008956.g002
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Figure 3. Kinetic properties of TPH2 variants are modulated by RNA editing. (A, B) 5-hydroxytryptophan (5-HTP) formation of TPH2
containing cellular PC12 lysates in presence of the synthetic cofactor 6-methyl-tetrahydrobiopterin (6MPH4). (C, D) Double reciprocal Lineweaver-
Burk plots for Km(W) determination of TPH2 variants. Enzymatic activities of TPH2A and TPH2B, and TPH2A 1234 and TPH2B 234 isoforms were similar,
respectively, when using the synthetic cofactor 6MPH4. TPH1 served as a control. RNA editing decreased enzyme activity in both isoforms. Shown are
combined data of 4–7 independent experiments. (E) 5-HT and Trp contents of stably transfected PC12 cells. Western blots of the TPH2 variants were
used for normalization of 5-HT levels (n = 10 independent experiments). (F) Enzymatic activity of TPH2 variants expressed in non-neuronal HEK293
cells in presence of the natural cofactor tetrahydrobiopterin (BH4). At concentrations above the physiological Trp range of 30–50 mM, all variants
except TPH2B 234, exhibit strong substrate inhibition. Shown are combined data of 6 independent experiments.
doi:10.1371/journal.pone.0008956.g003

TPH2 Splicing and Editing
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accordance with the prediction that the GK insertion into the

hinge region allows easier access of the substrates to the catalytic

core. RNA editing of TPH2b resulted in a 50% decrease of Vmax of

the corresponding TPH2B 234 protein, which exhibited the

highest Km(Trp) value of all variants (Table 2). However, TPH2B

234 activity, which was still consistently higher than for TPH2A,

can be totally abolished by RNA editing at position 1 (c.385C.T;

p.Q129X), resulting in a premature stop codon upstream of the

catalytic domain [39] and the expression of an inactive, truncated

TPH2B 1 protein. Thus, TPH2B might be important for a rapid

response in amygdala 5-HT synthesis, when 5-HT levels need to

be increased. Furthermore, it possesses the possibility to be rapidly

switched off by editing of its RNA at the position 1 (c.385C.T).

Although TPH2b 1 transcripts would be expected for degrada-

tion by NMD [40,41], we detected them easily (Figure 1D). In this

respect, APOB48 transcripts are protected from NMD by the

C.U editing machinery, which allows for the expression of the

truncated APOB form [47,48,49]. Accordingly, our data suggest

that TPH2b 1 transcripts might also be protected from NMD by

the same mechanism and point to a physiological role of the

TPH2B truncation.

Our data show that the activities of both TPH2 isoforms are

inhibited by RNA editing and can even be completely abolished

by this mechanism (Figure 3F). Moreover, TPH2 physiologically

acts as a tetramer [2,39] and forms functional heteromers with its

mutant variants [27,29]. Coexpression studies revealed interme-

diate enzymatic activities of the resulting hybrids as compared with

the corresponding wildtype and mutant homotetramers [27,29].

Therefore, TPH2 proteomic diversity generated by alternative

splicing and RNA editing suggests further control of 5-HT

biosynthesis at the level of enzyme oligomerization.

In conclusion, our results underscore that human CNS 5-HT

biosynthesis is a highly regulated process, which is based on the

expression of a wide variety of functional TPH2 proteins with

different properties. This should enable a complex fine-tuning of

5-HT biosynthesis in response to agonist stimulation in order to

maintain optimal 5-HT neurotransmission.

TPH2 Editing Is Abnormal in Individuals with Psychiatric
Disorders

Interestingly, TPH2a 1234 editing (Figure 2C) was found

elevated by 20% in transcripts obtained from the amygdala of

drug abuse and suicide victims compared to controls (Table S4).

Thus, the known 5-HT hypofunction in psychiatric disorders may

result at least in part from the expression of the low active TPH2A

1234 protein in these individuals. In contrast, no TPH2a editing

could be detected in schizophrenic patients (Table S4). Moreover,

high levels of TPH2b editing were found in all patients and

controls, whereas TPH2b transcripts of suicides and schizophrenics

showed a substantial decrease in editing at position 1 (c.385C.T)

by 50% and 30%, respectively (Table S4). Thus, dysregulations in

TPH2 editing could be involved in the pathogenesis of psychiatric

diseases or may directly result from substance abuse.

For comparison, altered RNA editing of 5-HT2C receptor

transcripts was found in depressed suicides and schizophrenics

[60,61,62,63], leading to distinct receptor isoforms with different

activities. In rodents, changes in 5-HT2C receptor editing were

evident in response to stress [51] and 5-HT availability [60],

whereas antidepressants were found to antagonize these changes

[51,52,64]. This complex fine-tuning of the 5-HT2C receptor

sensitivity is considered to be a crucial mechanism to keep receptor

activation within an optimal range for information processing in

face of changing synaptic input [64]. Our findings suggest that

brain 5-HT biosynthesis is also regulated by TPH2 pre-mRNA

editing, which could be affected by drug abuse and environmental

factors in analogy to the 5-HT2C receptor. However, our collective

of post mortem brain samples is small and conclusions have to be

drawn with care. Nonetheless, our findings invite large-scale follow

up studies.

SNP rs4290270 Regulates TPH2 Splicing and Editing
Most notably, we never detected TPH2b transcripts or editing in

the presence of the SNP rs4290270 A (Figure 1; Table 1). This

strongly resembles the recently found regulation of 5-HT2C

receptor splicing by the small nucleolar RNA (snoRNA) HBII-

52 and its deregulation by mutagenesis of the 5-HT2C receptor

mRNA binding site [65]. However, we could not find a

complementary snoRNA for the sequence context of the TPH2

rs4290270 SNP in the existing databases. Nonetheless, such trans-

acting factors are only one possible explanation, as different

expression or splicing efficacies due to rs4290270-mediated

differences in TPH2 pre-mRNA secondary structure could be

also responsible.

Fortunately, rs4290270 is part of the palindromic recognition

sequence of Nde I, thus individual genotypes can be easily

determined by restriction fragment length polymorphism

(Figure 4A). In line with the finding that SHP77 cells exhibit

alternative TPH2 splicing and editing of TPH2b, these cells are

homozygous for rs4290270 T (Figure 4A). Thus, these cells may

represent a suitable cell culture system to investigate the dynamics

of splicing and editing.

Importantly, we detected a significantly higher frequency of the

A/A genotype of the SNP rs4290270 in a cohort of 369 suicides, as

compared with 436 patients with major depression and 373

controls (Figure 4B). Thus, while we still have to elucidate the

underlying mechanism of how rs4290270 A affects TPH2

alternative splicing and editing, the data demonstrate a genetic

predisposition of homozygous A-allele carriers for suicide.

Implications for Psychiatric Research
Our functional data imply disturbed TPH2 activity in drug

abuse, suicide, and schizophrenia. The regulation of TPH2

expression reveals an unprecedented mechanism of mutually

exclusive editing of the alternatively spliced isoforms TPH2a and

TPH2b. For this reason, our data establish TPH2 as an excellent

subject for future investigations of the underlying RNA editing

machineries.

Recent studies have tried to explain the reduced 5-HT

neurotransmission in psychiatric disorders with disturbances in

TPH2 expression [66,67,68,69,70]. However, based on our results

that alternative splicing and RNA editing lead to TPH2 variants

with different kinetic properties, we conclude, that neither the

currently used RNA-based techniques, such as real time PCR or

Table 2. Kinetic constants of TPH2 variants.

Km, Trp (mM)
6MPH4 (300 mM)

Km, Trp (mM)
BH4 (300 mM)

TPH2A 12669 (n = 6) 16611 (n = 6)

TPH2A 1234 292697 (n = 7)* 2363 (n = 6)

TPH2B 124611 (n = 4) 37669 (n = 6)#

TPH2B 234 304677 (n = 7)* 116618 (n = 6)*,#

*: p,0.05 versus non-edited;
#: p,0.05 versus all others.
doi:10.1371/journal.pone.0008956.t002
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RNase protection assays, nor immunohistochemical protein

methods allow a proper estimation of TPH2 enzymatic activity

in psychiatric research. Based on the data presented here, careful

re-examination of recent reports on TPH2 expression disturbances

in neuropsychiatric diseases is mandatory. Moreover, since we are

now in knowledge of the alternative splicing and editing that

governs TPH2 activity, powerful new methods are eagerly awaited

to assess for the editing status of TPH2 transcripts to gain insight

into the regulation of 5-HT synthesis in the human brain.

Methods

Ethics Statement
All clinical investigations have been conducted according to the

principles expressed in the Declaration of Helsinki and approved

by the Ethics Committee of the Medical Faculty of the Ludwigs

Maximilians University (LMU) Munich (Head: Prof. Dr. Gustav

Paungartner, Members: Prof. Dr. Eckhard Held, Prof. Dr.

Wolfgang Eisenmenger, PD Dr. Thomas Beinert, Prof. Dr. Hans

Ulrich Gallwas, Prof. Dr. Detlef Kunze, Dr. Viktoria Mönch, Prof.

Dr. Randolph Penning, Prof. Dr. Klaus Hahn, Prof. Dr. Klaus

Jürgen Pfeifer, and Dr. Christian Zach). Ethikantrag, Projekt Nr.

213/00; positive vote from: 12.05.2005 ‘‘Genetische, biochem-

ische und funktionelle Untersuchungen an depressiven Patienten

und gesunden Kontrollpersonen’’. Ethikantrag, Projekt Nr. 164/

00; positive vote from: 14.04.2003 ‘‘Genetische Polymorphismen

bei Suizidenten’’. Written informed consent was given by the

patients and healthy volunteers. Autopsy samples: The autopsies

were court ordered from the state attorney. In that case informed

consent from the next of kin is not required, because relatives have

no possibility for intervention. Within these autopsies it is

necessary to take routinely additional tissue probes for probable

further investigations. The probes of the present study originate

from these investigations. The Ethics Committee of the LMU

Munich approved this procedure. All autopsies, including those of

the control individuals were performed according to the legal

requirements. They were court ordered according to the German

legal situation from the state attorney due to unknown causes of

death. For the control individuals the natural cause of death was

verified finally by these autopsies. In all of these cases (patients and

controls) informed consent from the next of kin is not required,

because relatives have no possibility for intervention. Blood and

brain samples were exclusively taken during the routine autopsies

to perform the court ordered analysis. Furthermore post mortem

material will be preserved for subsequently necessary investigations

on behalf of the state attorney. Blood and brain samples were

never taken for research. For research projects we use only

remaining post mortem samples which have been released and

approved for use in research by the Ethics Committee of the LMU

Munich. As described, the consent for research use of autopsy

tissues will be given by the localEthics Committees of the

universities. This is the current procedure in legal medicine in

Germany.

Brain Samples
Brain specimens (as indicated in the Ethics statement) were

derived from 11 individuals, who died as a consequence of opiate

addiction (8 males, 3 females, mean age 30.469.8 years; post mortem

interval (PMI): 14.569.6 hours), 8 suicide victims (6 males, 2

females, mean age 42,869.4 years; PMI: 18.8613.7 hours) and 7

schizophrenic patients (5 males, 2 females, mean age 43613.5

years; PMI: 23.966.4 hours). The control tissues were obtained

from 10 individuals, who died suddenly from CNS-unrelated

diseases (5 males, 5 females, mean age 44.7615.8 years; PMI:

19.967.6 hours). Causes of death were acute cardiac failure

(n = 5), accident (n = 3), and homicide (n = 2). The clinical,

respectively medical, data sheets of the control individuals were

available and excluded any lifetime psychiatric or neurological

Figure 4. Alternative splicing and editing only occurs in presence of SNP rs4290270 T. (A) The individual genotype of SNP rs4290270 can be
easily detected by restriction fragment length polymorphism (RFLP) analysis with Nde I in drug abusers (drab) and controls. (B) Large scale rs4290270
genotyping revealed a genetic predisposition for suicidality of homozygous A/A-carriers. The distribution was in the Hardy Weinberg equilibrium.
*: p,0.05; controls: n = 373; major depression: n = 436; suicide: n = 369.
doi:10.1371/journal.pone.0008956.g004
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disorders. According to the medical records, there was no history

of psychopharmacological medication, alcohol or drug abuse.

Additionally, a toxicological report for all individuals was provided

and negative for additional drug intoxification, whereas informa-

tion on pre-existing psychiatric disturbances was missing for the

suicide victims. All individuals were Caucasians from the same

geographical region in southern Germany.

Molecular Biological Methods
All cloning procedures, PCR (used primers are indicated in

Table S5), and immunoblotting were conducted according to

standard protocols or manufacture’s instructions. Post mortem brain

samples were collected using the RNAlater kit (Qiagen, Hilden,

Germany) and immediately frozen at 280uC until RNA

extraction. After homogenization, total RNA was extracted from

tissues using the RNeasy Lipid Tissue Midi Kit (Qiagen), treated

with DNase I (Invitrogen, Carlsbad, CA, USA) and dissolved in

RNase-free water. cDNA was synthesized from 2 mg RNA using

MMLV reverse transcriptase and random hexamer primers

(Invitrogen). The TPH2 coding sequence was amplified with

ORF-fw and ORF-rev primers and subcloned into pCRH-XL-

TOPO (Invitrogen). The obtained clones were sequenced and

aligned with the TPH2 mRNA reference sequence (GenBank

NM_173353). TPH2 polymorphisms were analyzed genomically

by amplification of the TPH2 exons from genomic DNA using

intronic primers (Table S5), subcloning into pGEMH-T easy

(Promega, Madison, WI, USA), and DNA sequencing.

Detection of TPH2 splice isoforms was performed using the

TPH2SPL_fw forward primer together with the splice-specific

TPH2a_rev and TPH2b_rev reverse primers and the following

PCR conditions: 15 s denaturation at 95uC, 10 s annealing at

75uC/70uC, and 30 s elongation at 75uC/72uC for TPH2a/

TPH2b, respectively. The detection of Tph2b in the rat brain was

carried out using the primers rTPH2ex2A (forward) and

TPH2SPLrat (reverse).

TPH2 expression constructs were generated from TPH2a/b

cDNAs obtained from patients by reamplification with

6xHisTph2-fw (forward) primer containing an ATG with a Kozak

consensus sequence and a 6xHis tag and supsequent cloning into

pTargeTTM (Promega). Stable PC12 and HEK293 cell lines were

obtained with linearized TPH2 constructs and DreamFect (OZ

Biosciences, Marseille, France), followed by selection of transfected

cells with 500 mg mL21 for at least two weeks. Cell cultures were

maintained under standard conditions in DMEM supplemented

with 10% fetal bovine serum (FBS, HEK293) and 15% FBS/2.5%

donor horse serum (PC12) and antibiotics.

TPH Activity Assay
The activity of cell homogenates was determined as described

[6,8], monitoring for 5-hydroxytryptophan (5-HTP) accumulation

by HPLC in presence of the aromatic amino acid decarboxylase

inhibitor 3-hydroxybenzylhydrazine hydrochloride (NSD1015).

All reagents were purchased from Sigma-Aldrich (St. Louis,

MO, USA). In brief, cells were harvested by scraping and washed

twice with phosphate-buffered saline, resuspended in 75 mM tris-

acetate buffer (pH 7.5), and lyzed by sonication. After withdrawal

of an aliquot for protein determination, the homogenates were

immediately preincubated in 100 mL buffer containing 2 mg/mL

catalase, 25 mM DTT and 100 mM Fe(NH4)2(SO4)2 for 10 min at

30uC in the dark. The pre-incubated samples were incubated at

37uC for 30 min after addition of 400 mL 15 mM tris-acetate

buffer (pH 6.4) containing the indicated concentrations of L-Trp,

300 mM 6-methyl-tetrahydrobiopterin (6MPH4) or tetrahydro-

biopterin (BH4) and 2 mM NSD1015. The reaction was

terminated by addition of 300 mM perchloric acid (final

concentration) and centrifugation for deproteination. The cleared

supernatants were directly analyzed using reverse phase HPLC

with fluorometric detection (HPLC-FD) as previously described

[8]. The measured 5-HTP levels were normalized to the amount

of TPH2 protein in each lysate by immunodetection using mouse

anti-WH3 (TPH2, Sigma-Aldrich) and goat anti-actin (Santa Cruz

Biotechnology, Santa Cruz, CA, USA) antibodies.

5-HT Measurement
To determine 5-HT levels in stable TPH2-expressing PC12 cell

lines, 1.7 million cells were homogenized in 100 mL buffer

containing 5 mM sodium metabisulfite and 300 mM perchloric

acid (Sigma-Aldrich). Cleared supernatants were directly used for

HPLC-FD measurement as previously described [8]. Cell pellets

were boiled in 100 mL SDS loading buffer for 5-HT normalization

to the TPH2 protein expression levels by immunoblotting.

Subjects for Genotyping
The case sample of suicide victims consisted of 369 individuals

(269 males, 100 females; mean age: 46.42 years617.77 years). Of

these, 290 committed violent suicides, as e.g. hanging (36%),

shooting (18%), penetrating lesions (7%), jumping from height,

drowning and lying under a train (17%). 79 employed soft suicide

methods, such as intoxication with drugs or other substances

(21%). Blood samples for DNA extraction were obtained in the

course of autopsy at the Institute for Legal Medicine of the LMU

Munich. There was no information on pre-existing psychiatric

disturbances.

A total of 436 unrelated Caucasian patients with major

depression (270 males, 166 females; mean age: 48.69614.07

years), hospitalized in the Psychiatric Department of the LMU

Munich and diagnosed according to the DSM-IV and ICD-10

criteria were included in the study. All patients were interviewed

by experienced psychiatrists using the Structured Clinical

Interview for DSM-IV disorders (SCID-I). Severity of depression

was assessed using the 17-item Hamilton Rating Scale for

Depression (HAMD-17) and the Clinical Global Impression Scale

(CGI). Only subjects with a minimum score of 18 on the HAMD-

17 scale were included in the study. Patients with severe organic

disorders were excluded to avoid cases with secondary depression.

Furthermore, all patients with comorbidity of other psychiatric

disturbances (e.g. substance/alcohol dependence, personality

disorders, anxiety disorders) were excluded. The patient sample

contained significantly more females than males as compared with

the control sample (62%/38% versus 48%/52%; p = 0.001,

x2 = 11.3, df = 1). Because of no significant differences concerning

all other investigated variables (age, clinical variables such as CGI

and HAMD-17 scores), males and females were not analyzed

separately.

As control group, 373 ethnically matched subjects were selected

from the general population (185 males, 188 females; mean age:

44.42616.00 years). All probands were screened for psychiatric

disturbances using personality questionnaires (MMPI, NEO-FI,

TCI) and a short structured interview with a psychiatrist.

Probands with known history of psychiatric disorders were

excluded from the study. All patients and controls were of

Caucasian origin from the German population and came from the

same geographical area in southern Germany. Blood was collected

from these subjects for DNA extraction; patients and controls

participated after giving written informed consent. The study was

approved by the ethics committee of the Medical Faculty of the

LMU Munich (project number 213/00; positive vote from:

12.05.2005).
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Genotyping of SNP rs4290270
Genomic DNA was isolated from whole blood according

standard procedures. The SNP rs4290270 was genotyped apply-

ing the TaqManH technology (Assay-on-Demand; assay-ID:

C_26385365) on an ABI7000 system (Applied Biosystems, Foster

City, CA, USA). The standard PCR reaction was carried out using

TaqManH Universal PCR Master Mix reagent kit according to the

manufacture’s instructions.

Statistics
All data are presented as means 6 SEM and p-values are from

two-tailed Student’s t-tests type 3. Genotype frequencies were

tested for Hardy-Weinberg equilibrium as described [71]. Values

of p,0.05 were considered as statistically significant.
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Table S2 Exon-intron boundaries of Tph2 genes of higher
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by ‘cons’. Alternative 39-SDS in rats giving rise to four rTPH2
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Table S3 Compiled kinetic constants for mammalian TPH1/2

isoforms.

Found at: doi:10.1371/journal.pone.0008956.s003 (0.05 MB
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Table S4 TPH2a and TPH2b editing in the amygdala of the

tested individuals with psychiatric disorders.
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