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Tuberculosis (TB) remains a serious global public health problem that results in up to 2 million deaths each year. TB is caused by
the human pathogen, Mycobacterium tuberculosis (Mtb), which infects primarily innate immune cells patrolling the lung. Innate
immune cells serve as barometers of the immune response against Mtb infection by determining the inflammatory milieu in the
lungs and promoting the generation of adaptive immune responses. However, innate immune cells are also potential niches for
bacterial replication and are readily manipulated by Mtb. Our understanding of the early interactions between Mtb and innate
immune cells is limited, especially in the context of human infection. This review will focus on Mtb interactions with human
macrophages, dendritic cells, neutrophils, and NK cells and detail evidence that Mtb modulation of these cells negatively impacts
Mtb-specific immune responses. Furthermore, this review will emphasize important innate immune pathways uncovered through
human immunogenetic studies. Insights into the human innate immune response to Mtb infection are necessary for providing a
rational basis for the augmentation of immune responses againstMtb infection, especially with respect to the generation of effective
anti-TB immunotherapeutics and vaccines.

1. Introduction

Infection with Mycobacterium tuberculosis (Mtb), the causa-
tive agent of tuberculosis (TB), was responsible for 1.5 million
deaths and 9 million cases of TB in 2013, according to the
World Health Organization [1]. While only 5–10% of individ-
uals infected with Mtb progress to active TB disease, approx-
imately one-third of the world population, or over 2 billion
people, are estimated to have latent Mtb infection (LTBI)
[2]. Latently infected individuals control Mtb infection and
are clinically asymptomatic but retain a significant risk of
progressing to TB by reactivation of latentMtbwhen immune
compromised [3]. This is due to the ability of Mtb to persist
within granulomatous lesions in the lungs of individuals
and the inability of host immunity to completely eradicate
mycobacteria from host tissues [4]. Granuloma formation is

initiated by Mtb-infected macrophages and continues with
the development of multinucleated giant cells (MGCs) and
lipid-filled foamy macrophages surrounded by a ring of
lymphocytes encapsulated in a fibrotic cuff [5, 6]. Although
macrophages and T cells play a central role in the formation
of the granuloma, the complete cellular composition of
the human granuloma throughout Mtb infection remains
unclarified and other cell types, including dendritic cells
(DCs), neutrophils, and B lymphocytes, are present and have
been shown to contribute to cellular recruitment and the
maturation of the granuloma [7]. Thus, granulomas are a
testament to the involvement of both innate and adaptive
immune cells in the human immune response to TB. Huge
strides have been made towards understanding the acute and
chronic T cell response to Mtb infection from studies in
animal models, but the earliest encounters between Mtb and
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the human innate immune system are incompletely under-
stood.

Investigations in animal models of TB, human clinical
and epidemiological studies on the genetics of mycobacterial
susceptibility, and in vitro work with primary human cells
strongly indicate that innate immune responses play a major
role in determining the outcome of TB by helping control
bacterial load and through shaping the nature andmagnitude
of adaptive immune responses [8–10]. While innate antimi-
crobial pathways that are activated early and throughout
infection play a role in limiting disease, myeloid cells also
serve as the primary niches for Mtb replication. Moreover,
Mtb has evolved multiple strategies to modulate innate
immune responses and prevent optimal activation of adaptive
immunity. Thus, understanding the crosstalk between innate
and adaptive immune cells in human TB is critical for iden-
tifying novel targets of immunomodulatory therapies and for
elucidating mechanisms of protective immunity. However,
innate immune responses toMtb infection in humans remain
relatively poorly understood, largely because of the inherent
difficulties in studying lung-specific immunity in humans.
This review will focus on the key innate immune cell types
implicated in the human response to Mtb, the interaction
of innate immune cells with Mtb, and their influence on
adaptive immune responses and the course of disease. We
will also review specific human immunogenetics studies
that link perturbations in innate immunity to mycobacterial
susceptibility.

2. Friendly Guardians: Innate
Immune Cells in TB

Themajor innate cell types that have been studied in humans
are macrophages, neutrophils, DCs, and natural killer (NK)
cells. Recently, other cell types not classically defined as
immune cells, such as airway epithelial cells, have been shown
to contribute to the immune response against Mtb in animal
models of TB [11] and in vitro studies with human cell lines
[12]. However, this review will focus on the roles of the
classically defined innate immune cells in human TB as these
cells serve as both the primary cellular niches for Mtb rep-
lication as well as the initial sources of immune pressure to
contain infection.

2.1. Macrophages. Alveolar macrophages are one of the first
host cell types to encounterMtb in the lungs following aerosol
transmission. While macrophages function as the first line
of defense against Mtb infection, early interactions between
macrophages and Mtb favor the bacteria. Thus, macrophages
are amajor cellular niche for bacterial replication during early
infection and serve as reservoirs for persistent bacteria within
the lung granulomas during chronic infection. In human
TB, several aspects of macrophage functions have been
investigated, including phagocytosis of bacteria, induction
of antimicrobial pathways, and responsiveness to interferon
gamma (IFN-𝛾) (Figure 1).

A number of receptors recognizing a wide variety of
mycobacterial ligands play a role in human macrophage

phagocytosis of Mtb. Collectins (e.g., surfactant proteins A
and D and mannose-binding lectin), C-type lectins (e.g.,
mannose receptor, DC-SIGN, and Dectin-1), toll-like recep-
tors (TLRs; e.g., TLR-2, TLR-4, and TLR-9), and many others
have been implicated in the recognition and uptake of myco-
bacterial glycolipids, lipoproteins, and carbohydrates [10].
Of these, the best characterized are mannose-binding lectin
(MBL) andmannose receptor (MR).MBL belongs to a family
of soluble C-type lectins, called collectins, which are involved
in the recognition and clearance of apoptotic cells via cal-
reticulin and CD91 mediated phagocytosis [13]. During
Mtb infection, MBL recognizes mannosylated lipoarabino-
mannan (ManLAM) and phosphatidylinositol mannosides
(PIMs) [10]. In addition to recognition of Mtb ligands and
phagocytosis, macrophage receptors are also involved in the
activation of specific downstream pathways. As an example,
MR, a transmembrane C-type lectin, ligatesMtb lipoarabino-
mannan and activates macrophage peroxisome proliferator
activated receptor gamma (PPAR𝛾) expression in a phosphol-
ipase A2 and TLR-2 dependent manner [14, 15]. In contrast
to the avirulent vaccine strain Mycobacterium bovis Bacillus
Calmette-Guérin (BCG), virulent Mtb activates macrophage
PPAR𝛾 and induces the production of cyclooxygenase 2
and IL-8, which regulate inflammatory responses via arachi-
donic acid metabolites and the recruitment of neutrophils,
respectively [14]. These studies suggest that the earliest Mtb
interactions with macrophages at the level of receptor-medi-
ated phagocytosis can influence the ensuing inflammatory
response. Moreover, it is likely that Mtb manipulates these
responses in order to promote its survival and dissemination.
No single receptor has been demonstrated to be essential for
macrophage phagocytosis of Mtb during human infection
and it is clear that Mtb is recognized by numerous receptors
which induces a network of coordinated receptor-mediated
signaling pathways that lead to distinct gene expression
profiles of infectedmacrophages at different stages of disease.
Studies centered on the gene expression profiles of Mtb-
infected macrophages have largely been explored in murine
cells, though a few studies have examined proinflammatory
cytokine profiles in Mtb-infected human macrophages [16,
17] as well as global gene expression after infection of in vitro
blood monocyte-derived macrophages or human monocytic
cell lines with Mtb [18–22]. These early gene profiling studies
in infected human macrophages provided evidence for the
importance of IFN-𝛾 transcription in suppressing Mtb gene
expression [17], highlighted a prominent role for IL-1𝛽 and
other proinflammatory cytokines at early and late timepoints
after infection, and showed that macrophage responses to
pathogenic mycobacteria differed from responses to infec-
tion with nonpathogenic mycobacteria [18–22]. Additionally,
transcriptional profiling studies of blood monocyte-derived
human macrophages after Mtb infection in vitro have pro-
vided corollary evidence for the importance of known factors
such as IL-12 in combating Mtb as well as new insights into
other factors not known to be important previously, including
macrophage-derived chemokine CCL22 (MDC) and macro-
phage inflammatory protein-1𝛼 (MIP-1𝛼/CCL3) [17]. Impor-
tantly, a study that examined gene expression of ex vivo
stimulated macrophages from TB patients resulted in
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Figure 1: Human alveolar macrophages possess an array of receptors to recognize M. tuberculosis (Mtb). In response to Mtb infection,
macrophages upregulate effector and signalling pathways to both prevent bacterial replication and recruit other immune cells into the site
of infection. M. tuberculosis components, including lipoarabinomannans (LAMs), lipomannans (LMs), phosphatidylinositol mannosides
(PIMs), and heat shock proteins (HSPs), are recognized by a variety of pattern recognition receptors. Following recognition of Mtb, host
effectors, such as NF-𝜅B and PPAR𝛾, are activated to upregulate antimicrobial factors.These antimicrobial peptides (e.g., LL-37) possess both
effector and signalling functions to actively interfere with bacterial replication as well as recruit and activate neutrophils, dendritic cells, and T
cells. However,Mtb interferes withmacrophage effector and signalling pathways.Most importantly,Mtb downregulatesMHCII expression on
macrophages to prevent optimal interaction with antigen specific T-cells. Furthermore, Mtb interferes with IFN𝛾 signaling, a T cell cytokine
mediator critical for upregulating the inherent antimicrobial capacity of macrophages during infection.

the association of CCL1 with TB susceptibility [23]. Studies
that investigate gene expression profiles of primary macro-
phage cells from patients with TB are limited but are required
to yield the most relevant insights into how Mtb interacts
with human macrophages in vivo. With a few exceptions, the
gene expression studies inMtb-infected humanmacrophages
and macrophage cell lines highlighted here have validated
and supplemented data derived from other mechanistic
studies in humanmonocytic cell lines andmouse cells. Much
remains unknown about the gene expression profile of Mtb-
infected primary macrophages from TB patients and studies
utilizing primary samples from TB cohorts will provide the
best insight into the human macrophage response to Mtb
infection in vivo.

Insights into the survival and replication of Mtb within
macrophage phagosomes have largely been derived from

studying murine macrophages, and studies on Mtb manip-
ulation of phagosomal function in human macrophages have
been relatively limited. Interestingly, recent studies have
examined alveolar macrophages from the bronchoalveolar
lavage (BAL) of patients coinfected with Mtb and HIV
[24, 25] and demonstrate that Mtb resides within relatively
nonacidified compartments in otherwise functionally capa-
blemacrophages.This suggests that the phagosome in human
macrophages is specifically modulated by Mtb to make it
a preferential niche and further studies will be needed to
clarifymechanisms of immune evasion that specifically target
the human macrophage phagosome. Tools developed for the
assessment of innate immune functions, including vacuole
acidification and superoxide burst, will be important in
answering questions as to why bacteria are able to replicate
within otherwise hostile environments [26, 27]. The IFN-
𝛾 pathway remains a critical pathway for resistance against
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mycobacterial infection, as highlighted by increased suscep-
tibility to mycobacterial infections in humans with genetic
impairments in the IL-12/STAT-1 pathway [8, 9, 28, 29],
though in vitro evidence indicates that IFN-𝛾 alone does not
fully limit Mtb replication in human macrophages and that
Vitamin D signaling pathways augment macrophage IFN-𝛾
responsiveness [30–37]. Vitamin D was shown to act syner-
gistically with IFN-𝛾 to augment antimycobacterial activity
in human monocytes [37]. Vitamin D treatment enhances
a variety of important downstream pathways in macropha-
ges, including autophagy, phagosomal maturation, and the
production of antimicrobial peptides [30, 35]. Additional
studies have demonstrated that the bioactive 1,25-dihy-
droxyvitamin D3 can restrict Mtb replication within infected
humanmacrophages [36] in a phosphatidylinositol 3-kinase-
dependent [34] and TLR-dependent [33] manner. Mechanis-
tically, VitaminDupregulates gene expression ofmacrophage
hCAP-18, which encodes for the antimicrobial peptide LL-
37 (cathelicidin), and LL-37 trafficking to Mtb-containing
phagosomes is purported to mediate the antimycobacterial
effects of Vitamin D [31, 32].

Mtb contains numerous pathogen associated molecular
patterns (PAMPs) that are recognized by a variety of cell sur-
face and intracellular pattern recognition receptors (PRRs)
on macrophages. Engagement of PRRs leads to activation
of antimicrobial effector functions within the macrophage.
For example, TLR2 recognizes mycobacterial mannosylated
lipoarabinomannans and engagement of this receptor-ligand
pair leads to downstream NF-𝜅B activation and inducible
nitric oxide synthase (iNOS) gene transcription [38]. NOS2
and NOS3 expression has been implicated in the production
of nitric oxide (NO) in human macrophages [39] and clear
induction of macrophage NOS2 mRNA can be seen in the
BAL of TB patients compared to healthy controls [35, 40].
In contrast to murine studies, NO seems to have limited
bactericidal or bacteriostatic effects against Mtb during in
vitro infection of human alveolar macrophages and primary
monocytes post-IFN-𝛾 treatment [39, 41], suggesting that
the critical immune responses to Mtb garnered from studies
in animal models may not be as important during human
infection. Alternatively, antimycobacterial effects of NO may
in fact occur in vivo within the lung microenvironment.

The IFN-𝛾/IL-12 axis is critical in host resistance to Mtb
in mice and in humans [42–46]. Clinical observations of
increased levels of IFN-𝛾 in the pleural fluid and BAL of
patients with confirmed pulmonary TB compared to healthy
controls suggest that IFN-𝛾 plays a prominent role in human
TB infection [47–50]. While murine macrophages acti-
vated by IFN-𝛾 alone show distinctly augmented capac-
ity for antimycobacterial functions compared to untreated
macrophages, humanmacrophages require additional factors
such as Vitamin D, in addition to IFN-𝛾, to maximize anti-
mycobacterial functions [37]. This is perhaps due to Mtb-
mediated inhibition of critical STAT1 protein-protein interac-
tions with cAMP response element binding (CREB) binding
protein [51–53], leading to hyporesponsiveness to IFN-𝛾
stimulation. Additionally, MHC class II expression, normally
upregulated after IFN-𝛾 activation of macrophages, is down-
regulated after Mtb infection of human macrophages via

decreased expression of class II transactivator (CIITA) [52,
54, 55]. This may play a role in dampening adaptive immune
responses by attenuatingT cell recognition of infectedmacro-
phages and could explain the reported defects in antigen
recognition by Mtb-specific lymphocytes in the granuloma
[56].

Overall, macrophages are clearly at least capable of
restricting Mtb bacilli given appropriate activation signals
from antigen specific T cells and the local lung microen-
vironment. However, questions remain regarding whether
effective juxtaposition of infected macrophages and activated
T cells occurs within the confines of the lung. Studies aimed
at answering basic questions about infected macrophages in
human TB, including signaling pathways subverted during
infection, the activation status of Mtb-infected human alve-
olar macrophages, and the crosstalk between macrophages
and T cells within infected lungs, are critical for developing
immunomodulatory therapies for TB.

2.2. Neutrophils. During infection, neutrophils phagocytose
bacteria discharge antimicrobial effectors from their granules
and constitute a potent population of effector cells that can
mediate both antimycobacterial activity and immunopathol-
ogy in human TB (Figure 2). This is because release of fac-
tors such as elastase, collagenase, and myeloperoxidase by
neutrophils during their respiratory burst indiscriminately
damages bacterial and host cells alike. Neutrophils are the
most abundant cell type found in the BAL and sputum of
active pulmonary TB patients and are second only to lympho-
cytes within lungs [57]. One study found an inverse corre-
lation between the development of pulmonary TB and the
number of neutrophils in peripheral blood of contacts of
active TB patients and in vitro depletion of neutrophils from
whole blood led to poor induction of antimicrobial peptides
(AMPs) and failure to restrict BCG and Mtb growth [58].
Apoptotic neutrophils and purified neutrophil granules, both
of which still contain active antimicrobial peptides, have been
demonstrated to be taken up by infected macrophages and
can lead to impairment of bacterial replication in vitro [59].

Apart from their degranulation capacity, neutrophils
have recently been implicated in a more immunoregulatory
role during Mtb infection. Interaction between programmed
death ligand 1 (PD-L1) on myeloid cells and programmed
death receptor (PD-1) on lymphocytes is thought to promote
the development of dysfunctional, or exhausted, lymphocyte
responses during chronic infections [60–62]. Recent tran-
scriptional profiling studies determined that cell surface
expression of programmed death ligand 1 (PD-L1) by neu-
trophils was primarily responsible for high levels of PD-
L1 expression in whole blood of active TB patients [63].
Another study described a 393 blood-based transcript sig-
nature that differentiated active TB infection from healthy
individuals with LTBI. From this, the authors derived an 86-
gene signature that corresponded to neutrophil expression
of type I and type II interferon inducible genes that dis-
tin-guished active TB infection from other inflammatory
conditions [64]. It will be important to extend such global
transcriptional analyses to the lung, which is the primary site
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Figure 2: Neutrophils constitute a major subset of innate immune cells in the BAL and sputum of patients with active pulmonary TB. During
infection withM. tuberculosis, neutrophils produce and secrete a variety of antimicrobial enzymes to restrict bacterial growth within infected
macrophages.These neutrophil effectors promote apoptosis of infectedmacrophages, thereby limitingMtb survival within infected host cells.
However, these enzymes alsomediate lung tissue damage and sustained, hyperactivated inflammatory response. Furthermore, transcriptional
profiling studies have demonstrated the importance of PD-L1, a cell-surface associated molecule, in modulating T cell responses during
infectionwithMtb. Additional transcriptional studies have identified a blood based IFN-inducible gene signature in neutrophils that is unique
to tuberculosis-specific immune responses.

of Mtb infection in pulmonary TB. Indeed, a recent study
utilizing biopsy samples from a variety of human tissues to
investigate the steady-state T cell compartment in different
places throughout the body demonstrated that different tissue
compartments, including the lung, contained distinct T cell
populations [65] and it is likely that the same principles apply
to innate immune populations during states of infection.
Since neutrophils comprise a significant percentage of cells
that infiltrate the lung during human TB, it will be important
to determine their roles in lung tissue and their contribution
to uncontrolled inflammation and immunopathology.

2.3. Dendritic Cells. DCs are critical cell types involved in
bridging innate and adaptive immunity. DCs are the pri-
mary antigen presenting cells that initiate adaptive immune
responses through their capacity to present antigen, their
costimulatory capacity, and secretion of T-helper polarizing
cytokines (Figure 3). In mouse models of TB, it has been
shown that DCs constitute a significant population of cells

harboringMtb in vitro and in vivo [66, 67]. However, whether
or not human DCs serve as a major cellular niche for Mtb
replication in vivo remains unclear. In vitro studies in
monocyte-derived DCs suggest low levels of bacterial repli-
cation within these DCs [68], but further studies are needed
to substantiate these observations. Monocyte-derived human
DCs express mannose receptors, CD11b, CD11c, and DC-
SIGN, all of which are capable of recognizing Mtb ligands.
Indeed, DC-SIGN has been shown to serve as a major recep-
tor for Mtb entry into DCs via recognition of ManLAM
[69]. Under homeostatic conditions, DC-SIGN functions by
binding ICAM-2 on endothelial surfaces to allow for effi-
cient DC migration. During Mtb infection, ligation of DC-
SIGN by Mtb ManLAM leads to the induction of the anti-
inflammatory cytokine IL-10, which has been implicated in
the impairment of DC maturation and expression of costim-
ulatory molecules [70]. Other studies suggest that ManLAMs
are capable of inducing a negative signal that inhibits IL-
12 production through both mannose receptor and DC-
SIGN [71]. These data suggest that Mtb may be modulating
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DC functions in order to prevent optimal induction of host
adaptive immunity.

Subversion of DC functions by Mtb represents an ideal
strategy for slow growing Mtb to evade adaptive immunity.
Manipulation of DC maturation, cytokine production, and
antigen presentation will affect the kinetics, nature, andmag-
nitude of the T cell response and can provide Mtb with time
to establish a foothold within the lungs. Studies that show
impaired ability of Mtb-infected monocyte-derived DCs to
stimulate lymphoproliferation of näıve and memory CD4s
and CD8s provide strong evidence suggesting that Mtb
infection of DCs can impair T cell responses during human
infection [72]. SinceMtb is a slow growing organism, antigen
availability, especially at the early stages of infection, may
be an additional reason for poor T cell responses. Under
homeostatic conditions, DCs are able to retain peptide-
MHC complexes at the cell surface much more efficiently
than macrophages, primarily due to the downregulation
of membrane associated RING-CH-1 protein (MARCH1),
a ubiquitin E3 ligase that helps recycle cell surface MHC
complexes [73, 74].MHC class II cycling from the phagosome
to the plasma membrane is induced by DC maturation when
TLRs first engage Mtb ligands but may occur before the
availability of loadable Mtb antigens, thereby leading to Mtb

immune evasion from CD4 T cells [75]. These data might
suggest thatMtb antigens are not properly represented during
the initiation of adaptive immune responses and may lead to
an overabundance of antigen specific T cells that are specific
for antigens that may not be relevant at different stages of
infection. It has been previously shown that BCG vaccination
fails to elicit human T cell responses to latency associated
Mtb antigens [76] and vaccination strategies implementing
latency associated antigens have shown some promise in
the mouse model [77]. The DC plays a central role in the
presentation of any Mtb antigen throughout infection and
future studies must look to the DC in order to understand
why certain antigens are under or nonrepresented at the T
cell level. Many questions remain regarding the mechanisms
that Mtb employs to manipulate DCs and the subsequent
consequences of that manipulation on the nature, kinetics,
and magnitude of the adaptive immune response. Studies in
humans will remain limited as DCs are poorly represented
in BAL, and peripheral blood derived DCs may not be
representative of DCs found in the lungs. Nevertheless, it
will be important to pursue mechanistic studies on lung DC
biology during Mtb infection in humans as well as in animal
models of TB, including in mice and nonhuman primates
where immunological reagents are readily available.
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Figure 4: Natural killer (NK) cells have the capacity to restrictM. tuberculosis replication through the production of solublemediators such as
GM-CSF, IL-12, TNF-𝛼, IL-22, and IFN-𝛾. These upregulate the antimicrobial function of infected macrophages and activate antigen-specific
T cell responses duringM. tuberculosis infection. NK cell-derived antimicrobial factors such as granulysin and perforin indirectly restrictMtb
growth via the lysis of infected host cells. Several studies suggest that NK cells directly recognizeMtb-derivedmycolic acids via NKp44. Aside
from direct recognition of Mtb ligands, NKp30 and NKp46 recognize a variety of stress molecules upregulated on the surface of infected host
cells.

2.4. Natural Killer Cells. Natural killer (NK) cells are granular
innate lymphocytes possessing potent cytolytic capacity. NK
cells act early during infection, are not MHC-restricted,
and depend upon licensing based on engagement of various
activating receptors found on their cell surface by ligands
upregulated by stressed or infected target cells (Figure 4).
Various Mtb cell wall components, such as mycolic acids,
are direct ligands for the natural cytotoxicity receptor (NCR)
NKp44 on NK cells [78], and human NK cells exhibit the
capacity to lyse Mtb-infected macrophages in vitro [79, 80].
Additionally, NK cells can also produce IFN-𝛾 and IL-22,
which can inhibit intracellular growth of Mtb in vitro by
enhancing phagolysosomal fusion [81], or can promote the
production of IFN-𝛾 from CD8 T cells by stimulating IL-15
and IL-18 production from Mtb-infected monocytes in vitro
[82].

Studies on the functionality of NK cells in human TB
are limited, but there are indications that NK cells may be
functionally impaired during TB. Patients newly diagnosed
with pulmonary TB display decreased frequencies of NK
cell subsets, coinciding with lowered expression of NKp30,
NKp46, and IFN-𝛾 [83]. Anti-TB treatment regimens leading
to reductions in mycobacterial load have been shown to par-
tially restore cytolytic capabilities of NK cells [84]. Further-
more, NK cells in patients with tuberculous pleurisy express
high levels of ICAM-1 [85], important for the establishment
of the immunological synapse, chemokine receptors, and
TLR expression [86], and are able to activate autologous
lymphocytes under ex vivo conditions [85].

In addition to direct killing, NK cells can also promote 𝛾𝛿
T cell proliferation via CD54, TNF𝛼, GM-CSF, and IL-12 [87]
and, upon recognition of an NK ligand, ULBP1 can restrict
the expansion of regulatory T cells in an NKG2D/NKp46
dependent manner [88]. These cells are sensitive to the
local microenvironment and monocyte produced IL-10 has
been shown to impair NK cell lytic capacity and decrease
expression of activating NK cell receptors [89]. Very little is
known about NK cells in human TB, but evidence suggests
that they play a role in restricting bacterial growth indirectly,
via promotion of CD8 [82] and 𝛾𝛿 T cell responses [87],
and directly, via killing of Mtb-infected monocytes and
macrophages [79, 80].

The success of Mtb infection likely hinges upon its early
interactions with cells of the innate immune system. Macro-
phages and neutrophils can take up and kill bacteria but
can be subverted by Mtb to promote chronic inflammatory
conditions harmful to the lung. Additionally, DCs are central
to the generation of Mtb-specific T cells that can bolster
immunity but are manipulated to establish poor or mis-
directed T cell responses. NK cells are capable of directly
and indirectly promoting killing of Mtb, but their functional
capacity is diminished and little is known about howwell they
are activated during infection. Each cell type has distinct roles
to play in defending the host against Mtb, but they are also
readily coopted into helping Mtb establish a long term infec-
tion.The difficulties of in vivo and lung in situ human studies
are major roadblocks towards the understanding of innate
immune responses during Mtb infection, but population
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based immunogenetics studies can offer important insights
into innate immune pathways critical for antimycobacterial
immunity.

3. Human Innate Immunogenetics and
Mycobacterial Susceptibility

Historically, our knowledge regarding human innate and
adaptive immune pathways involved during Mtb infection
stems from clinical observations in patients suffering from
Mendelian Susceptibility toMycobacterial Diseases (MSMD)
and then validated inmurinemodels of TB. Patients suffering
from MSMD have genetic polymorphisms that predispose
them to infections with various environmental mycobacteria
as well as infection with classically avirulent mycobacteria
such as BCG, though a significant portion of MSMD patients
also suffer from disseminated TB [44]. The importance of
innate immunity in combating mycobacterial infections is
highlighted in patients with mutations in two innate immune
autosomal genes (IL12B and IL12R𝛽1), who suffer widespread
and recurrentmycobacterial infections early in life [8, 28, 29].
Fortunately, individuals with polymorphisms in the IL-12
locus can receive treatment with exogenous IL-12 and are
less likely to suffer from fatal infections, highlighting a role
for macrophage and/or DC-derived IL-12 in the generation
of IFN-𝛾 responses that control infection [9]. Mutations
in IL12R𝛽1 are among the most common genetic factors
associated with MSMD resulting in susceptibility to primary
mycobacterial infections [8, 28]. However, BCG vaccination
of these individuals can confer resistance, which indicates
that IL-12 signaling, and IFN-𝛾 responses dependent on IL-12,
may not be completely required for secondary immunity [8,
28]. Additionally, mutations in the leucine zipper domain of
NF-𝜅B essential modulator (NEMO, also known as inhibitor
of NF-𝜅B kinase subunit gamma or IKK-𝛾), encoding an
intracellular protein involved in the activation of the NF-𝜅B
pathway, has been demonstrated to predispose individuals
to recurrent mycobacterial infections due to a lack of IL-12
production from monocytes and DCs [90].

Immunogenetics studies have also implicated other
innate pathways, especially those related to pathogen sensing
or cytokine and chemokine production, in immunity to
mycobacterial infection. Polymorphisms in TLR2, TLR9 [91],
TLR1 [92], TLR8 [93], and the intracellular signaling mole-
cule TIRAP [94] have all been associated with susceptibility
to mycobacterial infection. The mechanisms for the asso-
ciation between TLR and mycobacterial infection are still
unclear and studies in the murine model of TB seem to
indicate redundant roles for TLRs and TLR-associated mole-
cules such as MyD88 in the generation of adaptive immune
responses to Mtb [95–100]. Aside from PRRs, individuals
with mutations in the inflammasome pathway have provided
insight into the regulatory role of the inflammasome during
mycobacterial infection. A gain of function gene variant
in caspase-1 coupled with a loss of function for inhibitory
caspase recruitment domain familymember 8 (CARD8) pro-
motes inflammatory diseases such as rheumatoid arthritis,

but macrophages isolated from these individuals are more
efficient at restricting Mtb growth in vitro [101]. Polymor-
phisms in the Il1 gene cluster and macrophage chemoat-
tractant protein 1 (MCP-1) also predispose individuals to
TB, presumably due to an inadequate inflammatory response
against infection [102–104]. Indeed, IL-1 responses in humans
seem to be linked to higher eicosanoid induction that cur-
tails excessive inflammation promoted by type I IFNs [105].
Collectively, these data suggest that the inflammasome path-
way, and IL-1 in particular, may be critical in promoting
enhanced immunity against Mtb in humans. In another
example, a population with low serum levels of Vitamin D3
metabolites displayed increased susceptibility to active TB
[106], validating in vitro results from human primary cells.
These examples highlight the idea that immunogenetic stud-
ies on a population level are important parallel approaches
that strengthen in vitro derived results in elucidating genes
important in immunity against Mtb.

Human immunogenetic studies provide an attractive
avenue for the validation of several mechanisms of resistance
against Mtb observed in animal models of TB and can
complement observations from in vitro human cells, but the
innate immune response against pathogens, especially one
as complex as Mtb, is multigenic and very complex. It will
be interesting, and potentially very rewarding, to examine
innate immune genes in studies examining individuals who
are highly exposed to Mtb but who do not progress to
active TB disease. This relatively resistant population, for
example, health care workers in high-burden TB settings,
should provide important clues to how the innate immune
response may successfully handle Mtb infection.

4. Perspectives and Conclusions

Innate immunity is a crucial component of the immune
response against Mtb but has received relatively little atten-
tion in studies of human TB. While myeloid cells serve as
niches for bacterial replication, innate antimicrobial path-
ways activated early and throughout infection play a role in
limiting disease and serve as potent regulators of antigen-
specific adaptive immunity. TB disease results when patho-
logical responses that promote chronic inflammation and
lung damage dominate over protective responses that limit
disease and eliminate bacteria. There is growing evidence
indicating that innate immune cells are uniquely posi-
tioned to determine that balance between protective and
pathogenic immune responses in human TB. However, Mtb
employs myriad potent mechanisms for evading antimicro-
bial responses and subverting the innate immune crosstalk
with adaptive immunity, thereby tilting the balance towards
pathological rather than protective immune responses. Fur-
ther study of human innate immune pathways during Mtb
infection will be important for developing host-directed
immunomodulatory therapies for TB. Further, a greater
understanding of how innate immune responses impact
adaptive immunity is critical for designing efficacious TB
vaccines.
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