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Abstract: We introduce the general class of symmetric two-qubit states guaranteeing the perfect
correlation or anticorrelation of Alice and Bob outcomes whenever some spin observable is measured
at both sites. We prove that, for all states from this class, the maximal violation of the original
Bell inequality is upper bounded by 3

2 and specify the two-qubit states where this quantum upper
bound is attained. The case of two-qutrit states is more complicated. Here, for all two-qutrit states,
we obtain the same upper bound 3

2 for violation of the original Bell inequality under Alice and Bob
spin measurements, but we have not yet been able to show that this quantum upper bound is the
least one. We discuss experimental consequences of our mathematical study.

Keywords: original Bell inequality; perfect correlation/anticorrelation; qudit states; quantum bound;
measure of classicality

1. Introduction

The recent loophole free experiments [1–3] demonstrated violations of classical bounds for the wide
class of the Bell-type inequalities which derivations are not based on perfect (anti-) correlations, for example,
the Clauser–Horne–Shimony–Holt (CHSH) inequality [4] and its further various generalizations [5–14].
These experiments have very high value for foundations of quantum mechanics (QM) and interrelation
between QM and hidden variable models, see, for example, [15–22] for recent debates.

However, John Bell started his voyage beyond QM not with such inequalities, but with the original
Bell inequality [23,24] the derivation of which is based on perfect anticorrelations—the condition which
is explicitly related to the Einstein–Podolsky–Rosen (EPR) argument [25].

At the time of the derivation of the original Bell inequality, the experimental technology was not
so advanced and preparation of sufficiently clean ensembles of singlet states was practically dificult.
Therefore, Bell enthusiastically supported the proposal of Clauser, Horne, Shimony, and Holt, which is
based on a new scheme (without exploring perfect correlations) and the CHSH inequality [4].

The tremendous technological success of recent years, especially, in preparation of the two-qubit
singlet state and high efficiency detection, makes the original Bell’s project at least less difficult.
This novel situation attracted again attention to the original Bell inequality [26]. We also point to
related theoretical studies on the original Bell inequality which were done during the previous years,
see [27–31]. In [29,31], it is, for example, shown that, unlike the CHSH inequality, the original Bell
inequality distinguishes between classicality and quantum separability.

Finally, we point to a practically unknown paper of Pitowsky [32] where he claims that by
violating the original Bell inequality and its generalizations it would be possible to approach a higher
degree of nonclassicality than for the CHSH-like inequalities.
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This claim is built upon the fact that, for the CHSH inequality
∣∣BCHSH

clas

∣∣ ≤ 2, the fraction F(ρd)
CHSH

of the quantum (Tsirelson) upper bound [33,34] 2
√

2 to the classical one is equal to F(ρd)
CHSH =

√
2 for a

bipartite state ρd of an arbitrary dimension d ≥ 2, whereas, for the original Bell inequality, the fraction

F
(ρsinglet)

OB of the quantum upper bound for the two-qubit singlet (d = 2) to the classical bound (equal to
one see in Section 2) is given by [26,32]

F
(ρsinglet)

OB =
3
2
>
√

2 = F(ρd)
CHSH, ∀d ≥ 2. (1)

The rigorous mathematical proof of the least upper bound 3
2 on the violation of the original Bell

inequality by the two-qubit singlet was presented in the article [26] written under the influence of
Pitowsky’s paper [32]. In both papers—References [26,32], the considerations were restricted only to
the two-qubit singlet case.

However, for the violation F(ρd)
OB of the original Bell inequality by a two-qudit state ρd exhibiting

perfect correlations/anticorrelations, the CHSH inequality implies for all d ≥ 2 the upper bound
(2
√

2 − 1) (see in Section 3) and the latter upper bound is more than the least upper bound 3
2

proved [26,32] for the two-qubit singlet.
We stress that quantum nonlocality is not equivalent [35] to quantum entanglement and

that larger violations of Bell inequalities can be reached [36] by states with less entanglement.
Therefore, the proof [26] that, for the two-qubit singlet state (which is maximally entangled), the
least upper bound on violation of the original Bell inequality is equal to 3

2 does not automatically
mean that 3

2 is the least upper bound on violation of the original Bell inequality for all two-qubit states.
Moreover, the proof of the least upper bound 3

2 on violation of the original Bell inequality by the singlet
state has no any consequence for quantifying violation of this inequality by a two-qudit state of an
arbitrary dimension d ≥ 2.

In the present paper, we rigorously prove that under Alice and Bob spin measurements, the least
upper bound 3

2 on the violation of the original Bell inequality holds for all two-qubit and all two-qutrit
states exhibiting perfect correlations/anticorrelations. In the sequel to this article, we intend to prove
that, quite similarly to the CHSH case where the least upper bound

√
2 on quantum violations holds

for all dimensions d ≥ 2, under the condition on perfect correlations/anticorrelations, the least upper
bound 3

2 on quantum violations of the original Bell inequality holds for all d ≥ 2 (see in Section 6).
In Section 2 (Preliminaries), we present the condition [31] on perfect correlations or anticorrelations

for joint probabilities and prove, under this condition, the validity of the original Bell inequality in
the local hidden variable (LHV) frame. This general condition is true for any number of outcomes at
each site and reduces to the Bell’s perfect correlation/anticorrelation condition [23] on the correlation
function only in case of Alice and Bob outcomes ±1.

In Section 3, we analyse violation of the original Bell inequality by a two-qudit quantum state and
show that, for all dimensions of a two-qudit state exhibiting perfect correlations/anticorrelations and
any three qudit observables, the maximal violation of the original Bell inequality cannot exceed the
value (2

√
2− 1).

In Section 4, we introduce (Proposition 2) the general class of symmetric two-qubit density
operators which guarantee perfect correlation or anticorrelation of Alice and Bob outcomes whenever
some (the same) spin observable is measured at both sites. We prove (Theorem 1) that, for all states
from this class, the maximal violation of the original Bell inequality is upper bounded by 3

2 and specify
the two-qubit states for which this quantum upper bound is attained.

In Section 5, we consider Alice and Bob spin measurements on two-qutrit states. This case is
more complicated. Here, we are also able to prove the upper bound 3

2 for all spin measurements on
an arbitrary two-qutrit state, but we have not yet been able to find two-qutrit states for which this
upper bound is attained. In future, we plan to study this problem as well as to consider spaces of
higher dimensions.
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In Secton 6, we summarize the main results and stress that description of general density operators
ensuring perfect correlations or anti-correlations for spin or polarization observables may simplify
performance of a hypothetical experiment on violation of the original Bell inequality. In principle,
experimenters need not prepare an ensemble of systems in the singlet state since, by Proposition 2 and
Theorem 1, for such experiments, a variety of two-qubit states, pure and mixed, can be used and it
might be easier to prepare some of such states.

2. Preliminaries: Derivation of the Original Bell Inequality in a General Case

Both Bell’s proofs [23,24] of the original Bell inequality in a local hidden variable (LHV) frame are
essentially built up on two assumptions: a dichotomic character of Alice’s and Bob’s measurements
plus the perfect correlation or anticorrelation of their outcomes for a definite pair of their local settings.
Specifically, the latter assumption is abbreviated in quantum information as the condition on perfect
correlations or anticorrelations.

In this section, we present the proof [31] of the original Bell inequality in the LHV frame for any
numbers of Alice and Bob outcomes in [−1, 1] and under the condition which is more general than the
one introduced by Bell.

Consider an arbitrary bipartite correlation scenario with two measurement settings ai, bk, i, k = 1, 2,
and any numbers of discrete outcomes λa, λb ∈ [−1, 1] at Alice and Bob sites, respectively. This bipartite
scenario is described by four joint measurements (ai, bk), i, k = 1, 2, with joint probability distributions
P(ai ,bk)

of outcomes in [−1, 1]2. Notation P(ai ,bk)
(λa, λb) means the joint probability of the event that,

under a measurement (ai, bk), Alice observes an outcome λa while Bob—an outcome λb. For the
general framework on the probabilistic description of an arbitrary N-partite correlation scenario with
any numbers of measurement settings and any spectral type of outcomes at each site, discrete or
continuous, see [37].

For a joint measurement (ai, bk), we denote by

〈λai 〉 = ∑
λa ,λb∈[−1,1]

λaP(ai ,bk)
(λa, λb), 〈λbk

〉 = ∑
λa ,λb∈[−1,1]

λbP(ai ,bk)
(λa, λb) (2)

the averages of outcomes, observed by Alice and Bob, and by

〈λai λbk
〉 = ∑

λa ,λb∈[−1,1]
λaλbP(ai ,bk)

(λa, λb) (3)

the average of the product λaλb of their outcomes.
Let, under a joint measurement (ai, bk), Alice and Bob outcomes satisfy the conditions that either

the event
{λa = λb} :=

{
(λa, λb) ∈ [−1, 1]2 | λa = λb

}
(4)

or the event
{λa = −λb 6= 0} :=

{
(λa, λb) ∈ [−1, 1]2 | λa = −λb 6= 0

}
(5)

are observed with certainty, that is [31]:

P(ai ,bk)
({λa = λb}) = ∑

λa=λb

P(ai ,bk)
(λa, λb) = 1 (6)

or

P(ai ,bk)
({λa = −λb 6= 0}) = ∑

λa =−λb 6=0
P(ai ,bk)

(λa, λb) = 1, (7)

respectively.



Entropy 2018, 20, 829 4 of 15

To demonstrate that, under conditions (6) or (7) on probabilities, outcomes of Alice and Bob are
perfectly correlated or anticorrelated, consider, for example, the plus sign case (6). From (6) it follows
that, for arbitrary λa 6= λb, the joint probability

P(ai ,bk)
(λa, λb)|λa 6=λb

= 0. (8)

Hence, under a joint measurement (ai, bk), the marginal probabilities at Alice and Bob sites are
given by

Pai (λa) = ∑
λb

P(ai ,bk)
(λa, λb) = P(ai ,bk)

(λa, λb)|λb=λa , ∀λa, (9)

Pbk
(λb) = ∑

λa

P(ai ,bk)
(λa, λb) = P(ai ,bk)

(λa, λb)|λa=λb , ∀λb.

Therefore, under this joint measurement, at Alice and Bob sites the marginal probability
distributions of observed outcomes λ ∈ [−1, 1] coincide Pai (λ) = Pbk

(λ) and, given, for example,
that Alice observes an outcome λa = λ0, Bob observes the outcome λb = λ0 with certainty, i.e.,
the conditional probability Pbk

(λb = λ0 | λa = λ0) = 1, ∀λ0. Also, under condition (6), the Pearson
correlation coefficient γcor, considered in statistics, is given by

γcor =
∑λa ,λb

(λa − 〈λa〉)(λb − 〈λb〉)P(ai ,bk)
(λa, λb)√

∑λa(λa − 〈λa〉)2Pai (λa)
√

∑λb
(λb − 〈λb〉)2Pbk

(λb)
= 1. (10)

Therefore, under the plus sign condition (6), Alice and Bob outcomes are perfectly correlated also
in the meaning generally accepted in statistics.

The minus sign case (7) is considered quite similarly and results in the relation Pai (λ) = Pbk
(−λ),

∀λ ∈ [−1, 1], for marginal distributions of Alice and Bob, the relation Pbk
(λb = −λ0 | λa = λ0) = 1,

∀λ0, for the conditional probability and the Pearson correlation coefficient γcor = −1. All this means
the perfect anticorrelation of Alice and Bob outcomes.

For a joint measurement with outcomes ±1, the general conditions (6), (7) are equivalently
represented by the condition on the product expectation

〈λaλb〉 = ±1. (11)

respectively, introduced originally in Bell [23]. However, for any number of outcomes in [−1, 1] at both
sites, Alice and Bob outcomes may be correlated or anticorrelated in the sense of (6) or (7), respectively,
but their product expectation 〈λaλb〉 6= ±1.

Thus, under a bipartite scenario with any number of different outcomes in [−1, 1], relations (6)
and (7) introduced in [31], constitute the general condition on perfect correlation or anticorrelation
of outcomes observed by Alice and Bob. This general perfect correlations/anticorrelations condition
reduces to the Bell one (11) only in a dichotomic case with λa, λb = ±1.

Let a 2× 2-setting correlation scenario with joint measurements (ai, bk, ) , i, k = 1, 2 and outcomes
λai , λbk

∈ [−1, 1] admit a local hidden variable (LHV) model for joint probabilities, for details,
see Section 4 in [37], that is, all joint distributions P(ai ,bk)

, i, k = 1, 2, admit the representation

P(ai ,bk)
(λa, λb) =

∫
Ω

Pai (λa|ω)Pbk
(λb|ω) ν(dω), ∀λai , λbk

, (12)

via a single probability distribution ν of some variables ω ∈ Ω and conditional probability distributions
Pai (· |ω), Pbk

(· |ω) of outcomes at Alice’s and Bob’s sites. The latter conditional probabilities are usually
referred to as “local” in the sense that each of them depends only on a measurement setting at the
corresponding site.
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Then all scenario product expectations 〈λai λbk
〉, i, k = 1, 2, admit the LHV representation

〈λai λbk
〉 =

∫
Ω

fai (ω) fbk
(ω) ν(dω) (13)

with

fai (ω) := ∑
λa∈[−1,1]

λaPai (λa|ω) ∈ [−1, 1], fbk
(ω) := ∑

λb∈[−1,1]
λbPbk

(λb|ω) ∈ [−1, 1]. (14)

If an LHV model (12) for joint probabilities is deterministic [37,38], then the values of functions
fai , fbk

, i, k = 1, 2, constitute outcomes under Alice and Bob corresponding measurements with settings
ai and bk, respectively. However, in a stochastic LHV model [37,38], functions fai , fbk

may take any
values in [−1, 1] even in a dichotomic case.

On the other side, if, for a scenario admitting an LHV model (12) and having outcomes λai ,
λbk

= ±1, the Bell perfect correlation/anticorrelation restriction 〈λai0
λbk0
〉 = ±1 is fulfilled under

some joint measurement (ai0 ,bk0), then, in this LHV model, the corresponding functions fai0
, fbk0

take
only two values ±1 and, moreover, fai0

(ω) = ± fbk0
(ω), ν-almost everywhere (a.e.) on Ω.

We have the following statement [31] (see Appendix, for the proof).

Proposition 1. Let, under a 2× 2-setting correlation scenario with joint measurements (ai, bk, ) , i, k = 1, 2
and any number of outcomes λai , λbk

in [−1, 1], Alice’s and Bob’s outcomes under the joint measurement (a2, b1)

be perfectly correlated or anticorrelated:

P(a2,b1)
({λa = λb}) = 1 (15)

or

P(a2,b1)
({λa = −λb 6= 0}) = 1 (16)

If this scenario admits an LHV model (12), then its product expectations satisfy the original Bell inequality:∣∣ 〈λa1 λb1〉 − 〈λa1 λb2〉
∣∣± 〈λa2 λb2〉 ≤ 1, (17)

in its perfect correlation (plus sign) or perfect anticorrelation (minus sign) forms, respectively.

We stress that, for the validity of the original Bell inequality (17) in the LHV frame, it is suffice for
condition (15) or condition (16) on perfect correlations or anticorrelations be fulfilled only under a joint
measurement (a2, b1).

Furthermore, it was proved in [31] that, in the LHV frame, the original Bell inequality (17)
holds under the LHV condition which is more general than conditions (15), (16) on perfect
correlation/anticorrelations, does not imply for the LHV functions (14) relations fa2(ω) = ± fb1(ω),
ν-a.e. on Ω and incorporates conditions (15), (16) on perfect correlation/anticorrelations only as
particular cases.

For many bipartite quantum states admitting 2× 2-setting LHV models, specifically, this general
sufficient condition in [31] ensures [30,31,39] the validity of the perfect correlation form of the
original Bell inequality for Alice and Bob measurements for any three qudit quantum observables
Xa1 , Xa2 = Xb1 , Xb2 with operator norms ≤ 1. Satisfying the perfect correlation form of the original Bell
inequality (17), these states do not need to exhibit perfect correlations and may even have a negative
correlation function (see relation (61) in [31]) whenever the same quantum observable Xa2 = Xb1 is
measured at both sites.
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For example, all two-qudit Werner state [35]

Wd,Φ =
1 + Φ

2
P(+)

d

r(+)
d

+
1−Φ

2
P(−)

d

r(−)d

, Φ ∈ [−1, 1], (18)

on Cd ⊗Cd, d ≥ 3, separable (Φ ∈ [0, 1]) or nonseparable (Φ ∈ [−1, 0)), and all separable two-qubit
Werner stated W2,Φ(Φ), Φ ∈ [0, 1], satisfy the general sufficient condition, introduced in [31], and do
not violate the perfect correlation form of the original Bell inequality (17) for any three quantum
observables Xa1 , Xa2 = Xb1 , Xb2 but do not exhibit perfect correlations whenever the same observable

Xa2 = Xb1 is measured at both sites. In (18), P(±)
d are the orthogonal projections onto the symmetric

and antisymmetric subspaces of Cd ⊗Cd with dimensions r(±)d = tr[P(±)
d ] = d(d±1)

2 , respectively.

3. Quantum Violation

Consider Alice and Bob projective measurements of quantum qudit observable Xa1 , Xa2 = Xb1 ,
Xb2 in an arbitrary two-qudit state ρ on Cd ⊗Cd.

In this case, Alice and Bob outcomes coincide with eigenvalues λa, λb of these observables and
restriction λa, λb ∈ [−1, 1] implies the restriction on operators norms ‖Xai‖ ,

∥∥Xbk

∥∥ ≤ 1. The joint
probability P(ai ,bk)

(λa, λb) that, under a joint measurement (ai, bk), Alice observes an outcome λa, while
Bob—and outcome λb is given by

tr[ρ{PXai
(λa)⊗ PXbk

(λb)}] (19)

where PXai
(λa), PXbk

(λb), i, k = 1, 2, are the spectral projections of observables Xai and Xbk
,

corresponding to eigenvalues λa and λb, respectively. The averages in (2), (3) take the form

〈λai 〉 = tr[ρXai ], 〈λbk
〉 = tr[ρXbk

], 〈λai λbk
〉 = tr[ρ{Xai ⊗ Xbk

}], i, k = 1, 2 (20)

The general conditions (15), (16) on perfect correlations or anticorrelations of Alice and Bob
outcomes under a joint measurement (a2, b1) reduce to

∑
λa=λb

tr[ρ{PXb1
(λa)⊗ PXb1

(λb)}] = 1, (21)

∑
λa=−λb 6=0

tr[ρ{PXb1
(λa)⊗ PXb1

(λb)}] = 1, (22)

respectively, and for observables with eigenvalues ±1, these conditions are equivalent to

tr[ρ{Xb1 ⊗ Xb1}] = ±1. (23)

Thus, under the considered quantum scenario, the left hand-side W(±)
ρd of the original Bell

inequality (17) takes the form

W(±)
ρ (Xa, Xb1 , Xb2) =

∣∣ tr[ρ{Xa ⊗ Xb1}]− tr[ρ{Xa ⊗ Xb2}]
∣∣± tr[ρ{Xb1 ⊗ Xb2}], (24)

where, for short, we changed the index notation a1 → a,and the general condition on perfect
correlations/anticorrelations of Alice and Bob outcomes under a joint measurement (b1, b1) is given
by (21)/(22).

It is, however, well known that the two-qubit singlet state ρsinglet satisfies the perfect
anticorrelation (minus sign) condition (in the form (23)) whenever the same qubit observable Xb
with eigenvalues ±1 is measured at both sites but, depending on a choice of qubit observables
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Xa, Xb1 , Xb2 , this state may, however, violate [23,24] the perfect anticorrelation form of the original Bell
inequality (17).

As it has been proven in [26,32], for the singlet ρsinglet, the maximal value of the left hand-side (24)
of the original Bell inequality (17) over qubit observables with eigenvalues ±1 is equal to 3

2 .
This value is beyond the well-known Tsirelson [33,34] maximal value

√
2 for the quantum

violation parameter
∣∣∣BCHSH

quant

∣∣∣ /
∣∣BCHSH

lhv

∣∣ of the Clauser–Horne–Shimony–Holt (CHSH) inequality [4]∣∣BCHSH
lhv

∣∣ ≤ 2 and, moreover, beyond the least upper bound
√

2 on the quantum violation parameter∣∣Bquant
∣∣ / |Blhv| for all unconditional Bell functionals B(·) for two settings and two outcomes per

site [40–43].
On the other side, the Tsirelson bound 2

√
2 on the quantum violation of the CHSH inequality [4]

holds for a bipartite quantum state of an arbitrary dimension. For different choices of signs, this implies

tr[ρ{Xa ⊗ Xb1}]− tr[ρ{Xa ⊗ Xb2}+ tr[ρ{Xb1 ⊗ Xb1}+ tr[ρ{Xb1 ⊗ Xb2}] ≤ 2
√

2
tr[ρ{Xa ⊗ Xb1}]− tr[ρ{Xa ⊗ Xb2} − tr[ρ{Xb1 ⊗ Xb1} − tr[ρ{Xb1 ⊗ Xb2}] ≤ 2

√
2

−tr[ρ{Xa ⊗ Xb1}] + tr[ρ{Xa ⊗ Xb2}+ tr[ρ{Xb1 ⊗ Xb1}+ tr[ρ{Xb1 ⊗ Xb2}] ≤ 2
√

2
−tr[ρ{Xa ⊗ Xb1}] + tr[ρ{Xa ⊗ Xb2} − tr[ρ{Xb1 ⊗ Xb1} − tr[ρ{Xb1 ⊗ Xb2}] ≤ 2

√
2

(25)

Combining the first line with the third one, for a two-qudit state exhibiting perfect correlations
(condition (21)), we get the following upper bound

W(+)
ρ (Xa, Xb1 , Xb2)|per f ect =

∣∣ tr[ρ{Xa ⊗ Xb1}]− tr[ρ{Xa ⊗ Xb2}
∣∣+ tr[ρ{Xb1 ⊗ Xb2}]

≤ 2
√

2−
∣∣ tr[ρ{Xb1 ⊗ Xb1}]

∣∣ (26)

on the left-hand side of the original Bell inequality. Similarly, combining the second line with the
fourth one under condition (22) on perfect anticorrelations, we derive

W(−)
ρ (Xa, Xb1 , Xb2)|per f ect =

∣∣ tr[ρ{Xa ⊗ Xb1}]− tr[ρ{Xa ⊗ Xb2}
∣∣− tr[ρ{Xb1 ⊗ Xb2}]

≤ 2
√

2−
∣∣ tr[ρ{Xb1 ⊗ Xb1}]

∣∣ (27)

Thus, for an arbitrary two-qudit state exhibiting perfect correlation/anticorrelations whenever
the same quantum observable Xb1 is measured at both sites we have

W(±)
ρ (Xa, Xb1 , Xb2)|per f ect =

∣∣ tr[ρ{Xa ⊗ Xb1}]− tr[ρ{Xa ⊗ Xb2}]
∣∣± tr[ρ{Xb1 ⊗ Xb2}]

≤ 2
√

2−
∣∣ tr[ρ{Xb1 ⊗ Xb1}]

∣∣ (28)

If observable Xb1 has only eigenvalues ±1, then conditions (21), (22) reduce to the Bell
condition (23) and the upper bound (28) takes the form

W(±)
ρ (Xa, Xb1 , Xb2)|per f ect ≤ 2

√
2− 1 (29)

and holds for a two-qudit state ρ of an arbitrary dimension d ≥ 2. For d = 2, this upper bound is more
than the maximal value 3

2 proved [26,32] for the two-qubit singlet.
Therefore, in the following section, we proceed to analyze the maximal value which the

left-hand of W(±)
ρ (Xa, Xb1 , Xb2)|perfect over all qubit observables Xa, Xb1 , Xb2 with eigenvalues ±1 and

all two-qubit states ρ, satisfying the perfect correlation/anticorrelation condition (23).

4. Two-Qubit Case

Consider the violation of the original Bell inequality (17) by a two-qubit state exhibiting perfect
correlations/anticorrelations whenever the same qubit quantum observable with eigenvalues ±1 is
projectively measured at both sites.
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We further consider only symmetric two-qubit states ρ (identical quantum particles), that is,
states on C2 ⊗C2 which do not change under the permutation of the Hilbert spaces C2 in the tensor
product C2 ⊗C2, and, for simplicity, change index notations b1 → r, b2 → c in (24).

For d = 2, a generic qubit observable X on C2 admits the representation

X = αIC2 + r · σ, (30)

r · σ = r1σ1 + r2σ2 + r3σ3 (31)

where α = 1
2 tr[X], r = (r1, r2, r3) is a vector in R3 with components

r1 =
1
2

tr[Xσ1], r2 =
1
2

tr[Xσ2], r3 =
1
2

tr[Xσ3], (32)

and
σ1 = |e1〉〈e2| + |e2〉〈e1|, σ2 = i(|e2〉〈e1| − |e1〉〈e2|), σ3 = |e1〉〈e1| − |e2〉〈e2| (33)

are self-adjoint operators on C2 with eigenvalues ±1, represented in the standard orthonormal basis
{e1, e2} in C2 by the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (34)

Every qubit observable with eigenvalues ±1 is represented in (30) by some unit vector ‖r‖ = 1
and constitutes projection σr := r · σ of the qubit spin along a unit vector (direction) r in R3.

Therefore, for Alice and Bob measurements of qubit observables with eigenvalues ±1, the
left-hand side (24) of the original Bell inequality takes the form

W(±)
ρ (σa, σr, σc) = | tr[ρ{σa ⊗ σr}]− tr[ρ{σa ⊗ σc}] | ± tr[ρ{σr ⊗ σc}] (35)

where a, r, c are unit vectors in R3 and the relation

tr[ρ{σr ⊗ σr}] = ±1 (36)

constitutes the perfect correlation/anticorrelation of Alice and Bob outcomes whenever the same spin
observable σr—the projection of qubit spin along the same direction r in R3—is measured at both sites.

Substituting representation (31) into (35) and (36), we rewrite these relations via scalar products
of vectors in R3 :

W(±)
ρ (σa, σr, σc) =

∣∣∣(a, T(ρ)r)− (a, T(ρ)c)
∣∣∣± (r, T(ρ)c), (37)

(r, T(ρ)r) = ±1, (38)

where (a, T(ρ)r) := ∑i,j T(ρ)
ij airj and T(ρ) is the linear operator on R3, defined in the canonical basis in

R3 by the matrix with real elements

T(ρ)
ij := tr[ρ{σi ⊗ σj}, i, j = 1, 2, 3, (39)

This correlation matrix is symmetric (since ρ is symmetric), has eigenvalues λm, m = 1, 2, 3, where
all |λm| ≤ 1, and is similar by its form to the matrix considered in [44].
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Let us first analyze when an arbitrary symmetric two-qubit state ρ may satisfy condition (38).
By decomposing a unit vector r = ∑m βmvm, ∑m β2

m = 1, in the orthonormal basis {vj, j = 1, 2, 3} of
eigenvectors of T(ρ), we rewrite condition (38) in the form

∑
m

β2
m(λm ∓ 1) = 0. (40)

Since all eigenvalues |λm| ≤ 1, relation (40) implies the following statement.

Proposition 2. A symmetric two-qubit state ρ exhibits perfect correlation/anticorrelations

tr[ρ{σr ⊗ σr}] = ±1 (41)

if and only if its correlation matrix T(ρ) has at least one eigenvalue equal to ±1, respectively. In this case:

(1) if only one of eigenvalues of T(ρ) is equal to ±1, say λm0 = ±1, then ρ satisfies the perfect
correlation/anticorrelation condition (41), respectively, only for the unit vector r = vm0 ;

(2) if T(ρ) has two eigenvalues equal to ±1, say λm1 , λm2 = ±1, then ρ satisfies the perfect
correlation/anticorrelation condition (41), respectively for every unit vector r = βm1vm1 + βm2vm2 ,
β2

m1
+ β2

m2
= 1 in the plane determined by the eigenvectors {vm1 , vm2} of T(ρ);

(3) if all three eigenvalues of T(ρ) are equal to ±1, then ρ satisfies the perfect correlation/anticorrelation
condition (41), respectively, for any unit vector r in R3.

For the two-qubit Bell states

φ(±) =
1√
2
(e1 ⊗ e1 ± e2 ⊗ e2) , ψ(±) =

1√
2
(e1 ⊗ e2 ± e2 ⊗ e1) , (42)

we have

T(φ+) =

1 0 0
0 −1 0
0 0 1

 , T(φ−) =

−1 0 0
0 1 0
0 0 1



T(ψ+) =

1 0 0
0 1 0
0 0 −1

 , T(ψ−) =

−1 0 0
0 −1 0
0 0 −1


(43)

and this implies.

Corollary 1. (1) The Bell state φ+ exhibits perfect anticorrelations under spin measurements at both sites along
the coordinate axis Y and perfect correlations under spin measurements at both sites along the same arbitrary
direction in the coordinate plane XZ;

(2) The Bell state φ− exhibits perfect anticorrelations under spin measurements at both sites along the
coordinate axis X and perfect correlations—under spin measurements at both sites along the same arbitrary
direction in the coordinate plane YZ;

(3) The Bell state ψ+ exhibits perfect anticorrelations under measurements at both sites of spin projections
along the coordinate axis Z and perfect correlations—under spin measurements at both along the same arbitrary
direction in the coordinate plane XY;

(4) The Bell state (singlet) ψ− exhibits perfect anticorrelations under spin measurements at both sites along
the same arbitrary direction in R3.

Let us now analyze the maximal value of the left-hand side (37) of the original Bell inequality for
a two-qubit state ρ exhibiting perfect correlations/anticorrelations (38).
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Under condition ‖a‖ = 1, the maximum of W(±)
ρ (σa, σr, σc) over a is reached on the unit vector

a = ± T(ρ)(r− c)∥∥T(ρ)(r− c)
∥∥ (44)

and is given by ∥∥∥T(ρ)(r− c)
∥∥∥± (r, T(ρ)c). (45)

Expanding vectors r = ∑m βmvm, ∑ β2
m = 1, c = ∑m γmvm, ∑m γ2

m = 1, in terms of the
orthonormal eigenvectors {vm} of T(ρ), we rewrite (45) in the form√

∑
m=1,2,3

λ2
m(βm − γm)2 ± ∑

m=1,2,3
λmβmγm, (46)

where, due to perfect correlations/anticorrelations condition (38), the coefficients βm are specified in
Proposition 2.

Consider the maximum of expression (46) over coefficients γm. By Proposition 2, expression (46)
reduces to √

∑λ2
m=1(βm − γm)2 + ∑λ2

m 6=1 λ2
mγm2 + ∑λ2

m=1 βmγm

=
√

2(1−∑λ2
m=1 βmγm)−∑λ2

m 6=1(1− λ2
m)γ

2
m + ∑λ2

m=1 βmγm

(47)

since ∑λ2
m=1 β2

m = 1. From (47) it follows that, for all choices of a direction r—coefficients βm in (47)
specified in Proposition 2, we have

sup
a,c

W(±)
ρ (σa, σr, σc)|perfect ≤ max

z∈[−1,1]

(√
2(1− z) + z

)
=

3
2

(48)

where the upper bound 3
2 is, for example, reached on every Bell state where all eigenvalues of the

correlation matrices λm ∈ {−1, 1}, m = 1, 2, 3.
Also, if a two-qubit state, exhibiting perfect correlations/anticorrelations (see Proposition 2),

has the correlation matrix with at least two eigenvalues, say λm1 , λm2 , with |λm1 | , |λm2 | = 1, then
the upper bound 3

2 is reached on the unit vector c which is in the plane of eigenvectors vm1 , vm2

corresponding to these eigenvalues (vector r is in this plane, see Proposition 2) and satisfies condition
c · r = ∑λ2

m=1 βmγm = 1
2 , that is, at angle π/3 to vector r.

Thus, we have proved the following new result.

Theorem 1. Let ρ be a symmetric two-qubit states on C2 ⊗C2 exhibiting perfect correlations/anticorrelations
whenever the same qubit observable σr is measured at both sites. Then the maximal value of the left-hand side
W(±)

ρ (σa, σr, σc) of the original Bell inequality is given by

max
ρ,a,r,c

W(±)
ρ (σa, σr, σc)|perfect =

3
2

(49)

and is reached on symmetric two-qubit states discussed in lines after Equation (48).

We stress that this maximal value is less than the upper bound (29) following from the
CHSH inequality.

5. Two-Qutrit Case

Consider now the violation of the original Bell inequality under Alice and Bob spin measurements
on a symmetric two-qutrit state ρ on C3 ⊗C3, exhibiting perfect correlations or anticorrelations.
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For Alice and Bob spin measurements in a two-qutrit state ρ, the left-hand side (24) of the original
Bell inequality and the condition on perfect correlations/anticorrelations take the forms

W(±)
ρ (Sa, Sr, Sc) = | tr[ρ{Sa ⊗ Sr}]− tr[ρ{Sa ⊗ Sc}] | ± tr[ρ{Sr ⊗ Sc}], (50)

tr[ρ{Sr ⊗ Sr}] = ±1, (51)

where a, r, c are unit vectors in R3 and

Sr = r · S = r1S1 + r2S2 + r3S3, S = (S1, S2, S3), (52)

is the qutrit observable with eigenvalues {1, 0,−1}, describing projection of qutrit spin along a unit
vector r in R3.

Note that if a two-qutrit state ρ exhibits perfect correlations/anticorrelations (51) under
measurements in this state at both sites of spin projection along a direction r, the probability of
event that either Alice or Bob observe at their site the outcome λ = 0 is equal to zero.

In the standard orthonormal basis {e1, e2, e3} in C3 these operators have the following
matrix representations:

S1 =
1√
2

0 1 0
1 0 1
0 1 0

 , S2 =
1√
2

0 −i 0
i 0 −i
0 i 0

 , S3 =

1 0 0
0 0 0
0 0 −1

 (53)

and

Sr =


r3

r1−ir2√
2

0
r1+ir2√

2
0 r1−ir2√

2
0 r1+ir2√

2
−r3

 (54)

In view of (52), quite similarly to our techniques in Section 4 we introduce for a symmetric
two-qutrit state ρ the correlation matrix Z(ρ) with real elements

Z(ρ)
ij = tr[ρ{Si ⊗ Sj}], (55)

which is symmetric, diagonalized and has eigenvalues |λm| ≤ 1, and this allows us to rewrite (50), (51)
in the form:

W(±)
ρ (Sa, Sr, Sc) =

∣∣∣(a, Z(ρ)r)− (a, Z(ρ)c)
∣∣∣± (r, Z(ρ)c),

(r, Z(ρ)r) = ±1.
(56)

These expressions are quite the same by their form to expressions (37), (38) for a two-qubit state. By
using the same techniques as in a qubit case, we derive

sup
a,c

W(±)
ρ (Sa, Sr, Sc)|perfect ≤

3
2

. (57)

We, however, do not know whether under the considered measurements this supremum is reached.

Theorem 2. Let ρ be a symmetric two-qutrit states on C3 ⊗C3 exhibiting perfect correlations/anticorrelations
whenever spin projection Sr along a direction r is measured at both sites. Then, under Alice and Bob spin
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measurements on these two-qutrit states, the maximal value of the left-hand side W(±)
ρ (Sa, Sr, Sc) of the original

Bell inequality (17) is upper bounded as

sup
ρ,a,r,c

W(±)
ρ (Sa, Sr, Sc)|perfectBell ≤

3
2

. (58)

This two-qutrit upper bound is less than the upper bound (29) following from the
CHSH inequality.

6. Conclusions

As was pointed out in the Introduction, the recent tremendous developments in quantum
technologies make experiments to test the original Bell inequality at least less difficult. This stimulates
interest in novel theoretical, foundational, and mathematical studies on this inequality. In particular,
it is important to find the quantum bound, the analog of the Tsirelson bound, for the original
Bell inequality. It was well-known that in the two-qubit singlet case this bound equals 3/2, see,
e.g., [26,32]. A year ago, I. Basieva and A. Khrennikov came with the conjecture [45] that the
same upper bound holds in case of arbitrary two-qudit states and qudit observables coupled by
perfect correlations/anticorrelations. The question of quantum upper bound for the original Bell
inequality became actual in connection with studies on quantum-like modeling of psychological
behavior, see related paper [46].

In the present article, we have proven this conjecture for all two-qubit states and all traceless
qubit observables and all two-qubit states and spin qutrit observables. This is the first step towards
justifying this conjecture for an arbitrary two-qudit case, and the authors of the present paper plan to
continue studies on this problem. Since in the multi-dimensional case the analytical expressions are
very complex, it may be useful to try to perform preliminary numerical study, cf. [47]. We also point to
technique for evaluation of the quantum upper bound which was elaborated in [48,49] and tested on
the CHSH-like inequalities. In principle, this technique can be applied to the original Bell inequality.
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Appendix A

Consider the proof of Proposition 1.
Let, for a joint measurement (a2, b1), the perfect anticorrelation (16) be fulfilled and this scenario

admit an LHV model (12). This and (14) imply:

0 ≤
∫
Ω

∣∣ fa2(ω) + fb1(ω)
∣∣ ν(dω)

=
∫
Ω

∣∣∣∣∣ ∑
λa ,λb

(λa + λb) Pa2(λa|ω)Pb1(λb|ω)

∣∣∣∣∣ ν(dω)

≤
∫
Ω

∑
λa ,λb

|λa + λb| Pa2(λa|ω)Pb1(λb|ω)ν(dω) ≤ 2 ∑
λa 6=−λb

P(a2,b1)
(λa, λb) = 0.
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Thus, under condition (16) on scenario joint probabilities, the LHV functions fa2(ω) = − fb1(ω),
ν-a.e. on Ω. Quite similarly, for the case of perfect correlations (15) we derive fa2(ω) = fb1(ω), ν-a.e.
on Ω. These relations and the number inequality

|x− y| ≤ 1− xy, ∀ x, y ∈ [−1, 1],

give: ∣∣〈λa1 λb1〉 − 〈λa1 λb2〉
∣∣± 〈λa2 λb2〉

=

∣∣∣∣∣∣
∫
Ω

fa1(ω) fb1(ω)− fa1(ω) fb2(ω) ν(dω)

∣∣∣∣∣∣±
∫
Ω

fa2(ω) fb2(ω)ν(dω)

≤
∫
Ω

∣∣( fb1(ω)− fb2(ω))
∣∣ ν(dω)±

∫
Ω

fa2(ω) fb2(ω) ν(dω) ≤ 1.

This proves the statement.
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