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Abstract

Emerging viral infections seriously threaten human health globally. Several challenges exist in identifying effective

compounds against viral infections: (1) at the initial stage of a new virus outbreak, little information, except for its genome

information, may be available; (2) although the identified compounds may be effective, they may be toxic in vivo and (3)

cytokine release syndrome (CRS) triggered by viral infections is the primary cause of mortality. Currently, an integrative tool

that takes all those aspects into consideration for identifying effective compounds to prevent viral infections is absent. In

this study, we developed iDMer, as an integrative and mechanism-driven response system for addressing these challenges

during the sudden virus outbreaks. iDMer comprises three mechanism-driven compound identification modules, that is, a

virus-host interaction-oriented module, an autophagy-oriented module and a CRS-oriented module. As a one-stop

integrative platform, iDMer incorporates compound toxicity evaluation and compound combination identification for virus

treatment with clear mechanisms. iDMer was successfully tested on five viruses, including the current severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2). Our results indicated that, for all five tested viruses, compounds that

were reported in the literature or experimentally validated for virus treatment were enriched at the top, demonstrating the

generalized effectiveness of iDMer. Finally, we demonstrated that combinations of the individual modules successfully

identified combinations of compounds effective for virus intervention with clear mechanisms.
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Introduction

Emerging viral infections seriously threaten human health

throughout theworld. In the past twodecades,highly pathogenic

human coronaviruses (HCoVs), including SARS-CoV and MERS-

CoV, have led to global pandemics with high morbidity and

mortality [1]. A third pathogenic HCoV, SARS-CoV-2, recently

emerged and has caused considerable damage to human health

and social economics globally [1]. The development of antiviral

vaccines and novel drugs, however, requires long-term discovery

and clinical validation. In addition, little information other

than the viral genome information is generally available at the

initial stage of the virus outbreak. Therefore, the development

of a quick viral infections response system based only on the

sequenced viral genome information is highly demanded. Such

a response system would allow for the rapid identification of

drug interventions for sudden virus outbreaks.

To this end,wepresent iDMer, an integrative andmechanism-

driven response system for identifying candidate compound

interventions for sudden virus outbreaks. The main focus of

iDMer is to present a mechanism-clear and effective virus

response and compound identification pipeline rather than

the identified compounds themselves. iDMer can be used to

identify compound interventions for any virus whose genome

information is known. It will be extremely helpful at the initial

stage of a new virus outbreak since little information about

the virus except for its genome information is available. The

main advantages of iDMer presented in this study are: (1)

the development of a rapid response system during a new

virus outbreak. This work is different from the existing studies

which are focused on the prediction and validation of the

identified compounds for SARS-CoV-2. (2) iDMer is integrative

and mechanism-clear, which covers three modules with clear

mechanisms for individual compound identification, toxicity

evaluation and combination prioritization. It comprises three

mechanism-driven compound identification modules (Figure 1),

including (1) a virus–host interaction-oriented module that

is designed to identify specific antiviral compounds against

the test virus by interfering with their specific virus–host

interactions [2]; (2) an autophagy-oriented module that is

general to any virus by identifying compounds that activate

cell autophagy to treat the virus [3, 4] and (3) a cytokine release

syndrome (CRS)-oriented module that is designed to identify

general anti-inflammatory compounds that will ameliorate

the CRS triggered by viral infections [5, 6] in which CRS is

the primary cause of mortality, such as in patients infected

with SARS-CoV, MERS-CoV and SARS-CoV-2 [5]. In summary,

virus–host interaction-orientedmodule and autophagy-oriented

module are designed with different mechanisms to identify

effective antiviral compounds. CRS-oriented module is designed

to dampen the uncontrolled inflammatory response leading

to shock and tissue damage in the lung and liver. For all three

modules, the Connectivity Map (CMap) data source is applied to

prioritize compounds, as shown in Figure 1 (see the ‘Materials

and methods’ section) [7, 8]. It is reported that combinations of

antiviral and anti-inflammatory drugs are more effective than

individual drugs to reduce virus infection-related inflammation

[6]. Therefore, the virus–host interaction-oriented module and

autophagy-oriented module are selected and combined with

the CRS-oriented module to identify compound combinations

without antagonistic effects.

Another important issue considered in the development of

iDMer was compound toxicity evaluation. Although the iden-

tified compounds may be effective, they may be toxic in vivo.

Therefore, iDMer performs a compound toxicity evaluation by

investigating the compound structure information related to

certain toxicological end points. Identified compoundswith high

potential toxicity are filtered.

Finally, to evaluate the rationale and effectiveness of iDMer,

we applied it to four historically spread viruses, that is, MERS-

CoV, SARS-CoV, Ebola virus and HIV, as well as the current SARS-

CoV-2. Our results indicated that for all five tested viruses, com-

pounds that were reported in the literature or experimentally

validated ranked high andwere enriched at the top, demonstrat-

ing the generalized effectiveness of iDMer for identifying com-

pound interventions or known drugs that can be repurposed for

virus treatment with clearmechanisms. Furthermore, combined

treatments with anti-inflammatory and antiviral drugs are also

recommended by iDMer and are expected to be more effec-

tive than individual treatments by increasing the therapeutic

efficacy and reducing virus infection-related inflammation.

Materials and methods

Investigation of the CMap for antiviral compound
identification

Utility of CMap

The CMap project was introduced by Molecules et al., in 2006,

as a potential resource for connecting compounds and diseases

[8]. The CMap reference database (Touchstone) contains over 1

million compound signatures, which are gene expression pro-

files obtained from the treatment of a variety of cell types with

perturbagens that span a range of small molecule compounds

[7]. The fundamental unit of CMap analysis is the disease signa-

ture, which comprises a set of genes carrying a sign indicating

whether the gene is upregulated or downregulated. The disease

signature is queried against compound signatures in the CMap

reference database by gene set enrichment analysis (GSEA) [9].

The GSEA assesses the degree to which the upregulated genes

appear toward the top of the compound signature and the down-

regulated genes appear toward the bottom of the compound

signature (positive CMap score), or vice-versa (negative CMap

score). The application of CMap with a query results in a list of

compounds ordered by their similarities against the reference.

The query inputs of the CMap are upregulated or downreg-

ulated genes. As for the antiviral compound identification, the

incorporation of virus-infectious host gene expression profiles

should be carefully investigated. In our study, we performed

a comprehensive transcriptomic analysis of the tested virus

using RNA-sequencing (RNA-Seq) data of the virus-infected host

cells. Our results indicated that such transcriptomic profiles

of virus-infected host cells cannot be directly incorporated in

CMap for antiviral compound identification, although they have

been applied in previous studies, because they produce certain

artifacts in the compound identification (see details in ‘Results’

section).

RNA-Seq data preprocessing for virus-infected host cells

RNA-Seq data of MERS-CoV-, SARS-CoV- and SARS-CoV-2-

infected host cells and their mock-treated controls were

downloaded from NCBI Gene Expression Omnibus (GEO) [10].

Fastq files were mapped to the human reference genome (hg38)

using STAR [11]. We utilized featureCounts [12] to quantify the

gene expression level following differential expression analysis

using the edgeR R package [13]. Our differential analysis was

performed by matching each experimental condition with the
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Figure 1. Overview of iDMer workflow iDMer comprises five steps: (1) Seed host factor collection. VTPs and EHFs of the virus–host interaction-oriented, autophagy-

oriented and CRS-oriented modules were collected from viruses-STRING database and the literature. The functions of these seed host factors were further classified

as restriction genes or reliance genes. (2) Application of the GAT model to extend the host factor sets. The GAT algorithm was applied to identify comprehensive host

factors based on the seed host factors. (3) Compound identification. For all three modules, the CMap data source was applied to prioritize compound interventions for

virus treatment. Compounds were prioritized regarding their ability to reverse the module-specific signature by upregulating the restriction genes and downregulating

the reliance genes. (4) Compound toxicity evaluation. ProTox-II was incorporated into iDMer to evaluate the toxicities of the identified compounds. Compounds with

high potential toxicities were filtered out. (5) Compound combination identification. Compounds identified by virus–host interaction-oriented and autophagy-oriented

modules were combined with those identified by the CRS-oriented module to form compound combinations with a clear mechanism.

corresponding mock-treated controls. Differently expressed

genes (DEGs) were identified by q-value≤ 0.05. Compound

interventions were prioritized regarding their ability to reverse

DEGs. DEGs were used as a query to search for enriched Gene

Ontology (GO) biological process (BP) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathways using clusterProfiler

(q-value≤0.01) [14].

Host factor identification

Seed host factor collection

The comprehensive collection of seed host factors related

to virus interactions is a fundamental step of iDMer. In the

virus–host interaction-oriented module, the host factors are

divided into two categories according to the way they interact

with viral proteins: (1) virus-targeted proteins (VTPs) that

physically interact with viral proteins [2, 15]. The VTPs are

identified by multiple experimental sources, including high-

throughput yeast-2-hybrid systems, viral protein pull-down

assay, in vitro co-immunoprecipitation, etc. (2) Essential host

factors (EHFs) that do not physically interact with viral proteins

but are involved in the cellular pathways of viral infection

that play a specific role in viral infection [16]. The EHFs

were identified by RNA knockdown and RNA interference

experiments, etc. Furthermore, the functions of these host

factors can be further classified as inhibitors of viral replication
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(virus restriction genes) or promoters of viral replication (virus

reliance genes).

For the historically spread SARS-CoV, MERS-CoV, Ebola

and HIV viruses, VTPs were curated from the Viruses-STRING

database [17] and the literature because these viruses have

been extensively investigated. The Viruses-STRING is a virus–

host protein–protein interaction (PPI) database that integrates

evidence from experiments and text-mining to provide interac-

tion probabilities between viruses and host proteins. To reduce

false positives, interactions with a probability score of less than

400 were removed. The EHFs were manually curated with a

comprehensive literature survey.

Little information is available for SARS-CoV-2, and we made

the following curation of its host factors (Figure 2A): (1) the VTPs

were obtained from experiments as Gordon et al. identified 332

high-confidence VTPs of SARS-CoV-2 using affinity-purification

mass spectrometry [18]. When experimentally validated VTPs

were absent for newly emerged viruses, we also developed a

computational strategy to predict virus-specific VTPs based on

historic information. Specifically, we first obtained 264 VTPs of

the HCoVs from Viruses-STRING and the literature as a pool of

candidate host factors that can physically interact with SARS-

CoV-2. We then applied HVPPI to predict whether the specific

SARS-CoV-2 virus proteins can physically interact with the col-

lected candidate VTPs [19]. This resulted in a set of predicted

SARS-CoV-2 seed VTPs. (2) The information EHFs of SARS-CoV-2

was absent and we hypothesized that viruses belonging to the

same family utilize similar EHFs for their replication. Therefore,

we collected the EHFs of HCoVs from the literature, including

those of HCoV-229E,HCoV-NL63,HCoV-OC43,HCoV-HKU1,SARS-

CoV and MERS-CoV [20]. The set of overlapping EHFs from these

viruses was taken as the SARS-CoV-2 EHFs.

In our study, the curated VTPs and EHFs of a virus were

further classified as reliance or restriction genes with compre-

hensive literature mining and database annotations, including

KEGG and Reactome Pathway database [21, 22]. Those VTPs and

EHFs without clear functional evidence were excluded from the

subsequent analysis.

Development of the graph-based attention network
(GAT) algorithm to identify comprehensive host factors
from the seed host factors

As the host genes are formulated in a PPI network that can be

naturally modeled as a graph, graph-based models can be uti-

lized to reveal the global and local characteristics of the network.

In our study,we developed a graph neural networks-basedmodel

to further predict other potential host factors based on the seed

host factor to present a comprehensive host factor set [23]. We

formulated the identification of additional potential host factors

as a node classification problem in which proteins in the PPI are

treated as nodes. Specifically, we utilized the GAT [24] for the

prediction, where the network structure explicitly enables the

model to leverage rich information by aggregating and propagat-

ing information through the attention mechanism. The nodes

in the network dynamically learn edge-weight according to the

importance of their neighbor, generalizing well to the unseen

graph structures in the host factor prediction.

We describe our GAT model formally as follows (Figure 3A).

The building block of our network is the graph attention layer.

For each graph, each note of it is described by two features: (1) a

variable indicates whether the node represents a reliance gene

or a restriction gene or neither; (2) a vector h =
{

x1, x2, · · · , xn
}

describes its level-2 GO term annotation. xn is a binary variable

indicating whether or not the node belongs to a level-2 GO term.

n is the total number of level-2 GO terms. For example, if the

level-2 GO terms are {A, B,C}, and a note belongs to A and C, then

the vector h of the note is represented as {1, 0, 1}. Similar to the

self-attention mechanism a pair-wise attention score between

two neighbors is calculated as

eij = LeakyReLU
(

−→
a

T [

Whi ‖ Whj
]

)

. (1)

The .T represents transposition, and the ‖ is the concate-

nation operation. The parameters −→
a and W are a learnable

weight vector and matrix, respectively. Subsequently, the atten-

tion scores are normalized across all choices of j using the

SoftMax function:

αij =
exp

(

eij
)

∑

k∈Ni
exp (eik)

, (2)

where Ni is the neighboring node of i in the graph. The normal-

ized attention scores are used to calculate a linear combination

of the features corresponding to them and to serve as the output

features for each node. We also introduce multi-head atten-

tion to enrich the model capacity and to stabilize the learning

process. Thus, the final output node features are computed as

h′
i = ‖Kk=1σ





∑

j∈Ni

αk
ijW

khj



 , (3)

where the parameter K is the number of attention heads, ‖ rep-

resents concatenation and σ is a nonlinear activation function.

In our study, we applied a two-layer GAT model. The first layer

comprises K=2 attention heads, each computing eight hidden

features, followed by LeakyReLU nonlinearity. The second layer

is used for node classification: only 1 attention head computing

16 hidden features is included, followed by a SoftMax function.

Themodel is initialized by Glorot initialization [25] and is trained

tominimize cross-entropy on the training nodes using the Adam

SGD optimizer [26] with an initial learning rate of 0.001 for 2000

epochs. Our architecture was built based on the Pytorch and DGL

library [27]. We use 80% of labeled nodes per class for training.

Due to the transductive setup, the training algorithm has access

to all of the node features. The predictive power of the trained

model was evaluated on the remaining 20% of labeled nodes.

During the training process, the model parameters leading to

the highest receiver operating characteristic curve (ROC–AUC)

score on the validation dataset were saved to construct the final

model. All of the unlabeled nodes were predicted by the final

model, and the resulting probabilities were recorded and sorted.

Our results show the GAT algorithm can accurately predict host

factors in the test data in the three modules (Figure 3B and C).

Finally, if the number of host factors of a virus was more

than 100, the top 10 propagated reliance genes and the top

10 propagated restriction genes were treated as true positives.

Otherwise, to reduce false positives, only the top five propa-

gated reliance genes and the top five propagated restriction

genes were treated as true positives. The GAT algorithm requires

three files: a human PPI network, seed nodes and level-2 GO

term annotations. The human PPI network was downloaded

from the latest STRING database [28]. The seed nodes were

reliance genes and restriction genes in each task. The level-2

GO term annotations, including BP, molecular function (MF) and
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Figure 2. Application of iDMer to SARS-CoV-2. (A) The SARS-CoV-2 host factors can be collected and curated using two approaches—either as experimentally validated

or computationally identified host factors. The host factors can be further classified as reliance or restriction genes with comprehensive literaturemining and database

annotations, including the KEGG database and Reactome Pathway database. (B) The number of seed host factors and extended host factors identified by two alternative

approaches. (C) Experimentally validated compounds rank high in both approaches, indicating the general effectiveness of the virus–host interaction-oriented module

for identifying the virus-specific compound interventions.

cellular component (CC), were retrieved from the clusterProfiler

R package [14].

Compound toxicity evaluation

Compound toxicity evaluation is an important consideration in

compound identification and it is also incorporated in iDMer.

We use ProTox-II [29] to evaluate the toxicities of the identi-

fied compounds. The ProTox-II extracts various features from

the compounds’ SMILES representation to predict acute toxic-

ity and several toxicological end points, including hepatoxicity,

carcinogenicity, immunotoxicity, mutagenicity and cytotoxicity.

Each compound’s SMILES representation was downloaded from

the CMap Touchstone metadata and submitted to the ProTox-

II online server. The ProTox-II classified each compound’s acute

toxicity into Class-I to Class-VI, that is, fatal, fatal, toxic, harmful,

may be harmful and nontoxic. Every compound’s toxicological

end point was classified as active or inactive. In our current
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Figure 3. Performance of the GAT algorithm. (A) The GAT algorithm predicts additional potential host factors based on the seed host factors to present a comprehensive

host factor set. (B) The (ROC curve of the test data for the three modules. (C) The precision-recall (PR) curve of the test data for the three modules.

study, a compoundwith an acute toxicity class greater than level

III and fewer than three active toxicity end pointswas considered

to be nontoxic.

Potential compound combinations identification

Combined treatment with anti-inflammatory and antiviral

compounds is expected to be more effective than single

treatment by reducing virus infection-related inflammation

[6, 30]. Compound combinations, however, may trigger unex-

pected adverse events due to their interactions with each

other. DeepDDI, a state-of-the-art deep neural network drug–

drug interaction (DDI) type prediction model [31] was also

incorporated in iDMer to predict whether a given compound

combination is antagonistic or synergistic. DeepDDI accepts

the compound’s SMILES and outputs DDI types. According to

the descriptions from DeepDDI, 14 of 86 DDI types can induce

adverse events. For a compound pair comprising compounds A

and B, we predicted the DDI type between the compounds A and

B and the DDI type between the compounds B and A. If none

of these 14 DDI types exists for a compound combination, we

classified the compound combination as synergistic. We ranked

compound combinations according to their mean CMap scores.

The mean CMap score of a compound combination was defined

as follows:

S =
(S1 + S2)

2
, (4)

where S1 and S2 are the compound CMap scores output by

the CMap Touchstone in the three modules. If a compound
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combination was antagonistic, its mean CMap score was set to

0. If compounds A and B were identical, its mean CMap score

was set to 100 because a compound can always combine with

itself.

Results

The virus–host interaction-oriented module

Module design

The virus–host interaction-oriented module designed in iDMer

aims to present virus–host interaction-oriented therapies for

virus treatments that are less susceptible to drug resistance [2,

15, 20]. The basic idea of virus–host interaction-oriented treat-

ment is to prevent the virus from invading and infecting the

host by acting on the key host factors. In our study, the host

factors were classified as either (1) inhibiting viral replication,

that is, a virus restriction gene that inhibits the viral infection

cycle, including entry, replication, assembly and progress or (2)

promoting viral replication, that is, a virus reliance gene that

promotes the viral infection cycle. Having identified a compre-

hensive set of host factors for a specific virus, CMap was applied

to prioritize compounds as shown in Figure 1 (see the ‘Materials

and methods’ section) [7, 8]. Basically, CMap could identify com-

pounds that reverse the disease gene signature by downregulat-

ing the genes that boost disease progression and upregulating

the genes that block disease progression. Similarly, we reasoned

that a compound is presented as being effective against a virus if

the compound reverses the virus–host interaction-oriented sig-

nature by upregulating its restriction genes and downregulating

its reliance genes. Taken together, the virus–host interaction-

oriented module in iDMer was designed to identify specific

antiviral compounds against the test virus.

Module effectiveness evaluation

To evaluate the effectiveness of our proposed virus–host

interaction-oriented module, we first applied it to four his-

torically spread viruses: MERS-CoV, SARS-CoV, Ebola and

HIV. The number of host factors curated for these viruses

varied from 52 to 115, respectively, with a median value of

82 (Figure 4A, Supplementary Table S1A–D available online

at https://academic.oup.com/bib). Compounds in the CMap

Touchstone were prioritized regarding their ability to reverse

virus–host interaction-oriented signatures. Our results indi-

cated that the top 10 compounds for all 4 tested viruses

were significantly enriched with experimentally validated

compounds (P-value<0.01, binomial test, Supplementary

Table S2A–D available online at https://academic.oup.com/bib).

Furthermore, the compounds with the highest rank for SARS-

CoV, MERS-CoV and Ebola were all experimentally validated,

further demonstrating the effectiveness of our proposed virus–

host interaction-oriented module for identifying virus-specific

compound interventions.

Module test on SARS-CoV-2

Little information other than the viral genome sequence was

available at the initial stage of the SARS-CoV-2 outbreak, requir-

ing the development of a rapid viral infections response sys-

tem that could identify compound interventions with specific

antiviral effects depending only on the sequenced viral genome

information. In this study, the virus–host interaction-oriented

module was applied to identify compound interventions spe-

cific for SARS-CoV-2. We identified compound interventions

for SARS-CoV-2 using two different approaches for illustration

purposes, and users can select either approach according to the

actual conditions.

The first approach was to identify anti-SARS-CoV-2 com-

pounds using experimentally identified host factors if this infor-

mation is available (Figure 2A). By the end of April, SARS-CoV-2

host factors had been experimentally identified by Gordon et al.

using affinity-purification mass spectrometry [18]. Therefore,

in this case we curated 62 SARS-CoV-2 restriction genes and

103 SARS-CoV-2 reliance genes based on the study of Gordon

et al. (Figure 2B, Supplementary Table S3A available online at

https://academic.oup.com/bib). Fifteen EHFs were collected as

described in the Materials and methods section (Supplementary

Table S3A available online at https://academic.oup.com/bib).

Then, another 10 restriction genes and 10 reliance genes

were further identified by the graph-based attention network

(GAT) algorithm (see the ‘Materials and methods’ section)

resulting in a total of 78 restriction genes and 122 reliance

genes. Among the 2727 compounds in the CMap Touchstone,

the top 10 identified compounds with the highest score

were linifanib, azacitidine, anisomycin, homoharringtonine,

importazole, radicicol, QL-XII-47, verrucarin-A, NSC-632839 and

emetine (Figure 2C, Supplementary Table S4A available online

at https://academic.oup.com/bib). Both homoharringtonine and

emetine were reported to be effective against SARS-CoV-2 in

vitro [32]. Although the effects of the other eight compounds

against SARS-CoV-2 have not been verified in vitro, several of

themmay be effective on the basis of their mechanism of action:

(1) linifanib is a kinase inhibitor that can induce a high level of

autophagy, which can inhibit SARS-CoV-2 replication [33]; (2)

azacitidine and QL-XII-47are RNA synthesis inhibitors that have

broad-spectrum anti-coronavirus activity [34, 35]; (3) verrucarin-

a is a protein synthesis inhibitor that has been identified in silico

as being effective against the SARS-CoV-2 through a drug–target

interaction deep learningmodel [36] and (4) the primary function

of the papain-like protease in coronavirus is to strip ubiquitin

from the host cell proteins to aid the coronavirus in evading the

host innate immune responses. In this way, NSC-632839, which

is a deubiquitinase inhibitor, is reported to be effective against

HCoVs [37].

The second approach to identifying anti-SARS-CoV-2

compounds was based on the in silico prediction of SARS-

CoV-2 VTPs, serving as an alternative for identifying specific

antivirus compounds when experimental VTPs are unavailable

(Figure 2A). In this case, iDMer predicted 38 SARS-CoV-2

restriction genes and 61 SARS-CoV-2 reliance genes (see the

‘Materials andmethods’ section, Figure 2B, Supplementary Table

S3B andC available online at https://academic.oup.com/bib). The

GAT algorithm identified 5 additional restriction genes and 5

additional reliance genes, resulting in a total of 43 restriction

genes and 66 reliance genes. Among the 2727 compounds

in the CMap Touchstone, the top 10 identified compounds

with the highest scores were ruxolitinib, sirolimus, QL-X-

138, taurocholic-acid, homoharringtonine, emetine, acyclovir,

bufalin, verrucarin-A and linifanib (Figure 2C, Supplementary

Table S4B available online at https://academic.oup.com/bib).

In this result, homoharringtonine and emetine were again

ranked higher and were also identified in the first approach.

Sirolimus, ranked second, was also predicted to be effective

against SARS-CoV-2 through a recently reported network-based

drug repurposing method [38]. Moreover, verrucarin-A, a protein

synthesis inhibitor, was identified in silico to be effective against

the SARS-CoV-2 through a drug–target interaction deep-learning

model [36].

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa341#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa341#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa341#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa341#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa341#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa341#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa341#supplementary-data
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Figure 4. Results summary of the application of iDMer for virus treatment based on the three modules. (A) Number of identified seed host factors and extended host

factors of the three modules. (B) Rank comparison of experimentally validated compounds with or without applying the GAT model. Our comparison results indicate

that by employing the GAT model, the experimentally validated compounds rank higher. (C) GO BP enrichment analyses of those extended genes using the GAT model

indicated that the top enriched GO terms are associated with a module-specific signature.

Taking together, both approaches indicated the effective-

ness of the virus–host interaction-oriented module in iDMer for

identifying the virus-specific compound interventions.

The autophagy-oriented module

Autophagy is a pathway used by cells to destroy pathogens

[39]. Many viruses, however, can hijack and subvert autophagy

for their benefit [40]. Therefore, autophagy is a double-edged

sword during viral infection [40]. We investigated the role of

autophagy in the infection process of SARS-CoV-2 as a general

mechanism for virus interventions. As reported by Maier et al.,

compounds that activate autophagy are effective against HCoVs

[39]. In addition, Gassen et al. reported that treating cells with

autophagy-inducing agents reduces SARS-CoV-2 replication [3].

These findings suggest that activation of autophagy inhibits the

SARS-CoV-2 replication and autophagy-activating compounds

should be effective against SARS-CoV-2.

To this end, we designed the autophagy-oriented module

in iDMer to identify autophagy-related compound interven-

tions as a general virus treatment mechanism. Similar to

the design of the virus–host interaction-oriented module,

two categories of host factors, that is, autophagy reliance

genes promoting autophagy and autophagy restriction genes

inhibiting autophagy, were collected from the literature. iDMer

used the GAT algorithm to identify additional potential host

factors to extend the collected host factors set. The autophagy-

oriented module in iDMer has a total of 55 reliance and 22

restriction genes (Figure 4A, Supplementary Table S1E available

online at https://academic.oup.com/bib). Using the CMap data

sources, iDMer prioritized the compounds that mimic the

autophagy signature. Interestingly, 9 of the top 10 compounds

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa341#supplementary-data


Mechanism-driven response system 9

are reported to activate autophagy (Figure 4B, Supplementary

Table S2F available online at https://academic.oup.com/bib).

These autophagy-inducing compounds are awaiting further

evaluation as effective treatments against SARS-CoV-2.

The CRS-oriented module

CRS is a systemic inflammatory response syndrome that can be

triggered by a variety of factors, such as viral infection. CRS is

the primary cause of mortality in patients infected with SARS-

CoV, MERS-CoV and SARS-CoV-2 [41]. Elevation of several serum

cytokine factors, such as interleukin (IL)-6, correlates with res-

piratory failure [41]. Tocilizumab, an IL-6 receptor blocker, has

been approved to treat patients with CRS [42], indicating that

suppressing the expression of those cytokine factors helps to

relieve CRS. To this end, the CRS-oriented module is designed as

another general mechanism for identifying anti-inflammatory

compounds by ameliorating the CRS triggered by viral infections.

Similar to the design of the virus–host interaction-oriented

module, the CRS reliance genes that aggravate CRS and the

CRS restriction genes that relieve CRS were collected from

the literature. We applied the GAT algorithm to extend the

collected host factors set, resulting in a total of 38 CRS reliance

and 44 restriction genes (Figure 4A, Supplementary Table S1F

available online at https://academic.oup.com/bib). Compounds

in the CMap Touchstone were prioritized regarding their

ability to reverse the CRS signature. Of the top 10 compounds,

alpha-linolenic-acid, hydroxyfasudil and CV-1808 have anti-

inflammatory effects (Figure 4B, Supplementary Table S2G

available online at https://academic.oup.com/bib).

The GAT algorithm boosts the performance of iDMer

The GAT algorithm applied in iDMerwas used to extend the seed

host factor sets to be more comprehensive (see the ‘Materials

and methods’ section). Nevertheless, it is necessary to com-

pare the performance with or without using the GAT model

to determine the effectiveness of the GAT algorithm applied

here. For SARS-CoV-2,we compared the results using experimen-

tally collected seed host factors. Our comparison revealed that

by employing the GAT algorithm, the experimentally validated

compounds ranked higher, demonstrating that the GAT algo-

rithm boosted the performance of iDMer (P-value<0.01, bino-

mial test, Figure 4B, Supplementary Tables S2A–G and S5A–G

available online at https://academic.oup.com/bib). For example,

in identifying the compound interventions for SARS-CoV, before

employing the GATmodel, the ranks of the validated compounds

were fourth, fifth and ninth, respectively, while after employing

the GAT algorithm, the ranks increased to second, fourth and

sixth, respectively. To further investigate the rationale behind

using the GAT algorithm to boost the performance of iDMer,

we further analyzed the function of those genes extended by

the GAT model. GO BP enrichment analyses of those extended

genes indicated that the top enriched GO terms were associated

with the module-specific signatures (Figure 4C, Supplementary

Table S6A–G available online at https://academic.oup.com/bib).

For example, in HIV, the top enriched GO terms were ‘response

to interferon-alpha’, ‘negative regulation of viral entry into host

cell’, etc., which are associated with viral replication. In sum-

mary, the GAT algorithm can successfully extend the host factor

sets based on the seed host factors by identifying functionally

related host factors that aremissed in the literature or annotated

databases.

Compound toxicity evaluation

Evaluation of compound toxicity is another important issue

considered in iDMer.Although the identified compoundsmay be

effective, theymay be toxic in vivo. For example, although admin-

istration of chloroquine diphosphate reduced mortality in some

patients with COVID-19, adverse events in these patients were

also reported [43]. Therefore, iDMer provides a basic compound

toxicity evaluation module, and the compounds with highly

potential toxicities are removed (see the ‘Materials and method’

section). Of the 2699 compounds in the CMap Touchstone with

SMILES available, 1900 compoundswere predicted to be nontoxic

and 799 compounds were predicted to be potentially toxic.

For the treatment of SARS-CoV-2, although homoharring-

tonine was prioritized by iDMer and was validated to be

effective against SARS-CoV-2 in vitro, it was removed from the

iDMer recommendation list due to its high toxicity. Emetine

is another compound that has been validated to be effective

against SARS-CoV-2 in vitro and ranked high on our list.

It has three molecular formulas (emetine-I, emetine-II and

emetine-III, Supplementary Table S4A and B available online at

https://academic.oup.com/bib) in the CMap Touchstone. Accord-

ing to the CMap website, a compound with multiple molecular

formulas occurs due to differences in the chemicals provided

by various vendors. We used SMILES to predict the toxicities

of emetine-I, emetine-II and emetine-III respectively. Emetine-I

and emetine-II were predicted to be toxic (Supplementary Table

S4A and B available online at https://academic.oup.com/bib),

while emetine-III, ranking 16th in our recommendation list, was

predicted to be nontoxic.

Identification of potential combination
compound interventions

Combination therapies have become a promising clinical

management strategy for several complex diseases, including

viral infections. Combination therapies can increase thera-

peutic efficacy and reduce toxic side effects compared with

monotherapies [44]. Combinations of anti-inflammatory and

antiviral drugs are more effective than individual drugs to

reduce virus infection-related inflammation [6]. Therefore, it

is reasonable that compounds identified by the virus–host

interaction-oriented and autophagy-oriented modules can be

combined with the compounds identified by the CRS-oriented

module with a clear mechanism. In our study, we applied

DeepDDI to predict whether a given compound combinationwas

antagonistic (see the ‘Materials and methods’ section) [31]. As

the number of compound combinations increases exponentially,

only combinations of the top 10 nontoxic compounds of each

module were analyzed (Supplementary Table S7A–F available

online at https://academic.oup.com/bib).

Investigating the utility of virus infection transcription
signatures for drug repositioning

Recently, Ochsner et al. identified viral infection signatures that

are most consistently associated with coronavirus infection

using RNA-Seq data [45]. Furthermore, viral infection signatures

calculated from RNA-Seq data of SARS-CoV and MERS-CoV

were used by Xing et al. to identify candidate compounds for

SARS-CoV-2 [46]. The use of RNA-Seq data to identify candidate

antiviral compounds, however, has several limitations: (1) RNA-

Seq data are not available at the initial stage of the virus

outbreak, preventing a rapid response to the virus outbreak.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa341#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa341#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa341#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa341#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa341#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa341#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa341#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa341#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa341#supplementary-data
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(2) Only a small amount of the RNA-Seq data correctly captures

the viral infection processes. According to the study of Chen et al.

of the 215MERS-CoV and SARS-CoV infection signatures, only 13

captured the viral infection processes. In addition,we performed

a comprehensive analysis of the viral infection signatures

calculated from RNA-Seq data of SARS-CoV-2, and we found

that none of the top 10 identified compounds were reported

to be effective against SARS-CoV-2 (Supplementary Table S8A

and B available online at https://academic.oup.com/bib, see

the ‘Materials and methods’ section). Through analysis of the

SARS-CoV, MERS-CoV and SARS-CoV-2 infection signatures, we

found that the top enriched GO terms and KEGG pathways were

mostly related to the innate immune response (Supplementary

Table S9A–H available online at https://academic.oup.com/bib).

We reasoned that compounds that reverse the viral infection

signature would dampen the innate immune response, while

remaining ineffective against viruses. Indeed, instead of revers-

ing the viral infection signature, a previous study prioritized

compounds thatmimic the viral infection signatures to reinforce

the innate immune response to identify compounds to treat

the Ebola virus [47]. Thus, it is not recommended to use the

transcriptome profile of the virus infectious host cell to identify

compound interventions.

Discussion and conclusion

We present iDMer, an integrative and mechanism-driven

response system for identifying candidate compound inter-

ventions for sudden virus outbreaks. Although several compu-

tational method-based tools have been developed to identify

compounds or repurpose drugs for virus treatment, the

underlying mechanisms of these computational tools are

not clear. The main competitive advantages of iDMer are: (1)

iDMer presents a mechanism-driven platform for compound

identification compared to reported data-driven computational

tools or virtual screening study; (2) compared with compounds

targeting viral proteins, the compounds identified by iDMer are

tolerant to viral mutation because iDMer is designed to identify

compounds that intervene with the viral–host interactions.

Targeting pathogen proteins works well for antibacterial studies

in most cases, but this strategy has failed in antiviral studies

as the viral genes have an intrinsic nature to mutate frequently

[48, 49]. (3) Compared with compounds targeting a single host

factor, the compounds identified by iDMer are less susceptible to

resistance as they are designed to target the host factor network

rather than a single host factor and (4) iDMer is designed as a

quick response system that can help to prioritize interventions

on the basis of minimal information. This is particularly useful

for new virus outbreaks because viruses continuously evolve.

Combined treatment with anti-inflammatory and antiviral

compounds may be more effective than treatment with a single

compound.Anti-inflammatory compounds are used to quiet the

innate immune response as an overactive immune response

leads to multi-organ failure. Antiviral compounds are taken to

inhibit replication of the virus. In this way, iDMer prioritizes

compound combinations by selecting the virus–host interaction-

oriented or autophagy-oriented modules and combining them

with the CRS-oriented module.

A promising finding identified by iDMer is emetine-III, which

was prioritized as an anti-SARS-CoV-2 compound without toxi-

city and has been confirmed in vitro [32]. Interestingly, emetine-

III ranks second in the CRS-oriented module, suggesting that

it has an anti-inflammatory role, which has been reported by

Hai et al. [50]. The dual role of emetine-III makes it a highly

promising compound effective against COVID-19 in vivo, and

clinical validation is pending.

Further development of iDMerwill address twomain aspects:

(1) in the current version, only compounds in the CMap Touch-

stone are prioritized. Less than half of the compound signatures

profiled by the CMap group, however, are stored in the CMap

Touchstone. Future updates of iDMer will be to be able to query

module-specific signatures against more compound signatures.

(2) Only 25% of experimentally identified host factors of SARS-

CoV-2 can be computationally predicted. Therefore, methods to

accurately predict host factors are still required.

Availability

iDMer can be quickly installed and deployedwith the Docker ver-

sion at https://hub.docker.com.r/bm2lab/idmer. It is also avail-

able at https://github.com/bm2-lab/iDMer.

Accession numbers

The 332 experimentally identified SARS-CoV-2 VTPs were

retrieved from Gordon et al. RNA-Seq data of SARS-CoV-2

infected primary human lung epithelial cells. RNA-Seq data of

the COVID-19 patients’ lung biopsy were downloaded from the

NCBI GEO server under the accession number GSE147507. RNA-

Seq data of SARS-CoV and MERS-CoV infected MRC5 cells and

the correspondingmock-treated controlswere downloaded from

the NCBI GEO server under the accession number GSE56192.

Key Points

• iDMer can be applied to identify effective compounds

as long as the genome information of the virus is

available.
• iDMer was successfully tested on five viruses, includ-

ing SARS-CoV, MERS-CoV, HIV, Ebola and the current

SARS-CoV-2.
• iDMer incorporates compound toxicity evaluation

and compound combination identification for virus

treatment.

Supplementary data

Supplementary data are available online at Briefings in Bioin-

formatics.
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