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Abstract: Isoprene, a volatile hydrocarbon emitted largely by plants, plays an important role in
regulating the climate in diverse ways, such as reacting with free radicals in the atmosphere to
produce greenhouse gases and pollutants. Isoprene is both deposited and formed in soil, where it
can be consumed by some soil microbes, although much remains to be understood about isoprene
consumption in tropical soils. In this study, isoprene-degrading bacteria from soils associated with
tropical plants were investigated by cultivation and cultivation-independent approaches. Soil samples
were taken from beneath selected framework forest trees and economic crops at different seasons,
and isoprene degradation in soil microcosms was measured after 96 h of incubation. Isoprene losses
were 4–31% and 15–52% in soils subjected to a lower (7.2 × 105 ppbv) and a higher (7.2 × 106 ppbv)
concentration of isoprene, respectively. Sequencing of 16S rRNA genes revealed that bacterial
communities in soil varied significantly across plant categories (framework trees versus economic
crops) and the presence of isoprene, but not with isoprene concentration or season. Eight isoprene-
degrading bacterial strains were isolated from the soils and, among these, four belong to the genera
Ochrobactrum, Friedmanniella, Isoptericola and Cellulosimicrobium, which have not been previously
shown to degrade isoprene.

Keywords: isoprene; volatile hydrocarbon; isoprene degradation; bacterial communities; isoprene-
degrading bacteria; tropical soils; economic crops; framework forest trees

1. Introduction

Isoprene (C5H8) is the second most abundant natural hydrocarbon in the atmosphere
after methane [1]. It is estimated that approximately 500 million tonnes of isoprene are
emitted into the atmosphere annually, mainly from tropical forests [2]. Isoprene is a
highly reactive volatile organic compound, which can bond with free radicals and react
with nitrogen oxides to, inter alia, form ozone, which is a powerful greenhouse gas [3].
Tropospheric ozone can also have an adverse effect on the health of humans and animals,
especially on the respiratory system, and is potentially harmful to all other organisms,
biodiversity and ecosystems [4].
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Isoprene is mainly emitted by terrestrial plants. Some trees such as oak, poplar and
eucalyptus are major producers of isoprene [2,5], with reported emissions of 100 (Populus
spp.) and 50 (Eucalyptus spp.) µg g−1 (dry leaves) h−1 [5,6]. The global intensification of
agriculture is likely to alter the isoprene balance in the local, regional and potentially global
atmosphere. In many countries, such as Thailand, traditional small-scale farming is being
replaced by large-scale crop plantation. Moreover, deforestation, which goes hand-in-hand
with agricultural intensification, is a major environmental threat. Many strategies and meth-
ods have been employed to restore forest ecosystems. One approach to forest restoration
that has proven very successful is the “Framework Species method” [7–9]. In the tropics,
this method involves planting mixtures of approximately 20 pioneer and climax tropical
forest tree species such as Spondias axillaris, Prunus cerasoides (wild Himalayan cherry),
and Ficus altissima (council tree) [8]. Framework trees can improve forest productivity and
nutrient cycles, and can attract and bring back wildlife so that the forest ecosystems can
be restored.

The agricultural and forestry activities outlined above are intended to be beneficial to
the food supply and for sustaining the environment. However, large amounts of isoprene
are emitted by many framework forest tree species, such as council tree (Ficus altissima) [10],
as well as from economic crops, such as oil palm (Elaeis guineensis) and rubber trees
(Hevea brasiliensis) [10–12]. Soil is a sink for some of this isoprene [13,14]. There is also
the potential for internal cycling (both production and consumption) of isoprene within
soils [15], with a range of microbes being responsible for isoprene consumption, such as
members of the genera Arthrobacter, Nocardia, Nocardiodes, Rhodococcus, Bacillus, Alcaligenes,
Ramlibacter, Variovorax, Klebsiella, Pantoea and Pseudomonas [16]. Knowing the potential
and the capacity of soil bacteria and bacterial communities to consume isoprene will lead
to a better understanding of isoprene degradation mechanisms in soil and the global
atmospheric isoprene budget. However, most of the research into isoprene consumption by
bacteria has been conducted in temperate zones [14,17–19]. There is limited understanding
of isoprene consumption by soil bacteria in the tropics, i.e., those that are associated with
tropical plants and, to our knowledge, only a few studies have been reported [20,21].

Our aims were: (1) to determine the potential for isoprene degradation in tropical
soils associated with different plants that are important in agriculture and forestry; (2) to
identify changes in bacterial community composition during isoprene degradation; (3) to
isolate and characterise soil bacteria responsible for isoprene degradation.

2. Materials and Methods
2.1. Soil Sampling

Soil samples (50 g) beneath selected framework forest tree species were collected
from the top 3 cm of soil using autoclaved spoons and sterile bags, during three different
seasons: the rainy season (September, 2017), winter season (January, 2018) and summer
season (May, 2018). The samples were collected from a restored forest area in Doi Suthep-
Pui National Park, Chiang Mai, Thailand (18◦51′51′′ N, 98◦50′51′′ E). For soil associated
with economic crops, samples were collected from various locations in Kamphaeng Phet
province, Northern Thailand (16◦29′0.38′′ N, 99◦31′17.51′′ E). Soil samples associated with
each species (Table 1) were taken from beneath the canopies of the trees from five different
locations to give five replicates for each species. Soil physicochemical features are presented
in Supplementary Table S1.
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Table 1. Plant species and associated soils, selected for this study.

Type of Plant Common Name Scientific Name

Framework tree
Council tree Ficus altissima BI.

Wild oak Quercus semiserrata Roxb.
Wild Himalayan cherry Prunus cerasoides D. Don

Economic crop
Oil palm Elaeis guineensis Jacq.

Rubber tree Hevea brasiliensis Muell. Arg.
Sugar cane Saccharum officinarum L.

2.2. Preparation of Soil Samples for Isoprene Degradation Measurement

Each soil sample was divided into two 1 g portions, which were incubated with
different concentrations of isoprene. Each sample was cultured in 9 mL of minimal
medium (pH 7.2) modified from Fahy et al. [22], and contained (per litre): 0.5 g NaCl,
0.5 g mgSO4·7H2O, 0.1 g CaCl2·2H2O, 1 g NH4NO3, 1.1 g Na2HPO4, 0.25 g KH2PO4, 50 mg
Cycloheximide, 10 mg FeSO4·7H2O, 0.64 mg Na2EDTA.3H2O, 0.1 mg ZnCl2, 0.015 mg
H3BO3, 0.175 mg CoCl2·6H2O, 0.15 mg Na2MoO4·2H2O, 0.02 mg MnCl2·4H2O, 0.01 mg
NiCl2·6H2O, 0.05 mg p-Aminobenzoic acid, 0.02 mg Folic acid, 0.02 mg Biotin, 0.05 mg
Nicotinic acid, 0.05 mg Calcium pantothenate, 0.05 mg Riboflavin, 0.05 mg Thiamine HCl,
0.1 mg Pyridoxine HCl, 0.001 mg Cyanocobalamin, and 0.05 mg Thioctic acid, in a 125 mL
crimp-top serum vial. Phosphate salts were autoclaved separately from other salts, and
the vitamins were filter-sterilised. The vial was sealed with a PTFE/silicone septum, and
injected with different amounts of isoprene (7.2 × 106 ppbv and 7.2 × 105 ppbv) as the
sole carbon source. Isoprene stocks were made as described by Acuña Alvarez et al. [23],
with 10 mL of 99% isoprene (Sigma-Aldrich, St. Louis, MO, USA) in a 125 mL sterilised
serum vial, crimp-sealed with a silicone-PTFE septum, and warmed to 30 ◦C for 15 min
before transferring the isoprene in the headspace. For 7.2 × 106 ppbv of isoprene, 1 mL of
headspace isoprene gas was transferred to the enrichment medium and for 7.2 × 105 ppbv
of isoprene, 0.1 mL was used. Five microcosms of autoclaved soil were also included in
each batch to differentiate isoprene degradation by microbial activity from other forms of
loss. The microcosms were incubated at 27 ◦C for 96 h.

2.3. Analysis of Isoprene Degradation by Gas Chromatography-Flame Ionisation Detection (GC-FID)

To monitor residual isoprene concentrations in sealed vials, 100 µL of headspace gas
was taken through the septum and directly injected into the sample port of an Agilent
6890N GC-FID equipped with a DB-1 J&W column (30 m long, 0.25 mm internal diameter
and 0.25 µm stationary phase thickness), with injector temperatures of 250 ◦C, a column
temperature of 50 ◦C and detector temperatures of 275 ◦C. Helium was used as the carrier
gas at a constant flow of 1.4 mL min−1. Significance testing was performed using an
ANOVA test with Jamovi software version 1.2 [24].

2.4. Isolation and Identification of Isoprene-Degrading Bacteria

To isolate isoprene-degrading bacteria, the enrichments (soil samples incubated with
isoprene) were taken from the vials after 96 h incubation. A 1 mL portion of the enriched
samples was diluted and spread on minimal medium agar and incubated for 21 days in
1 L glass desiccator containing 1 mL of 99% isoprene (Sigma-Aldrich, St. Louis, MO, USA).
Representative colonies were picked and re-streaked until pure cultures were obtained. For
species identification, DNA from the pure cultures was extracted according to the method
described by Griffiths et al. (2000) [25]. The 16S rRNA gene was amplified using the primers
27F (5′-AGAGTTTGATCMTGGCTCAG-3′) and 1492R (5′-CGGTTACCTTGTTACGACTT-
3′) [26] at the final concentration of 0.4 µM. AppTaq RedMix (2×; Appleton Woods Ltd.,
Birmingham, UK) was used in the PCR. The PCR conditions were: denaturing at 95 ◦C for
3 min, followed by 30 cycles of denaturing at 95 ◦C for 15 s, annealing at 55 ◦C for 15 s,
extension at 72 ◦C for 30 s, and a final extension at 72 ◦C for 5 min. Amplicons were purified
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using a GenElute PCR Clean-Up Kit (Sigma, St. Louis, MO, USA). Sanger sequencing
was performed using the above primers by Eurofins Genomics (Ebersberg, Germany).
Low-quality bases were trimmed using Chromas software version 2.6.6. FASTA sequences
were concatenated in Bioedit software version 7.0.5.3 [27]. The obtained sequences were
deposited to the NCBI database (accession no. MW509981–MW509988) and were compared
with the 16S rRNA sequences in NCBI database using BlastN to find the closest relatives.

2.5. Microbial Community Analysis and Bioinformatics

After 96 h of incubation, soil samples from five replicates of each plant species from the
same batch were pooled. DNA was extracted from the soil samples using the NucleoSpin
Soil kit (Macherey-Nagel, Düren, Germany) according to the manufacturer’s instructions.
Bacterial 16S rRNA gene amplification was carried out on the V3 and V4 region of the 16S
rRNA gene, with the forward primer: 341f (5′-CCTACGGGNGGCWGCAG-3′) and the
reverse primer: 785r (5′-GACTACHVGGGTATCTAATCC-3′) [28], each primer was flanked
by Illumina-specific overhang sequences, as described in the Illumina handbook [29]. The
amplicon libraries were sequenced on an Illumina MiSeq platform, using MiSeq Reagent
Kit v3 (600 cycle) and 20% PhiX control standard. Raw data obtained were deposited to the
NCBI database under the accession number PRJNA694775.

Raw reads were analysed as described by Dumbrell et al. [30]. In brief, the sequence
reads were trimmed using Sickle [31], error corrected with SPAdes [32] using the BayesHam-
mer algorithm [33] and pair-end aligned with PANDASeq [34] using PEAR [35]. After
dereplication, sequences were clustered into operational taxonomic units (OTUs) using
VSEARCH [36] at the 97% identity level. OTUs with one read were removed, along with
all chimeric sequences using reference-based chimera checking within UCHIME [37], then
OTUs were taxonomically assigned using the RDP classifier [38]. Sequence data were
rarefied to 19,359 sequences.

2.5.1. Differences in Bacterial Community Composition

The OTU abundance table was used to test for the differences in bacterial community
composition among the soil samples associated with the different types of plant species,
isoprene concentrations and seasons, using PAST software version 2.17c [39]. The dif-
ferences in community composition were calculated using NPMANOVA (p-value based
on 9999 permutations). Patterns of community variation were visualised by non-metric
multidimensional scale (NMDS) ordination of Bray–Curtis distance.

STAMP software [40] was used to identify OTUs and specified genera that significantly
changed in relative abundance with the treatments. Analysis was performed as described
by Aslam et al. [41] with default parameters, except that the parameters for filtering out
were: p-value > 0.05; difference between proportions <0.2 or difference between ratios <1.5.

2.5.2. Phylogenetic Analysis

Phylogenetic analysis was performed using an alignment of partial 16S rRNA gene
sequences (constructed using MEGA-X) [42] from representatives of OTUs that significantly
increase in relative abundance in the isoprene treatments and isoprene-degrading isolates,
together with their closest relatives. The Neighbor-Joining tree [43] was constructed using
the Maximum Composite Likelihood protocol [44] with 1000 bootstrap replicates [45].

2.6. Measurement of Isoprene-Degrading Activity of Bacterial Isolates

In order to confirm the degradation activity of isoprene by bacteria isolated from
soil samples, each culture was inoculated into 9 mL of three different types of media,
contained in 125 mL crimp-top serum vials sealed with PTFE/silicone septa. The media
used included minimal medium broth (as described above) without isoprene, minimal
medium broth with isoprene, and glucose/yeast broth (contained per 1 L of Milli-Q water:
20 g of glucose (Merck, Darmstadt, Germany) and 10 g of yeast extract (Difco, Oxford,
UK) with isoprene. Isoprene was added to 7.2 × 105 ppbv. Every three days, residual
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isoprene was measured by taking 100 µL of headspace gas with a glass gas-tight syringe
and injecting into a Unicam 610 series GC-FID equipped with a 10% Apiezon L CW column,
with the injector and detector temperature of 160 ◦C and the column temperature of 100 ◦C.
Optical density (OD at 600 nm) was also measured every three days using a Jenway 7300
spectrophotometer. After 18 days of incubation, the cultures were subjected to serial
dilution, spread on minimal medium agar and incubated with isoprene to confirm purity.

3. Results and Discussion
3.1. Isoprene Degradation by Soil Microbes Associated with Economic Crop Species and Framework
Forest Tree Species

Soil samples beneath three framework forest tree species (council tree, wild oak
and wild Himalayan cherry) and economic crop species (oil palm, rubber tree and sugar
cane) (Table 1), collected at different seasons, were mixed with minimal medium and
incubated with isoprene at two different concentrations. The percentage losses of isoprene
over 96 h were between 4.4% and 30.9% for the soil samples incubated with isoprene
at the lower concentration, and between 15.4% and 51.6% for samples incubated with
isoprene at the higher concentration (Figure 1). There was a small loss of isoprene from
the sterile controls; however, 31 out of the 36 treatments had significantly more isoprene
loss than the corresponding sterile controls (Figure 1). The exceptions were rubber-tree
soils and sugar-cane soils collected during rainy and winter seasons, incubated with the
lower concentration of isoprene, and rubber-tree soils collected during summer season,
incubated with the higher concentration of isoprene (Figure 1). After combining seasonal
and concentration data, only rubber-tree soil slurries had significantly lower isoprene
loss compared with the other five tree species (Anova Tukey HSD test; p < 0.05). These
findings reveal that soil associated with various types of trees had the capacity for isoprene
consumption, which suggests widespread distribution of isoprene degraders in tropical
soils, as seen for other soil types [13,14,19,20]. There is no obvious reason for the differential
capacity for potential isoprene degradation with the the rubber plantation soil, as rubber
is a polymer of isoprene, and some bacteria, e.g., Gordonia spp., can degrade both [23].
From previous studies, there is no evidence of a relationship between plant isoprene
production and isoprene consumption in associated soils, probably because soil microbiota
primarily consume isoprene produced in the soil, e.g., by bacteria and fungi rather than
from the atmosphere [15,16]. Isoprene production from the studied plants has only been
documented for oil palm and rubber trees [10–12].

The percentage loss of isoprene from soils treated with the higher isoprene concentra-
tion was greater than that with the lower concentration (Anova Tukey HSD test; p < 0.05),
which is consistent with data from temperate soils [14,19], although these studies applied
much lower isoprene concentrations than our study.

Degradation in soils sampled in the summer was significantly lower than in soils
collected in winter or the rainy season (Anova Tukey HSD test; p < 0.05), but there was no
statistically different degradation between soils collected in the rainy season and winter.
In the tropical climates of mountainous upper Northern Thailand and the inland plain
of lower Northern Thailand, the main seasonally different factor in soils is moisture. Soil
moisture in the summer season was lower than in winter and in the rainy season, whereas
there was little difference in soil temperatures across the seasons (Supplementary Table
S1). While our data on potential isoprene degradation are consistent with studies in which
soils were incubated with different moisture content [13], Pegoraro et al. [46] observed that
the optimal isoprene consumption rate was fully restored within 2 h of rewetting the soil.
Overall, our study is indicative of the capacity for isoprene degradation in tropical soils,
but further analyses are needed, especially using in-situ chambers at atmospheric isoprene
concentrations, to understand fully how soil parameters and plant species influence the
capacity for isoprene degradation.
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Figure 1. Percentage loss of isoprene over 96 h in microcosms containing 1 g of soil, incubated with
isoprene at two different concentrations: (A) 7.2 × 105 ppbv and (B) 7.2 × 106 ppbv. n = 5. Error bars
show ±SE. NS = the percentage loss was not statistically different from the sterile control (Anova;
p < 0.05).

3.2. Bacterial Community Analysis and Identification of Taxa That Increase in Relative Abundance
after Isoprene Enrichment

NPMANOVA analysis revealed that bacterial communities derived from soils beneath
framework forest trees were not statistically different from each other (F2,26 = 6.142, p = 1)
(shown by the cluster on the left-hand side of the ordination plot, Figure 2a, with com-
munities from wild Himalayan cherry, council tree and wild oak). By contrast, bacterial
communities derived from the soils in economic crop plantations (oil palm, rubber and
sugar cane) significantly differed from each other and from the framework forest tree group
(F1,50 = 20.64, p < 0.01; Figure 2b). However, it should be noted that the soils associated
with these two plant categories (framework trees or economic crops) were collected from
different geographical locations, where altitude and climate also differed. The frame-
work forest trees are found in a mountainous conservation area, i.e., undisturbed forest
restoration area in the upper northern region of Thailand, whereas the economic crops
were grown in an area of intensive agriculture in the plain of the lower northern region.
Moreover, the soils associated with the framework forest trees were close to each other
(within 500 m), while the crop plantations were approximately 1 km from each other. All
of these factors (dominant plant species, diversity of surrounding plant species, altitude,
geographic separation) may have influenced the soil microbiota and how it developed
when incubated with isoprene [47–49].
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Figure 2. Non-metric multidimensional scaling (NMDS) analysis of bacterial communities, based
on Bray–Curtis dissimilarity (using OTUs derived from 16S rRNA gene sequences). Each point
represents a single community, with points closer together indicating compositionally similar com-
munities. All panels show the same data with 95% confidence ellipses for (A) Plant species, (B) Type
of plants (C) Seasons and (D) Isoprene concentrations.

Enrichment with isoprene led to a convergence in, and a significantly different, bacte-
rial community composition compared with the soils that were not incubated with isoprene
(pre-enrichment treatments) (F1,50 = 3.746, p < 0.05; Figure 2d). However, there was no
overall significant difference between bacterial community compositions exposed to dif-
ferent isoprene concentrations (F1,50 = 0.8377, p = 1; Figure 2d). Although season had an
influence on isoprene degradation potential, it had no significant effect on the bacterial
community composition (F2,50 = 1.66, p = 0.052; Figure 2c). Given that seasonal differences
in the microbiota are commonly observed in soils [50], including tropical rubber-plantation
soils [51], it is probable that any seasonal difference was masked by the overriding selective
pressure of enrichment with isoprene.

Prior to this study, little was known about isoprene-degrading microorganisms in
tropical soils, with just a few studies analysing isoprene degraders in soil associated with
oil palm trees, but growing in temperate environments [52,53], or in soil transported to the
UK [20]. Oil-palm soil was found to have the highest abundance of isoprene monooxyge-
nase genes (isoA), determined by quantitative PCR [20,54]. In these studies, genera such as
Rhodococcus, Gordonia, Novosphingobium, Pelomonas, Rhodoblastus, Sphingomonas and Zoogloea
were identified as isoprene-degrading bacteria by DNA stable isotope probing [20,52,53,55].
A wider variety of genera has also been implicated in isoprene degradation in temperate
soils [17,19,20,54,55].

Our study had the advantage of investigating freshly sampled soils from the tropics,
and analysing the changes in bacterial community composition shortly after isoprene
degradation had started. However, the isoprene-degrading ability of genera that increased
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in relative abundance only provided evidence for a potential role in isoprene degradation.
Nevertheless, our cultivation studies (see later) provided firm links between taxonomy
and isoprene degradation. Several genera of bacteria increased significantly in relative
abundance in soil enriched with isoprene (Figure 3), most notably Acinetobacter, Comamonas,
Pseudomonas and Rhodococcus. Some genera, such as Comamonas, increased in soil from
both categories of plants and at both concentrations of isoprene. Pseudomonas, however,
increased with the lower concentration of isoprene, while Rhodococcus increased only at the
higher isoprene concentration (Figure 3A).
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Figure 3. Taxa with significant increase in relative abundance in soils (based on all treatments combined) when incubated
with isoprene (post) compared with before incubation (pre): (A) Genus level, (B) OTU level. The right-hand column shows
whether the indicated genus or OTU was significantly more abundant (Y) or not (N) in soils from beneath Economic crops
and Framework trees, and with lower isoprene concentration and higher isoprene concentration, each relative to their
respective soils before incubation. Analysis was performed using STAMP software. See Methods for details.

Investigating bacterial community composition at the OTU level revealed patterns
that were not seen at the genus level. For example, Bacillus OTU1153 (having 99.5% 16S
rRNA similarity to Bacillus luciferensis strain LMG 18422) increased significantly in relative
abundance in soils with isoprene (Figures 3B and 4). The most abundant OTU from
Acinetobacter (OTU6; Figure 4) showed variability between replicates and was significantly
more abundant only when incubated at a lower concentration of isoprene (Figure 3B).
Rhodococcus OTU11 (100% identity with Rhodococcus pedocola strain UC12) was much more
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abundant in the isoprene-enriched soils from framework forest trees than from economic
crops, whereas Pseudomonas OTU27 (100% identity with Pseudomonas multiresinivorans
strain ATCC 700690) had the opposite pattern (Figures 3B and 4).
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Figure 4. Neighbor-joining phylogenetic analysis of 16S rRNA genes from 18 OTUs showing an increase in abundance
when grown with isoprene and eight isoprene-degrading isolates (in blue), aligned with their closest relatives. This analysis
involved 402 positions, sum of branch length = 1.66. Bootstrap values greater than 80% are displayed. Bar charts on the
right show the relative abundance of OTUs for the indicated treatments (pre-enrichment: soil samples before incubation
with isoprene, post enrichment: soil samples after incubation with isoprene). Percentage values on the right show the mean
relative abundance of OTUs in all post isoprene enrichments.

Many of these genera have typically been found to increase in isoprene-enriched
soils or have been recognised as isoprene degraders, such as Rhodococcus, Comamonas
and Pseudomonas [17,20,21,54,56]. In contrast, Acinetobacter has not been shown to have
an isoprene-degrading capacity, although it is a widespread genus with broad catabolic
capabilities, including the capacity to grow on short-chain alkanes [57] and alkenes [58].
OTU6, which became most abundant after isoprene enrichment, was identical in 16S rRNA
gene sequence to the diesel-degrading Acinetobacter oleivorans strain DR1 isolated from
a rice paddy field in South Korea [59]. Evidence from methods such as stable-isotope
probing or cultivation is needed to confirm whether Acinetobacter species can grow with
isoprene as the sole carbon and energy source. Similarly, significant isoprene-induced
increases in the relative abundance of the common soil bacterial genus Edaphobacter, one
of the most abundant Acidobacteria in soil, which plays an important role in forestry and
agriculture [60], merit further investigation. These results are indicative of potentially
novel isoprene-degrading taxa.
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3.3. Isoprene-Degrading Bacteria Isolated from Soil Samples

Bacterial isolates were obtained from isoprene-enriched soils associated with wild
Himalayan cherry, wild oak, sugar cane and oil palm. Eight isolates were cultured in
media supplemented with isoprene, and all could use isoprene as the sole source of carbon
and energy, demonstrated by simultaneous growth (compared with bacteria incubated in
minimal medium without isoprene (Anova; p < 0.05)), and isoprene degradation (compared
with uninoculated controls (Anova; p < 0.01)) (Figure 5). They grew to a far higher cell
density when supplied with other carbon and energy sources in the form of glucose and
yeast extract, but still degraded isoprene at similar rates to when isoprene was the only
source of carbon and energy (except for the Ochrobactrum strain 17f; Figure 5).Microorganisms 2021, 9, 1024 11 of 15 
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Figure 5. Growth and isoprene degradation by bacteria isolated from soil samples (A–H show data from eight different
isolates). The growth of isolates, measured by OD600, is shown for: minimal medium only (grey bars, scale exaggerated
10-fold), minimal medium with isoprene (orange bars, scale exaggerated 10-fold) and glucose/yeast medium with isoprene
(blue bars). Isoprene was supplied at 7.2 × 105 ppbv). Degradation is shown by the percentage of isoprene remaining in
cultures grown in minimal medium supplied with isoprene (orange lines) and glucose/yeast medium with isoprene (blue
lines). n = 3. Error bars show ±SD.
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Analysis of 16S rRNA gene sequences revealed that the isolates belong to various
genera (Figure 4; Supplementary Table S2), some of which are known to have species that
can degrade isoprene, i.e., Arthrobacter, Bacillus and Klebsiella [16]. Other isolates are the first
of their genus to be described as isoprene degraders, i.e., Ochrobactrum (belonging to the
Alphaproteobacteria) and Friedmanniella, Isoptericola and Cellulosimicrobium (all belonging
to the Actinobacteria) (Figure 4). Seven isolates had >98.7% 16S rRNA gene sequence
similarities to the type strains within the respective genera, but strain 39f had only 95.8%
identity to Friedmanniella spumicola strain Ben 107 (Supplementary Table S2). Figure 4 also
highlights that the isoprene-degrading isolates were mostly from different genera to those
whose increase in relative abundance was determined by cultivation-independent methods,
with the exception of Bacillus.

4. Conclusions

In this study, the isoprene-degrading ability of soil bacteria associated with tropical
plant species, which are important in forestry and agriculture, was investigated. Microbial
degradation of isoprene was found in soils associated with all plant species examined.
These results suggest a widespread potential for isoprene degradation in tropical soils.
Eight bacterial isolates obtained from the soil samples associated with both crop plants and
forest framework trees were able to use isoprene as the sole source of carbon and energy.
This provides a number of novel isoprene-degrading strains associated with tropical plant
species with which to study the mechanisms and regulation of isoprene degradation by
bacteria and determine their potential for cycling isoprene in tropical environments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms9051024/s1, Table S1: Soil type and mean values of temperature, moisture and
pH, n = 5; Table S2: Identification of isoprene-degrading isolates based on partial 16S rRNA gene
sequence analysis.
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