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Abstract: Background: In recent years, trace elements (TEs) have gained considerable attention in
the course of treatment and diagnosis of ischemic stroke. The purpose of the conducted research was
to determine the trace mineral status (Se, Cu, Zn, Cu/Zn ratio, and Cu/Se ratio) in patients with
acute ischemic stroke compared to the population of healthy people in the northeastern region of
Poland. Materials and methods: 141 patients with acute ischemic stroke (AIS) and 69 healthy control
subjects were examined. The serum concentrations of mineral components were assessed by the
atomic absorption spectrometry method. Clinical parameters were updated based on medical records.
Results: The serum Se and Zn concentrations were significantly decreased (p < 0.0001; p < 0.0001)
in patients with AIS compared with healthy control subjects. However, no significant differences
were revealed in terms of the serum Cu concentration (p = 0.283). As expected, we found that the
serum Cu/Zn and Cu/Se molar ratios were significantly higher (p = 0.001; p < 0.0001) in patients
with AIS compared with healthy control subjects. Conclusions: Disturbed metal homeostasis is a
significant contributor to AIS pathogenesis. Furthermore, marked disruption of the serum Cu/Zn
and Cu/Se molar ratios could serve as a valuable indicator of AIS patients’ nutritional status and
oxidative stress levels.

Keywords: trace elements; ischemic stroke; selenium; zinc; copper; Cu/Zn molar ratio; Cu/Se molar
ratio; antioxidants

1. Introduction

Stroke is the second leading cause of death worldwide, following only ischemic heart
disease, and is one of the main causes of long-term disability across the globe, with its
impact ever increasing [1–3]. According to a European report in 2017 [4], the incidence rate
for all strokes in Poland was 112/100,000 population, with mortality rates of 69.3/100,000.
In recent years, trace elements (TEs) have gained considerable attention in the treatment
and diagnosis of ischemic stroke. TEs are essential for maintaining human health due to
their involvement in numerous signaling pathways and metabolic processes [5]. Some
studies have shown that TE deficiencies in ischemic stroke occur more commonly than
previously suspected [6–17].

Zinc (Zn) and copper (Cu) are the most common metals in the human body, with
relatively large amounts found in the brain. While their functions in the inflammation
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process are yet to be fully explored, it has been shown that they are essential in controlling
the synthesis of free oxygen radicals because of their involvement in antioxidant stress
modulation. Zn has many known functions and its prevention of free radicals has been
the focus of numerous studies [18–20]. It is thought that an elevated fraction of free cooper
in serum may be harmful due to its significant oxidation–reduction potential through the
generation of reactive oxygen species in Fenton and Haber–Weiss type reactions [21]. They
are essential to the operating of the immune system and proper functioning of a variety of
physiological and biochemical processes [22,23]. Apart from being a cofactor for numerous
enzymes, they play the key role in the development and functioning of the central nervous
system [24–26]. Disturbed homeostasis and distribution of TEs related to anti-oxidant, anti-
inflammatory, and apoptotic effects seem to be connected with neurodegenerative diseases
and aging [27]. Disturbances in Cu homeostasis lead to impaired neuronal function and
neurological diseases, including Alzheimer’s disease and Wilson’s disease [21]. Recent
observation has suggested that Zn deficiency might contribute to the accumulation of
senescent cells and to vascular pathology as well as ischemic stroke [28].

Selenium (Se) is an essential mineral that is critically involved in immunogenic, anticar-
cinogenic, and antimutagenic processes, including cell proliferation control and anti-aging
activities. Se and many selenoproteins, as components of the antioxidant system, may
exhibit neuroprotective properties [14,29,30]. The up-to-date human data have suggested
that stroke is connected with considerably decreased Se levels, thus some studies have
indicated the importance of preventing Se deficiencies in patients with risk factors for
cardiovascular diseases, including ischemic stroke [14,31,32].

Antioxidants, including enzymatic cofactors such as Zn, Cu, and Se, may serve as
indicators showing oxidative stress defense [33–35]. Collecting data on Se, Zn, and Cu in
stroke pathophysiology is still a challenge. Analysis of various biomarkers with prognostic
value can provide a potential treatment. The objective of this study was to assess the
trace mineral status (Se, Cu, Zn, Cu/Zn ratio, and Cu/Se ratio) in patients with acute
ischemic stroke compared to a population of healthy people in the northeastern region of
Poland and the correlations between TEs and the patients’ clinical data. As far as we are
aware, this is the first study investigating the trace mineral status in patients with AIS in a
Polish population.

2. Materials and Methods

This clinical study was conducted between January 2019 and November 2020 in the
Department of Neurology, Medical University of Bialystok (UMB). We enrolled 141 con-
secutive AIS patients (60 patients with AIS treated with intravenous thrombolysis and/or
mechanical thrombectomy and 81 patients who had undergone conservative treatment).

Inclusion criteria included: age 18–85 years, hospitalization up to 24 h following
the presence of neurological symptoms; neuroimaging: computed tomography (CT) and
magnetic resonance imaging (MRI) to determine the size of the infarction and exclude
intracranial and subarachnoid hemorrhage stroke and tumors. All participants were
recruited 3–5 days following symptom onset.

The exclusion criteria were: recent history (<4 weeks) of myocardial infarction and
acute surgery, trauma; previous stroke; acute inflammatory and infectious diseases during
last month; autoimmune diseases (rheumatic disease) [36,37], advanced heart failure,
chronic kidney disease stage 5, and/or liver insufficiency; active malignant cancer; recent
(up to 3 months before hospitalization) intake of mineral supplements.

The 69 healthy control subjects without stroke and chronic cerebrovascular diseases
were recruited among volunteers from the general population who applied to the Depart-
ment of Bromatology, UMB.

The demographic, clinical, cardiovascular risk factors (arterial hypertension, smoking
status, diabetes, alcohol abuse, dyslipidemia, previous heart diseases, atrium fibrillation,
and history of prior stroke), medication history, and laboratory data were analyzed. The
neurological condition was assessed using the National Institutes of Health Stroke Scale
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(NIHSS) at admission and discharge [38] and the modified Rankin Scale (mRS) [39] at
discharge. The etiology of ischemic stroke was defined in line with the TOAST (Trial of Org
10,172 in Acute Stroke Treatment) [40] classification based on neurologic examination and
CT or MRI of the brain, the results of external B-mode ultrasound carotid imaging, head
and/or neck CT angiography, 12-channel ECG, and echocardiography. Body mass index
(BMI) was defined as weight in kilograms (kg) divided by height in meters squared (m2).

The protocol of the study was accepted by the Ethics Committee of the Medical
University of Bialystok (R-I-002/276/2018). Written informed consent was collected from
all study participants or next of kin prior to the collection of blood samples. Clinical
parameters were updated based on medical records.

2.1. Blood Sample Collection and Analysis

Blood samples (5 mL) were obtained from all study participants with the use of
vacutainer system test tubes with a clot activator. The samples were drawn once: within 3
to 5 days after the onset of neurological symptoms. The samples were then centrifuged at
2500 rpm for 15 min at room temperature to separate the serum. The serum samples were
aliquoted into microtubes and stored at −80 ◦C prior to being inspected for determination
of Cu, Zn, and Se at the Department of Bromatology, UMB. All reagents and chemicals
used in the study were presented at an analytical grade for spectral analysis.

To determine the concentration of Cu and Zn, serum samples were deproteinized
with 1 mol/L Nitric acid prepared from 69% Suprapur®, Merck, Darmstadt, Germany.
Next, 1% Triton™ X-100, Sigma-Aldrich, St. Louis, MO, USA, was included as a surfactant,
and the samples were centrifuged at 2000 rpm for 10 min. The concentration of Zn was
calculated in the supernatant. In the case of Cu, the samples were diluted with 0.1 mol/L
nitric acid. To determine Se concentration, serum samples were directly diluted with 0.2%
Triton X-100. Standard solutions of Cu, Zn, and Se for calibration curves were prepared
from concentration 1000 mg/L, Merck, Darmstadt, Germany. In order to eliminate any
dust particles, all plastic materials (tubes, pipette tips) were washed in 5% nitric acid for
24 h, then they were washed 3 times with distilled water and 6 times with ultrapure water
and dried at 50 ◦C.

The concentration of Zn was determined by atomic absorption spectrometry with air-
acetylene flame atomization, with Zeeman background correction. Wavelength: 213.9 nm,
slit width (nm): 1.3, lamp current (mA): 5.0. Concentrations of the standard solutions for
the calibration curve: 0.5, 1.0, and 1.5 mg/L. The concentration of Cu was determined
by atomic absorption spectrometry with electrothermal atomization, with Zeeman back-
ground correction. Wavelength: 324.8 nm, slit width (nm): 1.3, lamp current (mA): 7.5.
Concentrations of the standard solutions for the calibration curve: 10, 20, and 40 µg/L.
Analytical conditions: dry (start temp./end temp.): 80/140 ◦C, ramp time: 40 s; ash:
800/800 ◦C, ramp time: 20 s; atomize: 2400/2400 ◦C, hold time: 5 s; clean: 2500/2500,
hold time: 4 s. The concentration of Se was determined by atomic absorption spectrom-
etry with electrothermal atomization, with Zeeman background correction and using a
palladium–magnesium matrix modifier—Pd: 1500 ppm and Mg: 900 ppm (palladium
matrix modifier, Merck, Darmstadt, Germany, magnesium nitrate, Sigma-Aldrich, St. Louis,
MO, USA). Wavelength: 196 nm, slit width (nm): 1.3, lamp current (mA): 12.5. Analytical
conditions: dry (start temp./end temp.): 80/140 ◦C, ramp time: 40 s; ash: 900/900 ◦C,
ramp time: 30 s; atomize: 2500/2500 ◦C, hold time: 5 s; clean: 2700/2700, hold time: 4 s.
Concentrations of the standard solutions for the calibration curve: 10, 25, and 50 µg/L. In
each case, mono-element lamps were used.

Certified reference material of human serum (Seronorm Trace Elements, Serum L-1,
SeroA, Billingstad, Norway) was used to investigate the reliability of this approach. The
findings of the quality control analyses were equivalent to the reference values.

The accuracy of the method was 1.7%, 1.3%, and 1.4% and the coefficient of variation
was 3.9%, 2.5%, 2.7% for Se, Cu, and Zn, respectively. The detection limit of the methods
was 1.71 µg/L, 0.00058 mg/L, and 0.011 mg/L for Se, Cu, and Zn, respectively. The bio-
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chemical assays were conducted in accordance with the standard protocols, and the values
of Zn and Cu are presented in mg/L and for Se in µg/L.

The Department of Bromatology of UMB participates in the trace elements analysis
quality control program supervised by the National Institute of Public Health, the National
Institute of Hygiene, and the Institute of Chemistry and Nuclear Physics. Cu, Zn, and Se
concentrations, after calculation in mmol/L, were used to indicate the metal dyshome-
ostasis by evaluating the Cu to Zn ratio and the Cu to Se ratio. The concentration of
mineral components in the serum and molar ratio between Cu and Zn and Cu and Se were
estimated and compared among patients with AIS and the control group. Plasma selenium
and copper were acknowledged as reliable biomarkers for chronic selenium or copper
exposure [6]. Additionally, selected plasma levels of basic biochemical parameters were
determined in the accredited Biochemical Clinical Laboratory of the University Clinical
Hospital in Bialystok. The levels of the measured parameters were contrasted with the
reference values of this laboratory.

Each patient had a fasting lipid profile, comprising total cholesterol (TC), triglycerides
(TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein (LDL-C)
values. Serum lipid concentrations were measured by enzymatic methods. Concentrations
are represented in mg/dL.

2.2. Statistical Analysis

Statistical analyses were performed using IBM SPSS Statistics 27.0 [41] and R software
4.0.3 [42]. The normality of the distribution of quantitative variables was assessed using the
Shapiro–Wilk test. Due to statistically significant deviations from the normal distribution
of most variables, nonparametric methods were used in the analysis. The two groups were
compared using the Mann–Whitney test. In the case of comparing more subgroups, the
Kruskal–Wallis test was applied, and when significant differences were found, tests for
all pairs according to Dwass–Steele–Critchlow–Fligner were performed [43]. Correlations
between the pairs of quantitative variables were assessed using the Spearman’s rank-order
correlation. Dependencies between qualitative variables were tested using Pearson’s χ2

independence tests. Statistical hypotheses were verified at α = 0.05 significance level.

3. Results

We studied 141 consecutive patients with AIS (including 60 patients undergoing
interventional management and 81 patients with conservative treatment) and 69 healthy
control subjects.

Arterial hypertension was found in over 90% of patients with AIS. More than 81%
of patients with AIS had abnormal findings on extracranial carotid sonography (carotid
intima-media thickness (CIMT) protrusion of >1.5 mm into the lumen or a focal intimal
medial thickening of larger than 50% of the area surrounding the vessel). According to
the clinical data, brain lesions more commonly occurred in the left hemisphere (54% of
AIS patients) than in the right hemisphere. No statistical differences between patients and
control subjects concerning male and female distributions were observed (p = 0.251). The
baseline general demographic characteristics, biochemical values, and the serum levels
of Se, Cu, Zn, and Cu/Zn and Cu/Se molar ratios in the patients with AIS and control
subjects are presented in Tables 1 and 2.
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Table 1. Demographic data and biochemical values of study population.

Clinical Parameters AIS (n = 141) Controls (n = 69) p *

Gender [M n(%) / F n(%)] 67 (47.5%) / 74 (52.5%) 27 (39.1%) / 42
(60.9%) 0.251

Age (years) median (Q1-Q3) 70 (63–79.5) 55 (38.5–65.5) <0.05
BMI (Kg/M2) median (Q1-Q3) 26.83 (24.23–30.08) 27.19 (23.26–29.10) 0.519

Total cholesterol (TC) (mg/dL) median (Q1-Q3) 179 (143–212)
Triglyceride (TG) (mg/dL) median (Q1-Q3) 104 (79.75–135.25)
Low-density lipoprotein cholesterol (LDL-C)

(mg/dL) median (Q1-Q3) 119 (87.25–154.5)

High-density lipoprotein cholesterol (HDL-C)
(mg/dL) median (Q1-Q3) 45 (38–54.75)

Hypertensives n (%) 127 (90.1%)
Diabetic subjects n (%) 45 (31.9%)

Smokers n (%) 62 (44%)
Obese n (%) BMI >= 25 97 (69%) 32 (46%)

CRP (mg/L) median (Q1-Q3) 2.9 (1.5–6.3)
Brain lesion size (mm2) median (Q1-Q3) 445 (170–923)

Lesion location (R n(%) /L n(%) hemisphere) 65 (46.1%)/ 76 (53.9%)
NIHSS on admission median (Q1-Q3) 8 (6–12)
NIHSS at discharge median (Q1-Q3) 2 (1–5)

MRS scale median (Q1-Q3) 2 (1–3)
HbA1c (%) median (Q1-Q3) 5.9 (5.6–6.5)

Creatinine (mg/dL) median (Q1-Q3) 0.86 (0.73–1.03)
Highly sensitive troponin (ng/l) median (Q1-Q3) 5 (5–13.25)

Fibrinogen (mg/dL) median (Q1-Q3) 375 (325.5–438)
D-dimer (µg/mL) median (Q1-Q3) 0.86 (0.42–1.425)

Ejection fraction (EF %) median (Q1-Q3) 56 (52–58)
Intervention treatment (T ± MT) n (%) 60 (42%)

Trombolysis (T) n(%) 48 (34%)
Mechanical thrombectomy (MT) n(%) 24 (17%)

Hyperlipidemia n(%) 102 (72.9%)
Atrial fibrillation n(%) 45 (31.9%)
Carotid atherosclerosis 115 (81.6%)

>30% stenosis n (%) 30 (21.3%)
TOAST classification 141 (100%)

LVD n(%) 42 (29.8%)
SVD n(%) 47 (33.3%)
CE n(%) 52 (36.9%)

Abbreviations: BMI, Body Mass Index. n, Number. M, Male. F, Female. R, Right. L, Left. LVD, Large-vessel disease. SVD, Small-
vessel disease. CE, Cardioembolic. Descriptive statistics are presented as number (percentage) for categorical variables and median (1st
quartile-3rd quartile) for quantitative variables. * p-value of Mann-Whitney test.

We found positive correlations between the concentrations of Cu and the Cu/Zn,
Cu/Se ratios (r = 0.53, p < 0.001; r = 0.61, p < 0.001), as well as the Se and Zn concentrations
(r = 0.43, p < 0.001) and Cu/Zn and Cu/Se molar ratios (r = 0.60; p < 0.001) in patients
with AIS. Age was positively related to the Cu/Se molar levels and negatively to Se
concentrations in patients with AIS (r = 0.27; p = 0.001, r = −0.32; p < 0.001, respectively).
We observed negative correlations in patients with AIS between concentrations of Zn,
Se, and the Cu/Zn molar ratio (r = −0.71, p < 0.001; r = −0.34, p = 0.001, respectively),
as well as Zn, Se, and the Cu/Se molar ratio (r = −0.25, p = 0.003; r = −0.73, p < 0.001,
respectively) (Figure 1). The significant negative correlations were observed between the
BMI index and Cu, Cu/Zn ratio, and Cu/Se ratio in the patients with AIS (p = 0.048,
p = 0.048, p = 0.018, respectively).
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Table 2. Trace elements status of the study population.

AIS Controls p *

Se [µg/L]

Total 57.69 (44.13–70.95) 75.48 (66.33–92.67) <0.001
Males 59.71 (42.04–73.14) 75.48 (61.23–99.3)

Females 55.65 (44.39–67.98) 75.15 (69.66–87.02)
p ** 0.730 0.931

Zn [mg/L]

Total 0.62 (0.51–0.73) 0.79 (0.71–0.89) <0.001
Males 0.65 (0.51–0.73) 0.76 (0.69–0.88)

Females 0.59 (0.51–0.73) 0.79 (0.72–0.90)
p ** 0.573 0.658

Cu [mg/L]

Total 0.99 (0.82–1.12) 0.97 (0.86–1.24) 0.283
Males 0.97 (0.8–1.11) 0.86 (0.78–1.11)

Females 1.01 (0.84–1.14) 1.06 (0.91–1.29)
p ** 0.245 0.008

Cu/Zn molar ratio ***

Total 1.68 (1.22–2.09) 1.34 (1.08–1.66) <0.001
Males 1.61 (1.22–2.06) 1.19 (1.01–1.41)

Females 1.74 (1.20–2.20) 1.46 (1.14–1.76)
p ** 0.485 0.022

Cu/Se molar ratio ***

Total 21.97 (15.24–29.97) 16.40 (13.73–20.95) <0.001
Males 21.45 (15.17–28.28) 13.88 (12.07–20.76)

Females 22.33 (15.19–31.25) 17.12 (14.94–21.29)
p ** 0.395 0.037

Abbreviations: AIS, patients with acute ischemic stroke. Se, Selenium. Cu, Copper. Zn, Zinc. M, Male. F, Female. Descriptive statistics
are presented as median (1st quartile-3rd quartile). Normal range Trace Elements [44]: Se (66–104 µg/L), Zn (0.7–1.3 mg/L), Cu (0.7–1.6
mg/L). * comparison of AIS vs Controls, Mann-Whitney test. ** comparison of Males vs Females, Mann-Whitney test. *** population-based
reference values have not yet been established.
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The following correlations were observed: a positive correlation between brain lesion
size in neuroimaging (CT/MR) with Cu, Cu/Zn molar ratio (Figure 2), but negative
correlation with Zn concentration in patients with AIS (r = 0.19, p = 0.0033; r = 0.35
p < 0.001; r = −0.22, p = 0.011 respectively). The obtained data indicated statistically
significant correlations between the Cu/Zn molar ratio and the NIH value on admission
(r = 0.21, p = 0.014) (Figure 3), and between Zn and NIHSS level on admission (r = −0.21,
p = 0.015).
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Furthermore, we noticed a strong correlation between brain lesion size and NIHSS on
admission (r = 0.70, p < 0.001). The Cu/Zn ratio increased as the severity of neurological
manifestations (NIHSS) progressed with no significant correlation in patients’ functional
status at discharge evaluated by the MRS (p = 0.208). We observed that higher Cu serum
levels and Cu/Zn (Figure 4A) and Cu/Se molar ratios (Figure 4B) were associated with
elevated CRP values (r = 0.28, p = 0.006; r = 0.24, p = 0.018; r = 0.24, p = 0.004, respectively).
The results confirmed two associations concerning TG and Se concentrations (r = 0.18,
p = 0.032) and TC and Se concentrations (r = 0.22, p = 0.008).
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Figure 4. Correlation between Cu/Zn (A) and Cu/Se (B) molar ratio levels and CRP serum values (mg/L) in patients with
acute ischemic stroke (AIS). Abbreviations: Cu, Copper. Zn, Zinc. Se, Selenium. CRP, C-reactive protein.

We also evaluated the associations of plasma metal concentrations with traditional
stroke risk factors. Statistically higher values of Cu/Zn molar ratios were observed in
patients with AIS and atrial fibrillation (Me: 1.86, IQR: 1.11 vs. Me: 1.55, IQR: 0.76,
respectively) (p = 0.006). The prevalence of diabetes mellitus type 2 was associated with
lower values of Cu/Zn molar ratios (Me: 1.42, IQR: 0.84 vs. Me: 1.74, IQR: 0.96, respectively)
(p = 0.037) and higher Zn concentrations (p = 0.006). A difference was identified in serum
concentrations of Cu/Se ratio and Se with reference to the occurrence of hyperlipidemia
(p = 0.017; p = 0.022). The statistically significant differences were observed in Cu/Zn and
Cu/Se molar ratios in relation to the TOAST classification, and between the SVD and CE
etiologies of ischemic stroke (p = 0.033; p = 0.026, respectively) in patients with AIS. The
CE group showed higher values both in Cu/Zn and Cu/Se molar ratios (Figure 5A,B).
There was a positive correlation between the severity of carotid arteriosclerosis and Zn
concentration in non-smoking patients (r = 0.22, p = 0.048).
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No statistically significant differences were observed in Se, Zn, Cu, and Cu/Zn and
Cu/Se molar ratios in relation to the brain lesion location or the coexistence of hyperten-
sion in patients with AIS (p > 0.05). The administered treatment (intervention therapy
compared to conservative) in patients with AIS had no impact on the concentration of
Se, Zn, Cu, and Cu/Zn and Cu/Se molar ratios (p = 0.190; p = 0.919; p = 0.198; p = 0.605,
p = 0.861 respectively).

The serum Se and Zn concentrations (µg/L, mg/L) were significantly decreased
(p < 0.0001; p < 0.0001) in patients with AIS compared with healthy control subjects. How-
ever, no significant differences were found between patients with AIS and the healthy
control subjects in relation to the serum Cu concentration (mg/L) (p = 0.283). As ex-
pected, we found that the serum Cu/Zn and Cu/Se molar ratios were significantly higher
(p = 0.001; p < 0.0001) in patients with AIS compared with healthy control subjects (Table 2).

Significant differences in Cu levels were found between men and women in the
healthy control subjects (p = 0.008). Additionally, women in the healthy control subjects
were characterized by significantly higher Cu/Zn and Cu/Se molar ratios levels compared
to men (p = 0.022; p = 0.037, respectively) (Table 2). Interestingly, the analysis showed
positive correlations between the concentrations of Cu and the Cu/Zn ratio, Cu/Se ratio,
and Se concentrations (r = 0.79, p = <0.001; r = 0.75, p = <0.001; r = 0.24; p = 0.049), as well as
between the Cu/Se and Cu/Zn molar ratios (r = 0.67; p < 0.001) in healthy control subjects.
We observed negative correlations in healthy control subjects between concentrations of
Zn and Cu/Zn ratio (r = −0.45, p < 0.001) and Se and Cu/Se ratio (r = −0.40, p = 0.001).
We observed lower Cu concentrations in older patients in the healthy control subjects
(r = −0.31; p = 0.01).

4. Discussion

The most significant observation regarding the homeostasis of TEs in our study was
the marked decrease in serum Se and Zn levels with the high concentrations of Cu/Zn
and Cu/Se molar ratios in patients with AIS. This may be the likely effect of the acute
inflammatory processes and oxidative stress resulting from ischemic stroke. Currently, in
Poland, there have been no studies on the concentration of Se, Cu, Zn, and the Cu/Zn and
Cu/Se molar ratios in the serum of patients with AIS. These results are in line with studies
from other countries [7–9,11,16,45,46].



Nutrients 2021, 13, 2139 10 of 16

Se’s protective properties in ischemic stroke were primarily based on its antioxidative
and detoxification effects. Previous cohort studies have demonstrated a solid bond between
lower blood Se levels and the occurrence of hypertension, coronary heart disease, and
ischemic stroke [11,46–50]. In addition, some previous studies have shown a positive trend
between higher blood Se levels and the occurrence of diabetes, metabolic syndrome, and
dyslipidemia [13,50–57]. Selenium deficiency has been reported in Polish patients with
multiple sclerosis and pancreatic cancer [58–60], whereas no studies have been published
with regard to patients with AIS in the adult Polish population. A cross-section study
conducted on the Canadian population found an association between high blood/dietary
Se levels and lower stroke prevalence [47]. Some studies indicated the importance of
preventing Se deficiencies in patients with risk factors for cardiovascular diseases [31,32].

The negative relationship between Se concentration and CVD was reported in Chinese
and European populations with low selenium exposure [7,11,61,62]. On the other hand,
these results were not confirmed in other studies conducted on populations with a higher
Se intake [15,63]. Some studies have shown that ischemic stroke was connected with
a significant increase in Se levels in the serum [13,15,64]. Increased Se level may be a
compensatory reaction aimed at reducing brain damage induced by ischemia. There are
increasing data on Se’s potential neurotoxic effect at high exposure levels [65]. The reasons
for increased Se levels in stroke-related brain damage are still unknown [17,66]. Previous
studies have shown a U-shape dose response, which means that adverse effects are caused
by both very low and very high Se levels [17].

Cu is an essential, albeit toxic, TE, which has a confirmed association with the risk
of ischemic stroke [24]. There have been studies [6,8,9,13,46,48,67,68] that suggested that
patients with AIS had elevated serum Cu concentration. A recent meta-analysis suggested
that exposure to single metals (arsenic, lead, and Cu) could be connected to increased risk
of CVD [69]. One study has shown an association between increased dietary Cu intake and
a greater risk of stroke mortality [70]. Lower serum Cu levels can prevent brain damage
resulting from oxidative stress following ischemic stroke [40]. In one study, patients with
less successful clinical recovery showed increased Cu levels [71]. This may suggest the
involvement of Cu with the plasticity related to stroke recovery. In our study, there was no
correlation between Cu and NIHSS and/or MRS scale in patients with AIS. The inconsistent
results in serum Cu analysis indicate that there is a need for further research.

In our study, we confirmed reduced serum Zn level in patients with AIS, which
was in line with other studies [7,9,45,72]. Qi Z et al. reported that Zn is involved in
blood–brain barrier damage after cerebral ischemia. Additionally, excessive Zn release and
accumulation in microvessels has contributed to ischemia-induced neuronal and vascular
injury [73]. Tomas-Sanchez et al. [74] discovered that lower doses of Zn may have a
neuroprotective effect against cerebral ischemia. On the other hand, the accumulation of
Zn leads to cytotoxicity, neuroinflammation, and neuronal death.

Xiao Y et al. [6] observed that higher plasma Cu levels were connected with in-
creased stroke risk due to large artery atherosclerosis. In our study, we found that patients
with cardioembolic stroke showed higher values in both Cu/Se and Cu/Zn molar ratios
(Figure 5A,B). BMI is related to the impact of obesity on TE homeostasis [75]. A close
association has been shown between Zn and cortisol, diabetes mellitus type 2, and obesity
in recent studies [76,77]. However, our study revealed that patients with AIS and lower
BMI index have higher serum Cu concentrations and Cu/Se and Cu/Zn molar ratios. It
appears that metabolic stress in the course of obesity and metabolic syndrome causes a
compensatory reaction characterized by an increased Zn-induced antioxidant protection
mechanism [78,79]. These findings were noticed in our study.

The current literature seems to indicate a link between the metabolism of Cu and Zn.
It has been established that TEs interact with each other, as seen in the strong competition
between Cu and Zn. They are all bivalent ions, and as such, although of different sizes,
they probably compete in transport through channels and carriers [80]. Some studies have
suggested that elevated blood Cu and decreased blood Zn concentration were unrelated
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risk factors for cardiovascular disease [81,82]. The same was observed in our analysis.
Noshin et al. [83] reported a decreased Zn/Cu ratio in CAD patients. Wen et al. [7] found
that patients with AIS demonstrated elevated plasma Cu levels and decreased plasma Zn
concentrations compared to the controls, but without statistically significant differences
between the two groups. We decided to find the Cu/Zn ratio in the assessment of the
relationship between Cu and Zn rather than the concentration of either of the two TEs. We
confirmed a strong positive correlation between the Cu/Zn ratio and Cu level as well as a
negative correlation between the Cu/Zn ratio and Zn level (Figure 1). There is remarkably
scarce evidence in the literature to evaluate the performance of the antioxidant defense
system, which should be conversely related to the size of the infarct and neurological
condition [84]. In our study, we confirmed that during the acute phase of ischemic stroke,
the immune response was associated with poor outcome, and an elevated Cu/Zn ratio
was independently associated with a higher NIHSS scale at admission (Figure 3). Higher
Cu/Zn molar ratio was observed in patients with larger brain infarct size (Figure 2). This
study showed that the Cu/Zn ratio is likely to become a valuable marker for immune
dysfunction in AIS and may have the potential to become a useful marker of oxidative
stress and inflammation in the pathogenesis of AIS. Therefore, it is of key importance
to maintain the homeostatic balance of TEs. More importantly, the need to establish TE
thresholds and promote supplementation campaigns exists [85,86].

It was presupposed that there is a link between Cu and Se, which may be mediated by
the protein product of SELENBP1 [60]. In a cohort study conducted by Cabral et al., the
Se to Cu ratio was found to be the most sensitive CVD risk parameter [75]. We observed
that Se concentrations and Cu/Se ratios may precisely show both oxidative stresses and
increased inflammatory response in patients with AIS. Moreover, our findings are in line
with other studies, which have shown a significant positive correlation between CRP and
Cu and Cu/Zn ratio levels [13,87].

It has been suggested in earlier studies that Zn deficiency contributes to the develop-
ment of CVDs [77,88], because of involvement in the pathogenesis of atherosclerosis [89].
It has been suggested that there is a relationship between plasma Cu concentrations and
increased prevalence of hyperlipidemia [6,13,48]. While the precise relationship between
Se and dyslipidemia remains to be fully known, Se likely plays a role in dyslipidemia with
an impact on insulin sensitivity, inflammation reaction, and oxidative stress [13,57,90,91].
Our study found that patients with AIS and dyslipidemia have elevated Se concentrations,
and therefore reduced Cu/Se ratio values. Furthermore, TC and TG increase significantly
with elevated Se levels in serum, while increased Cu/Se ratio was inversely correlated
with TC concentrations in patients with AIS. The observed alterations in Se, Zn, and Cu
concentrations need further research to establish their use as independent biomarkers of
atherosclerosis in patients with AIS.

TE homeostasis is affected by multiple factors such as age, sex, diet, and health
status. Se and Zn concentrations are decreased in older adults [92]. There are reports of
elevated levels of Cu combined with low levels of Zn in plasma in older adults. Some
researchers believe that the Cu/Zn ratio is a biomarker of aging [5,18,92]. The presented
results of the study were confirmed in our own study, which revealed the following:
decreased Se concentrations, thus higher Cu/Se molar ratio levels in older patients with
AIS. Furthermore, significant differences in Cu levels were found between men and women
in the healthy control subjects. Additionally, women in the healthy control subjects were
characterized by significantly higher Cu concentrations and Cu/Zn and Cu/Se molar ratio
levels compared to men (Table 2). Interestingly, we observed lower Cu concentrations in
older patients in the healthy control subjects.

Our study has several limitations. The studied sample was relatively small and all of
the tests performed at a single institution. The study presented here was conducted in a
single department and we could only obtain data from a one-point measurement from each
patient. The results we obtained do not necessarily reflect the epidemiological condition
of the population of Poland. Various drugs, including antiplatelet, angiotensin II type



Nutrients 2021, 13, 2139 12 of 16

1 receptor blockers, statins, and antidiabetic medication may affect TE concentration in
patients with AIS. The study was limited to assessing differences over longer periods and
could not monitor parameters from before the ischemic stroke event. Therefore, it was
unable to show the specific change of serum TE levels. Finally, it is necessary to conduct
more cohort studies in the future in order to confirm the associations identified over the
course of this study. Despite these limitations, this study provides valuable insights in the
search for biomarkers that could be useful in screening high risk factors of ischemic stroke.
Also, to the best of our knowledge, this is the first study that established the relationship
between serum TEs and ischemic stroke in the Polish population.

5. Conclusions

Our study showed that disturbed metal homeostasis is a significant contributor to
AIS pathogenesis. Furthermore, marked disruption of the serum Cu/Zn and Cu/Se molar
ratios could serve as a valuable indicator of AIS patients’ nutritional status and oxidative
stress levels. Changes in TE levels in the serum can be used as a prognostic biomarker in
patients with AIS. There is a need for additional research to explore the possible effects
of TE supplementation in ischemic stroke management, as well as to establish dietary TE
reference values for stroke prevention.
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