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Abstract: Metabolic syndrome increases the risk for cardiovascular disease including metabolic
cardiomyopathy that may progress to heart failure. The decline in mitochondrial metabolism is
considered a critical pathogenic mechanism that drives this progression. Considering its cardiac
specificity, we hypothesized that miR 208a regulates the bioenergetic metabolism in human cardiomy-
ocytes exposed to metabolic challenges. We screened in silico for potential miR 208a targets focusing
on mitochondrial outcomes, and we found that mRNA species for mediator complex subunit 7,
mitochondrial ribosomal protein 28, stanniocalcin 1, and Sortin nexin 10 are rescued by the CRISPR
deletion of miR 208a in human SV40 cardiomyocytes exposed to metabolic challenges (high glucose
and high albumin-bound palmitate). These mRNAs translate into proteins that are involved in
nuclear transcription, mitochondrial translation, mitochondrial integrity, and protein trafficking. MiR
208a suppression prevented the decrease in myosin heavy chain α isoform induced by the metabolic
stress suggesting protection against a decrease in cardiac contractility. MiR 208a deficiency opposed
the decrease in the mitochondrial biogenesis signaling pathway, mtDNA, mitochondrial markers,
and respiratory properties induced by metabolic challenges. The benefit of miR 208a suppression on
mitochondrial function was canceled by the reinsertion of miR 208a. In summary, miR 208a regulates
mitochondrial biogenesis and function in cardiomyocytes exposed to diabetic conditions. MiR 208a
may be a therapeutic target to promote mitochondrial biogenesis in chronic diseases associated with
mitochondrial defects.
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1. Introduction

Metabolic syndrome, frequently induced by a high caloric intake, is the prerequisite for
type 2 diabetes (T2D) and increases the risk for cardiovascular diseases including metabolic
cardiomyopathy [1,2] in both humans [3,4] and animal models [5,6]. Cardiac abnormalities
start early in obese subjects and progress to increased left-ventricular (LV) mass [7,8]
causing reduced diastolic compliance and filling [9] (heart failure with preserved ejection
fraction), followed by systolic dysfunction and congestive heart failure. The prevalence of
cardiomyopathy is approximated to be 50% among diabetic human subjects [10,11], most
of them presenting with diastolic dysfunction [3,4,12,13].

Pathogenic mechanisms leading to metabolic cardiomyopathy remain controversial
and include metabolic challenges (hyperglycemia and hyperlipidemia), insulin resistance
and hyperinsulinemia, activation of the renin–angiotensin system, inflammation, epigenetic
changes, oxidative stress, and abnormalities in cardiac bioenergetics. All these mechanisms
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lead to cardiac remodeling with hypertrophy, apoptosis, and fibrosis [14]. Alterations in
cardiac oxidative metabolism are considered critical pathogenic mechanisms for metabolic
cardiomyopathy.

Fatty acids are the major carbon fuels in normal heart. Normal cardiac metabolism
exhibits physiologic shifts between glucose and fatty acids (FA) as energetic substrates.
In high-fat diet (HFD)-induced metabolic syndrome with glucose intolerance, although
exposed to an excess of energetic substrates, the heart becomes almost completely reliant
on FA as bioenergetic fuels for ATP generation. To be efficient, this metabolic change must
be supported by coupling the increased FA oxidation with ATP generation. Fatty acids
are catabolized to acetyl-CoA feeding the tricarboxylic acid cycle (TCA) and the reducing
equivalents, NADH and FADH2, which are further oxidized by the electron transport
system (ETS) to form ATP. It is reported that, during lipid excess, the heart, in comparison
with skeletal muscle, does not accumulate intermediate FA oxidation compounds (i.e., FA-
derived acylcarnitine species) [15], indicating that mitochondrial FA oxidation is complete.
Therefore, an enhanced FA oxidation resulting in ATP generation must be supported by a
coordinated activation of FA β-oxidation pathway, TCA cycle, and ETS. Metabolic remod-
eling toward increased mitochondrial FA β-oxidation is controlled by mitochondrial and
nuclear mechanisms that govern the biogenesis of mitochondrial components. Despite this
early activation, mitochondrial dysfunction is considered a major pathogenic mechanism
driving the progress of metabolic cardiac disease to heart failure [16].

MicroRNAs (miRs) belong to a family of single-stranded small RNAs that regulate
cardiac function in both health and disease [17] by suppressing protein synthesis via either
inhibiting mRNA expression or initiating mRNA degradation [18]. MiRs target a broad
spectrum of signaling pathways including bioenergetics, oxidative stress, calcium handling,
and apoptosis [18]. The diabetic heart experiences either upregulation or downregulation
of various miRs [19], including the muscle-specific miR-1 [20] and cardiac-specific miR
208a [20].

MiR 208a is produced by intron 27 of the human and mouse myh6 gene that encodes
the α isoform of the myosin heavy chain (α-MHC) and is co-transcribed in parallel with its
host gene during normal cardiac development [21]. MiR 208a expression does not correlate
with the expression of its host gene, myh6, in pathological conditions. For example, in a
model of transaortic constriction, myh6 gene expression is decreased while miR 208a is
unchanged. Genetic deletion of the miR 208a in mice does not cause an overt phenotype in
basal conditions while impeding the cardiac response to different types of stress, including
pressure overload and hypothyroidism. Cardiomyocytes lacking miR 208a fail to upregu-
late the myh7 gene encoding the β-MHC contractile protein [21], indicating that miR 208a
is required for cardiac remodeling and contractile function.

MiR 208a was reported increased in diabetic human hearts [22] and presented an
oscillated pattern in diabetic mouse hearts with an early increase followed by a drop in ad-
vanced diabetes [22]. Pharmacologic inhibition of miR 208a improved cardiac and systemic
insulin sensitivity and glucose metabolism in obese and diabetic mouse models [23]. How-
ever, the role of miR 208a in cardiac mitochondrial function during metabolic challenges
has not been investigated. The objective of our study was to determine the role of the
cardiac specific miR 208a in regulating mitochondrial bioenergetics in metabolically chal-
lenged human cardiomyocytes. Our major findings were that miR 208a is decreased after
short-term exposure to diabetic conditions (high glucose, high albumin-bound palmitate).
MiR 208a downregulation prevented changes in cardiac contractile proteins and preserved
mitochondrial biogenesis and function in cardiomyocytes incubated in diabetogenic con-
ditions. We conclude that miR 208a is a negative regulator of mitochondrial oxidative
metabolism.
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2. Materials and Methods
2.1. Reagents

Unless otherwise mentioned when detailing specific methods, all reagents were pur-
chased from Sigma-Aldrich and were of the highest purity grade.

2.2. Cells

Immortalized human adult LV cardiomyocytes, SV40 (Applied Biological Materials,
Inc, accessed on 20 January 2019) were cultured in Prigrow medium (TM001, provided
by the company) supplemented with 10% fetal bovine serum, 100 U/mL penicillin, and
100 µg/mL streptomycin (Thermo Fisher, Waltham, MA, USA).

To suppress miR 208a, we used a clustered regularly interspaced short palindromic
repeat/Cas9 (CRISPR) editing approach in collaboration with Synthego (synthego.com,
accessed on 26 March 2019). The editing efficiency was approximately 90%. All experiments
were performed with cells at 60–70% confluence. For transfection, 10,000 cells/well were
seeded on the eight-well plate of the Agilent Seahorse XFp instrument, incubated overnight,
and subsequently transfected with 3 pmol of miR 208a mimic (mirVana, hsa-miR-208a-3p,
MC10677, sequence AUAAGACGAGCAAAAAGCUUGU)/100 µL using Lipofectamine
(0.5 µL/100 uL) for 24 h according to the manufacturer’s protocol. Scrambled sequence
was used as miR mimic negative control. After 24 h, transfection medium was replaced
with incubating media. To mimic diabetogenic conditions, incubating media contained
25 mM glucose and 20 µM bovine serum albumin-bound palmitate (BSA-bound palmitate)
prepared as described [24] in Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum, 100 U/mL penicillin, and 100 µg/mL streptomycin, under
humidified air with 5% CO2 at 37 ◦C.

2.3. Respiratory Studies in Cultured Cardiomyocytes

SV40 cardiomyocytes were plated on the eight-well plate of the XFp analyzer (Agilent
Technologies), grown to 60–70% confluence, and incubated for 24 h with either DMEM
(normal conditions, N), high glucose (HG, 25 mM), or high palmitate (HP, 20 µM, 5:1 BSA:
palmitate ratio). A pilot experiment was performed to determine the optimal number of
cardiomyocytes that linearly correlates with basal oxygen consumption rates (OCR). There-
fore, respiratory experiments were performed with a seeding density of 20,000 cells/well
for wildtype and 15,000 cells/well for the miR 208a-deficient cardiomyocytes. Respiratory
properties were assessed in bicarbonate- and phenol red-free DMEM supplemented with
energetic substrates (10 mM glucose, 1 mM pyruvate, 2 mM glutamine). After basal oxygen
consumption and extracellular acidification rates (OCR and ECAR, respectively) were mea-
sured, cells were sequentially challenged with oligomycin (ATP synthase inhibitor, 25 µM),
FCCP (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone, mitochondrial uncoupler,
5 µM), rotenone (complex I inhibitor, 5 µM), and antimycin A (complex III inhibitor, 5 µM).
Different concentrations of oligomycin (2.5–25 µM) and FCCP (2.5–10 µM) were used in
preliminary experiments to obtain the maximal effects on OCRs.

Basal OCR was calculated by subtracting the non-mitochondrial OCR (minimal OCR
after complete ETC inhibition with rotenone and antimycin A) from the OCR value prior
to FCCP injection. Oligomycin-sensitive ATP-coupled OCR was calculated by subtracting
the oligomycin-induced OCR from the basal OCR. The OCR needed to overcome the
proton leak across the mitochondrial inner membrane was calculated by subtracting the
non-mitochondrial OCR from the oligomycin-induced OCR. Mitochondrial maximal OCR
was calculated by subtracting the non-mitochondrial OCR from the OCR induced by FCCP
injection. Reserve (spare) respiratory capacity was calculated by subtracting basal OCR
from maximal OCR.

Extramitochondrial glycolysis was assessed as extracellular acidification rate (ECAR).
The last ECAR value before oligomycin addition was defined as basal ECAR. Reserve
ECAR was calculated by subtracting basal ECAR from the oligomycin-induced ECAR. All
OCR and ECAR values were expressed per mg protein measured by the Lawry assay.

synthego.com
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2.4. Gene Expression Analysis

Predicted miR 208a target genes were determined using v7.0 of the TargetScan
database (http://www.targetscan.org/cgi-bin/targetscan/vert_71/targetscan.cgi accessed
on 20 August 2019). From the predicted target genes, only those with mirsvr score <−0.1
and potential to regulate mitochondrial function were included for further analyses [25].

2.5. Real-Time Reverse Transcription PCR (RT-PCR), and Quantitative PCR

Total RNA and microRNA-enriched RNA were isolated from cultured cardiomy-
ocytes with mirVana RNA isolation kit (Thermo Fisher, AM1561) using the manufacturer’s
instructions and a described protocol [26].

Total RNA (2 µg/sample) was used to generate cDNA using Super Script II reverse
transcriptase kit (Invitrogen, Carlsbad, CA, USA). RT-PCR was performed using primers
presented in Supplementary Table S1. RT-PCR cDNA products were used as templates
for quantitative PCR (qPCR) assays, which were run in duplicates on StepOnePlus Real-
Time PCR System using SYBR green PCR master mix (Invitrogen). Real-time PCR cycling
conditions consisted of 95 ◦C for 10 min, followed by 40 cycles of 95 ◦C for 15 s and 60 ◦C
for 1 min. RT-PCR products were separated on 1.5% agarose gels, while the bands were
quantified by densitometry using the LI-COR Odyssey imaging system and expressed
relatively to the housekeeping genes U6 and β-actin.

2.6. Western Blot Experiments

Cells (3 × 105/well) were seeded on six-well plates, incubated for 24 h, and lysed. De-
natured proteins (20 µg) were separated on 4–12% Tricine gels (Invitrogen), electroblotted
onto PVDF membranes, and probed with primary (1:1000 dilution) and LI-COR infrared-
based secondary antibodies (1:5000 dilution). Protein bands were quantified by densit-
ometry using an LI-COR image scanner. A complete list of antibodies is provided in
Supplementary Table S2.

2.7. Mitochondrial DNA

Total DNA was isolated from cultured cardiomyocytes (DNA Purification System,
Promega, Madison, WI, USA), quantified by a spectrophotometer (NanoDrop, Thermo
Scientific, Waltham, MA, USA), and subjected to quantitative real-time PCR using designed
primers for mitochondrial NADH dehydrogenase 4 (forward: 5′–CAGCCACATAGCCCTC-
GTAG–3′; reverse: 5′–GCGAGGCTTGCTAGAAGTCA–3′). To increase the rigor of our
research, we also used an alternative primer for mitochondrial NADH dehydrogenase sub-
unit 4 (forward: 5′–TCCTCCCTACTATGCCTAG–3′; reverse: 5′–AGCATTCGGAGACAAC-
AG–3′).

2.8. Statistics

Statistical analysis was performed using GraphPad Prism 7. For multiple comparisons,
we used one- or two-way ANOVA. A paired two-tailed t-test was performed for pairwise
comparisons. A p-value < 0.05 was deemed significant. The graphs show individual data,
with mean ± SEM.

3. Results
3.1. MicroRNA 208a in Human Cardiomyocytes under Metabolic Stress

Using RT-PCR, we found that incubation of the human cardiomyocytes SV40 in
diabetogenic conditions (25 mM glucose, 20 mM BSA bound palmitate) caused a time-
dependent decrease, up to 30%, in miR 208a expression (Figure 1).

http://www.targetscan.org/cgi-bin/targetscan/vert_71/targetscan.cgi
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Figure 1. MicroRNA 208a in human cardiomyocytes exposed to metabolic stress. SV40 human cardiomyocytes were
incubated with 5 mM glucose, 25 mM glucose or 20 mM bovine serum albumin (BSA)-bound palmitate for 0 to 24 h. The
results are expressed as the mean ± SEM of three independent experiments. * p < 0.05 when comparing 5 mM glucose with
either 25 mM glucose or 20 µM palmitate.

3.2. Predicted Targets of MiR 208a

We performed a manual search to predict the mRNA species targeted by miR 208a,
followed by confirmatory RT-PCR. We found that 11 genes scored as the strongest predicted
targets with the TargetScan program: Arl16 (ADP ribosylation factor-like GTPase 16), Stc1
(Stanniocalcin 1, Ncoa7 (nuclear receptor coactivator 7), ATP5 (mitochondrial ATP synthase
subunit 5), Tomm6 (translocase of outer membrane 6), MED7 (mediator complex subunit 7),
Degs1 (sphingolipid delta(4)-desaturase 1), Snx10 (Sortin nexin 10), Stard4 (StAR-related
lipid transfer domain-containing 4), MRPS28 (mitochondrial ribosomal protein S28), and
Hmgn3 (high-mobility group nucleosomal-binding domain 3).

To confirm if miR 208a controls these mRNAs in normal and diabetic conditions,
we used CRISPR editing to eliminate approximately 90% of miR 208a in SV40 human
cardiomyocytes (Figure 2A). The exposure of cardiomyocytes to HP and HG + HP down-
regulated STC1 mRNA, which was reversed by the miR 208a deficiency (Figure 2B). MED7
mRNA was also significantly downregulated by all diabetogenic conditions and rescued
by the miR 208a deficiency (Figure 2C). The SNX10 mRNA was severely downregulated
by HG, upregulated by HP incubation, and upregulated by the miR 208a-deficient state
in both normal and HG conditions (Figure 2D). The mRNA encoding for mitochondrial
ribosomal protein S28 (MRSP28) was severely downregulated by the full metabolic milieu
(HG + HP) in SV40 wildtype cardiomyocytes and completely recovered by the miR 208a
deficiency, whereas it was upregulated by the miR 208a-deficient state in normal incubating
conditions (Figure 2E). The mitochondrial contact site and cristae organizing system protein
1 (MICOS1, MINOS1) was decreased by all diabetogenic conditions and not affected by the
miR 208a status (Figure 2F). In summary, SNX10 and MRSP28 mRNAs were increased in
miR 208a-deficient cardiomyocytes cultured in normal conditions. STC1, MED7, SNX10,
and MRSP28 mRNAs were depressed by diabetic conditions and reversed by miR 208a
deficiency. MINOS1 was insensitive to the miR 208a status.
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Figure 2. mRNA targets of miR 208a in cardiomyocytes incubated in diabetogenic conditions. (A) SV40 cardiomyocytes 
with normal (208+) and deficient (208−) miR 208a. First, 2 µg of total RNA from each sample was used to generate cDNA. 
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Figure 2. mRNA targets of miR 208a in cardiomyocytes incubated in diabetogenic conditions. (A) SV40 cardiomyocytes
with normal (208+) and deficient (208−) miR 208a. First, 2 µg of total RNA from each sample was used to generate cDNA.
RT-PCR cDNA products were used as templates for quantitative PCR (qPCR). All the qPCR assays were run in duplicate.
RT-PCR products were separated on 1.5% agarose gels, while the bands were quantified and expressed relatively to the
housekeeping mRNA U6. A Quick-Load® 100 bp DNA Ladder was used as a molecular weight marker. (B) Stanniocalcin 1
(STC1). (C) Mediator complex subunit 7 (MED7). (D) Sortin nexin 10 (SNX10). (E) Mitochondrial ribosomal protein S28
(MRPS28). (F) Mitochondrial contact site and cristae organizing system protein 1 (MINOS1). SV40 human cardiomyocytes
were incubated in DMEM with 5 mM glucose (N), 25 mM glucose (high glucose, HG), or 20 µM bovine serum albumin
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(BSA)-bound palmitate (high palmitate, HP) for 24 h. First, 2 µg of total RNA from each sample was used to generate
cDNA. RT-PCR cDNA products were used as templates for quantitative PCR (qPCR). All the qPCR assays were run in
duplicate. RT-PCR products were separated on 1.5% agarose gels, while the bands were quantified and expressed relatively
to the housekeeping mRNA β-actin. The alignment between miR 208a sequence and specific mRNAs, as well as the level of
conservation of those sequences in different species, is shown in Supplementary Figure S1. Results are expressed as the
mean ± SEM of three independent experiments. * p < 0.05.

3.3. MiR 208a Suppression Protects against the Myosin Isoform Switch and Pathological Stress
Markers Induced by Metabolic Challenges

MiR 208a suppression increased MHC-β and decreased ANP protein expression in
normal (N) conditions (Figure 3). The decrease in MHC-α and increase in MHC-β induced
by HG and HP were reversed by miR 208a downregulation. Double HG + HP exposure
did not have a summative effect on either contractile protein. Both diabetogenic conditions
increased the expression of ANP, which was reversed by the miR 208a downregulation.
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Figure 3. MiR 208a regulates the cardiomyocyte stress response. SV40 human cardiomyocytes
were incubated in DMEM with 5 mM glucose, 25 mM glucose (high glucose, HG), or 20 µM bovine
serum albumin (BSA)-bound palmitate (high palmitate, HP) for 24 h, and markers of pathologic
cardiomyocyte hypertrophy were assessed. (A). MHC-α, myosin heavy chain-α; MHC-β, myosin
heavy chain-β; GAPDH, glyceraldehyde 3-phosphate dehydrogenase. (B). ANP, atrial natriuretic
peptide. The results are expressed as the mean ± SEM of three independent experiments. * p < 0.05.
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3.4. MiR 208a, Mitochondrial Biogenesis, and Mitochondrial Markers

MiR 208a suppression did not alter the protein level of any mitochondrial biogenesis
factors in normal incubating conditions (Figure 4A). TRA protein level was unchanged
by either HG or HP, whereas it increased upon miR 208a suppression (Figure 4A). TFAM
and NRF1 were decreased by diabetic conditions and reversed by miR 208a suppression.
NRF1 and PGC1α proteins were decreased by HG and reversed by miR 208a suppression
(Figure 4A,B). In agreement with TFAM, mtDNA was significantly decreased by diabetic
conditions and normalized by miR 208a suppression (Figures 4C and S2, Supplementary
Materials).

We verified whether changes in mtDNA are accompanied by similar alterations in
mitochondrial markers (Figure 4D,E), and we found that ETS subunits are not affected by
the miR 208a status in normal conditions. In contrast, diabetic conditions downregulated
subunits of complexes I (NDUFB8, 20 kDa), III (core protein 2, 48 kDa), and V (α-subunit,
55 kDa), which was reversed by miR 208a suppression (Figure 4D). Mitochondrial FA
oxidation enzymes, CPT1, and long-chain acylCoA dehydrogenase (LCAD) followed a
similar pattern as the mitochondrial ETS markers. In contrast, cytochrome c amount was
increased by the diabetogenic conditions and not affected by miR 208a status. In summary,
while mitochondrial bioegenesis signal was inconsistently affected by diabetic conditions
and miR 208a status, mtDNA and markers, except cytochrome c, were decreased by diabetic
conditions and reversed by miR 208a deficiency.

Cells 2021, 10, 3152 8 of 20 
 

 

serum albumin (BSA)-bound palmitate (high palmitate, HP) for 24 h, and markers of pathologic 
cardiomyocyte hypertrophy were assessed. (A). MHC-α, myosin heavy chain-α; MHC-β, myosin 
heavy chain-β; GAPDH, glyceraldehyde 3-phosphate dehydrogenase. (B). ANP, atrial natriuretic 
peptide. The results are expressed as the mean ± SEM of three independent experiments. * p < 0.05. 

3.4. MiR 208a, Mitochondrial Biogenesis, and Mitochondrial Markers 
MiR 208a suppression did not alter the protein level of any mitochondrial biogenesis 

factors in normal incubating conditions (Figure 4A). TRA protein level was unchanged by 
either HG or HP, whereas it increased upon miR 208a suppression (Figure 4A). TFAM 
and NRF1 were decreased by diabetic conditions and reversed by miR 208a suppression. 
NRF1 and PGC1α proteins were decreased by HG and reversed by miR 208a suppression 
(Figure 4A,B). In agreement with TFAM, mtDNA was significantly decreased by diabetic 
conditions and normalized by miR 208a suppression (Figures 4C and S2, Supplementary 
Materials). 

We verified whether changes in mtDNA are accompanied by similar alterations in 
mitochondrial markers (Figure 4D,E), and we found that ETS subunits are not affected by 
the miR 208a status in normal conditions. In contrast, diabetic conditions downregulated 
subunits of complexes I (NDUFB8, 20 kDa), III (core protein 2, 48 kDa), and V (α-subunit, 
55 kDa), which was reversed by miR 208a suppression (Figure 4D). Mitochondrial FA ox-
idation enzymes, CPT1, and long-chain acylCoA dehydrogenase (LCAD) followed a sim-
ilar pattern as the mitochondrial ETS markers. In contrast, cytochrome c amount was in-
creased by the diabetogenic conditions and not affected by miR 208a status. In summary, 
while mitochondrial bioegenesis signal was inconsistently affected by diabetic conditions 
and miR 208a status, mtDNA and markers, except cytochrome c, were decreased by dia-
betic conditions and reversed by miR 208a deficiency. 

 
Figure 4. Cont.



Cells 2021, 10, 3152 9 of 20Cells 2021, 10, 3152 9 of 20 
 

 

 

 
Figure 4. Cont.



Cells 2021, 10, 3152 10 of 20
Cells 2021, 10, 3152 10 of 20 
 

 

 

 
Figure 4. MiR 208a, mitochondrial biogenesis, and mitochondrial markers. SV40 human cardio-
myocytes were incubated in DMEM with 5 mM glucose, 25 mM glucose (high glucose, HG), or 20 
µM bovine serum albumin (BSA)-bound palmitate (high palmitate, HP) for 24 h. (A) Mitochondrial 
biogenesis factors. TRA, thyroid hormone receptor A; TFAM, mitochondrial transcription factor A; 
NRF1, nuclear respiratory factor 1. (B) PGC1 α, peroxisome proliferator-activated receptor γ-coac-
tivator α. (C) Mitochondrial DNA. Total DNA was subjected to quantitative real-time PCR using a 
designed primer for mitochondrial NADH dehydrogenase 4 (ND4). (D) Mitochondrial marker pro-
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Figure 4. MiR 208a, mitochondrial biogenesis, and mitochondrial markers. SV40 human car-
diomyocytes were incubated in DMEM with 5 mM glucose, 25 mM glucose (high glucose, HG),
or 20 µM bovine serum albumin (BSA)-bound palmitate (high palmitate, HP) for 24 h. (A) Mito-
chondrial biogenesis factors. TRA, thyroid hormone receptor A; TFAM, mitochondrial transcription
factor A; NRF1, nuclear respiratory factor 1. (B) PGC1 α, peroxisome proliferator-activated receptor
γ-coactivator α. (C) Mitochondrial DNA. Total DNA was subjected to quantitative real-time PCR
using a designed primer for mitochondrial NADH dehydrogenase 4 (ND4). (D) Mitochondrial
marker proteins. C I, II, III, and V, complexes I, II, III, and V. (E) CPT1, carnitine palmitoyl transferase
1; LCAD, long-chain acylCoA dehydrogenase; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.
The lower panels represent the densitometric analyses of specific proteins per GAPDH. Results are
expressed as the mean ± SEM of three independent experiments. * p < 0.05.

3.5. MiR 208a Suppression Protects against Mitochondrial Dysfunction Induced by the
Metabolic Stress

MiR 208a suppression caused a slight decrease in the basal OCR (Figure 5A) and an
increase in the reserve OCR, while other respiratory parameters were unchanged. Changes
in OCR were mirrored by an increase in the basal ECAR and a decrease in reserve ECAR
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(Figure 5A). While miR 208a overexpression slightly decreased the basal OCR in normal
conditions, the other respiratory parameters were unchanged (Figure 5B).

The effect of miR 208a on cardiomyocytes cultured in high glucose (HG) is shown in
Figure 5C. Both basal and proton leak OCR were decreased by miR 208a suppression upon
HG incubation and not reversed by miR 208a re-expression (Figure 5C). ADP-dependent
and non-mitochondrial OCRs were not affected by the miR 208a suppression. In contrast,
maximal and reserve OCRs were decreased by HG, reversed by miR 208a suppression, and
depressed by miR 208a re-expression (Figure 5C).

Basal and proton leak OCRs were decreased by miR 208a suppression during HP
incubation and not reversed by miR 208a re-expression (Figure 5D). ADP-dependent
OCR was not affected by the miR 208a status. In contrast, maximal and reserve OCRs
were decreased by HP, reversed by miR 208a suppression, and depressed by miR 208a
re-expression (Figure 5D). HP incubation decreased the non-mitochondrial oxygen con-
sumption, which was reversed by the miR 208a suppression and negatively affected by
miR 208a re-expression.

Supplementary Figure S3 shows the effect of the scrambled control miR sequence on
SV40 cardiomyocytes respiratory properties. We confirmed that the basal OCR is decreased
by the miR 208a deficiency, and that the transfection with scrambled miR has no effect
on basal OCR. We also confirmed that miR 208a suppression prevented the HG- and
HP-induced decrease in maximal and reserve OCRs, and that scrambled miR transfection
did not affect these rates. A full description of the effect of miR 208 overexpression on
mitochondrial respiratory properties is provided in Supplementary Figure S4. We show that
miR 208a overexpression decreased basal and proton leak OCR in all three experimental
conditions. We confirmed that the exposure to HG and HP decreased the maximal and
reserve OCR; however, the miR 208a overexpression did not have an additive effect on the
collapse of the maximal and reserve OCR.
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SV40 human cardiomyocytes were incubated in DMEM with 5 mM glucose, 25 mM glucose (high glucose, HG), or 20 µM
bovine serum albumin (BSA)-bound palmitate (high palmitate, HP) for 24 h. Mitochondrial function was measured using an
XFp Seahorse analyzer in bicarbonate- and phenol red-free DMEM supplemented with energetic substrates (10 mM glucose,
1 mM pyruvate, and 2 mM glutamine). (A) Respiratory properties induced by the miR 208a deficiency in cardiomyocytes
exposed to normal conditions. (B) Respiratory properties induced by the miR 208a overexpression in cardiomyocytes
exposed to normal conditions. (C) Respiratory properties of cardiomyocytes exposed to high-glucose (HG) conditions.
(D) Respiratory properties of cardiomyocytes exposed to high-palmitate (HP) conditions. 208+, wildtype cardiomyocytes
that normally express miR 208a; 208−, cardiomyocytes deficient in miR 208a; 208++, wildtype cardiomyocytes transfected
with miR 208a; 208−+, cardiomyocytes deficient in miR 208a which were transfected with miR 208a. OCR, oxygen
consumption rate (expressed as pmol/min/mg); ECAR, extracellular acidification rates (expressed as mpH/min/mg);
FCCP (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone). Respiratory parameters were measured or calculated as
described in Section 2. The results are expressed as the mean ± SEM of four independent experiments. * p < 0.05.

Basal OCR positively correlated with ADP-coupled OCR, and they both negatively
correlated with the reserve OCR in all experimental conditions disregarding the miR 208a
status (Supplementary Figure S5). While basal OCR positively correlated with the maximal
OCR, miR 208a suppression induced a weak negative correlation in normal conditions.
Maximal OCR positively correlated with ADP-coupled OCR only in HP conditions with
mir 208a suppression, strengthening this correlation, and it exhibited a strongly positive
correlation with the reserve OCR in HG condition disregarding the 208a status.

In summary, the maximal and reserve OCRs were decreased by the diabetic conditions
and reversed by the miR 208a deficiency in SV40 human cardiomyocytes.

4. Discussion

This report focuses on the effect of miR 208a on mitochondrial bioenergetics in metabol-
ically challenged human cardiomyocytes. Using loss- and gain-of-function experiments, we
show that miR 208a regulates the cardiac mitochondrial stress response during metabolic
challenges while having minimal effects in homeostatic conditions. Our data indicate
that miR 208a suppression protects mitochondrial integrity during metabolic heart dis-
ease and suggest that miR 208a may be a therapeutic target in hereditary and acquired
mitochondrial diseases.
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4.1. MiR 208a in Cardiomyocytes Exposed to Metabolic Stress

We observed that both metabolic challenges (HG and HP) equally downregulated
miR 208a by 30% in a time-dependent manner in cultured cardiomyocytes. In contrast, in
chronic diseases, cardiac miR 208a expression varies over the course of the disease. For
example, in obese db/db mice, miR 208a exhibited an oscillatory pattern with an early
increase followed by a later decline [22]. MiR 208a is a stable microRNA, with a half-life
longer than 12 days [21]; therefore, our short (24 h) experimental conditions may not have
depicted miR 208a changes larger than 30% and its potential oscillations during metabolic
challenges.

4.2. Predicted MiR 208a Targets

MiR 208a may cause either degradation or translational repression of targeted mR-
NAs [27]. We used bioinformatic tools to predict the miR 208a mRNA targets by pairing
the miR 208a seed region with complementary sites within mRNAs. Both mRNA canonical
sites, containing the exact partner bases in the miR 208a seed region, and noncanonical sites,
without a complete match with the miR seed, were examined. Because some canonical sites
are more functionally efficient than others to cause protein repression, in order to determine
the miR 208a targeting efficiency, we used a quantitative approach taking into account
multiple features including the miR 208a target site type and mRNA 3′-UTR terminus
characteristics. These features were combined to develop the total context score (TCS) [28].
We then confirmed the effect of miR 208a deficiency by assessing the expression of targeted
mRNAs. We found that two mRNAs are increased by miR 208a suppression in the absence
of the cardiomyocyte stress, Snx10 and MRPS28, with the most significant TCS of −1.01
and −0.70, respectively.

Our results indicate that the Snx protein family is affected by metabolic stress, and
they suggest that miR 208a reverses the alterations of the metabolic pathways regulated by
the Snx family. Snx10 belongs to the Sortin nexin family that regulates protein trafficking
and recycling. Snx10 supports energetic metabolism via limiting chaperone-mediated
lysosomal autophagy (CMA)-dependent degradation of glycolysis and tricarboxylic acid
cycle enzymes [29]. The 3′-UTR terminus of the human Snx10 mRNA has three sites that
can potentially bind a nucleotide sequence in the miR 208a seed. Our respiratory studies
showing a depression by metabolic challenges and reversal by the miR 208a suppression
are in line with the concept that an intact Snx10 limits CMA and may favor mitochondrial
metabolism.

We show that MRPS28 mRNA is decreased by the complete metabolic milieu (HG
+ HP) and normalized by miR 208a suppression. MRPS28 mRNA generates the small
protein subunit bS1m, an essential component of the mitochondrial ribosome [30], and it
has one site in its 3′-UTR terminus that can potentially bind a nucleotide sequence in the
miR 208a seed. MRPS28 deficiency inhibited mitochondrial translation, thus decreasing
mitochondrial biogenesis and respiration [31], confirming that MRPS28 is critical for
mitochondrial integrity. Our data indicate that miR 208a regulates the mitochondrial
translation in cardiomyocytes during metabolic stress.

Stanniocalcin-1 (Stc1) mRNA has two sites in the 3′-UTR terminus, which can bind a
nucleotide sequence within the miR 208a 3p terminus located outside of the seed sequence.
Stc1 mRNA was not affected by the miR 208a status in the absence of metabolic stress,
whereas it was decreased by HP and reversed by miR 208a deficiency. Stc1 is reported to
promote mitochondrial function by stimulating cardiac mitochondrial function, increasing
calcium influx in renal mitochondria [32], regulating mitochondrial dynamics [33], and
maintaining mitochondrial bioenergetics and antioxidant response in endothelial [34] and
renal tubular cells [35]. We now report that Stc1 is an miR 208a-dependent mitochondrial
protective factor in cardiomyocytes exposed to metabolic challenges.

In our experiments, MED7 mRNA was decreased by diabetic conditions and nor-
malized by the miR 208a suppression. MED7 is a component of the mediator complex, a
multi-subunit link between RNA polymerase II and transcription factors to govern nuclear
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transcription [36]. Genetic alterations within the MED21–MED7 heterodimer impeded
the binding of the mediator complex to RNA polymerase II [37]. MED7 mRNA has one
conserved site in the 3′-UTR terminus, which can bind a nucleotide sequence in the miR
208a 3′ terminus located outside of the miR seed. MiR 208a was reported to repress the
expression of another component of the mediator complex, MED13 (thyroid hormone-
associated protein 1) [38], but we determined that, in human cardiomyocytes, MED13
mRNA is not an miR 208 target.

We conclude that miR 208a controls factors that maintain nuclear transcription, mi-
tochondrial translation and bioenergetics, and mitochondrial and cellular antioxidant
response.

4.3. Cardiac Stress Markers

Cardiac contractility is maintained by the balance between the fast ATPase α myosin
isoform (MHC-α) encoded by the myh6 gene and the slow β myosin isoform (MHC-β)
encoded by the myh7 gene. A hallmark of cardiac stress is the reactivation of a fetal genetic
program, including upregulation of the atrial natriuretic peptide (ANP) and MHC-β, as
well as downregulation of MHC-α (myosin switch) [39,40].

A primary decrease in myh6 expression caused a decline in miR 208a, indicating that
miR 208a follows the expression of its host gene during normal cardiac development [21].
We also found a positive correlation between miR 208a and the myh6 product, MHC-α, in
normal cardiomyocytes exposed to both HG and HP, but it is unclear if the decrease in myh6
expression is the primary event leading to miR 208a deficiency during these diabetogenic
conditions. Interestingly, the 90% miR 208a suppression corrected the metabolic-induced
decrease in MHC-α. MiR 208a suppression also increased MHC-β in cardiomyocytes
cultured in normal conditions. This inverse relationship between miR 208a and MHC-β in
normal conditions contradicts the results observed in diabetic conditions where miR 208a
deficiency blunted the MHC-β overexpression. Our results are in line with those reported
in other models of cardiac disease. For example, in the pressure-overload stressed heart,
miR 208a knockout blocked β-MHC protein expression [21].

In our model of cultured cardiomyocytes, both metabolic challenges caused a complete
myosin switch, suggesting that metabolic stress may negatively affect contractility. Our
results are in line with those observed in the diabetic human hearts [22] and show that
miR 208a affects cardiac contractile proteins via a direct effect on cardiomyocytes rather
than via its systemic extracardiac actions [23]. While a 30% decrease in miR 208a was not
protective, a 90% miR 208a depression reversed the myosin switch and ANP overexpression,
suggesting that miR 208a is not the sole regulator of cardiac contractility. A threefold
increase in miR 208a is necessary to alter MHC-β, suggesting a threshold for the control
of miR 208a on myh-7 gene expression [21]. The negative effect of miR 208 on its targeted
mRNA species is enhanced by stress [41] and potentially influenced by the type of cardiac
stress. Because none of the cardiac stress marker mRNAs are direct miR 208a targets, miR
208a suppression may restore the myosin isoforms ratio via mechanisms other than directly
regulating their mRNAs.

A candidate mechanism that may be responsible for this effect is the activation of
thyroid hormone signaling. During cardiac development, thyroid hormone is an upstream
positive regulator of both the host gene, myh6, and its intronic miR 208a [21], thus maintain-
ing MHC-α and cardiac contractility [42]. In contrast, in the adult stressed heart, thyroid
hormone signaling is reported downstream of miR 208a, and the effect of miR 208a on
contractile proteins is dependent on thyroid hormone signaling [21]. MiR 208a deficiency
enhanced thyroid hormone’s ability to inhibit myh7 expression via one of its target genes,
thyroid hormone-associated protein 1, also called MED13 [21]. MiR 208a repressed MED13
expression [38]. Therefore, miR 208a is a limiting factor for the thyroid hormone signaling
on cardiac contractile proteins. We add to this concept the observation that miR 208a limits
the thyroid hormone effect on contractile proteins via thyroid hormone receptor A.
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In conclusion, consistent with other cardiac stress models [38], we confirm that miR
208a is a regulator of cardiac contractile proteins in short-term metabolically challenged
cardiomyocytes. However, we cannot predict similar results in chronic metabolic conditions.

4.4. Mitochondrial Biogenesis

The mitochondrial biogenesis pathway, comprising, in a hierarchical manner, of PGC-
1α, TFAM, and NRF1, is reportedly activated in hearts exposed to an HFD regimen [43]. We
found that none of the mitochondrial biogenesis regulating factors were sensitive to miR
208a in normal conditions, an observation that is supported by our bioinformatics search
that did not identify them as direct miR 208a targets. The 30% decrease in miR 208a induced
by the metabolic stress was not protective against the decrease in some mitochondrial
biogenesis factors, while 90% miR 208a suppression induced a robust mitochondrial biogen-
esis signal in cultured cardiomyocytes. In in vivo experiments with HFD-induced insulin
resistant rodents, an increased mitochondrial FA oxidation matching the PGC-1α over-
expression [44] aligned with the positive effect of FA on PGC-1α expression [45] and the
concept that PGC-1α positively regulates FA β-oxidation enzymes and ETS subunits [46].
In contrast with the in vivo metabolic syndrome, metabolically challenged cardiomyocytes
show a depressed mitochondrial biogenesis signal and a secondary decrease in mitochon-
drial ETS complexes. Strikingly, the total cardiomyocyte cytochrome c, a mitochondrial
marker, was increased by the metabolic stress and miR 208 deficiency opposed this increase.
MiR 208a restores the effect of HG and HP on downstream biogenesis factors, NRF and
TFAM, and mitochondrial ETS complexes. Our results indicate that miR 208a opposes
downstream positive regulators of mitochondrial biogenesis.

4.5. Mitochondrial Function

We observed that 30% miR 208a deficiency was insufficient to protect against the
decrease in mitochondrial markers and mtDNA induced by the in vitro metabolic stress,
whereas 90% miR 208a suppression was protective.

Although miR 208a status does not affect mitochondrial biogenesis, mtDNA and
specific markers in normal conditions, both miR 208a deficiency and overexpression caused
a slight decrease in basal oxygen consumption rates in cardiomyocytes energized with
glucose and the complex I substrate pyruvate. This was associated with an increase in
the extracellular acidification rates, suggesting that cultured cardiomyocytes trend to
compensate for the decrease in mitochondrial function by increasing extramitochondrial
glycolysis. Our data suggest that the miR 208a status specifically affects mitochondrial
metabolism, while the extramitochondrial glycolytic ability is only secondarily affected.
The maximal cardiomyocyte OCR is reached by achieving the ETS maximal capacity when
the mitochondrial inner membrane proton gradient is collapsed by the uncoupler. While
the basal OCR is slightly depressed, miR 208a suppression increases the reserve OCR,
which is calculated by subtracting the basal from the maximal OCR. This feature is lost
in cardiomyocytes overexpressing miR 208a, indicating that miR 208 is limiting for the
maximal mitochondrial function.

Metabolically challenged cardiomyocytes maintain the basal and ADP-coupled OCR.
In contrast, when the mitochondrial inner membrane proton gradient is collapsed with
an uncoupler, miR 208a suppression enables ETS to work at its maximal capacity and
increases maximal OCR. The data on mitochondrial function align with the increase in mi-
tochondrial density and ETS subunits in miR 208a-deficient cardiomyocytes. The increase
in mitochondrial maximal respiratory capacity provides a higher mitochondrial reserved
function. These data are in agreement with the concept that the functional capacity of
individual ETS subunits is higher than that needed for basal oxidative phosphorylation in
cardiac mitochondria. Our data indicate that miR 208a limits this functional capacity by
inhibiting mitochondrial biogenesis during metabolic stress.
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4.6. Fatty-Acid β-Oxidation

MiR 208a participates in the angiotensin II signaling pathway to depress cardiac FA
oxidation [47]. In our study, two major FA oxidation enzymes, CPT1 and LCAD, were not
changed by the miR 208a suppression in cardiomyocytes cultured in normal conditions,
confirming that they are not direct miR 208a targets. MiR 208a suppression canceled the
effect of excessive substrates (both HG and HP) to decrease CPT1, indicating that miR
208a deficiency favors both CPT1-mediated FA transport and LCAD-mediated β-oxidation
within the mitochondria. Our results are in contradiction with the effect of miR 208a on
mitochondrial metabolism after a short-term (1 h) incubation of HL-1 cardiomyocytes
with palmitate. Palmitate-supported respiration was higher than pyruvate-dependent
respiration, and this difference was blunted by overexpressing miR 208a [47], suggesting
that miR 208a may also have an acute control on mitochondrial metabolism via mechanisms
other than gene expression. This statement is supported by the observation that, in that
study, miR 208a expression did not affect nuclear receptors (PPARα protein) that regulate
FA oxidation enzymes.

5. Conclusions

In conclusion, we report that miR 208 regulates cardiac mitochondrial biogenesis and
function by acting on upstream and downstream regulators of mitochondrial translation,
integrity, and protein turnover (Figure 6). Because the metabolic heart cannot freely switch
between glucose and fatty-acid oxidation as energetic substrates, future research is needed
to determine the effect of miR 208 on cardiac metabolic flexibility. Our data set the stage for
future research to determine the benefit of downregulating miR 208a in protecting against
organ disease in inherited and acquired mitochondrial dysfunctions.
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Figure 6. Model for the role of miR 208a in regulating mitochondrial function in cardiomyocytes.
A decrease in miR 208a expression activates mitochondrial biogenesis via thyroid signaling and
derepresses factors that control nuclear transcription, mitochondrial translation, oxidative stress,
integrity, and turnover. SNX10, Sortin nexin 10; MED7, mediator complex subunit 7; MRPS28,
mitochondrial ribosomal protein S28; STC1, Stanniocalcin 1; TRA, thyroid hormone receptor A;
MHCα, myosin heavy chain α; MHCβ, myosin heavy chain β.
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