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a b s t r a c t

Aggregation is a critical parameter for protein-based therapeutics, due to its impact on the immunogenic-
ity of the product. The traditional approach towards characterization of such products is to use a collec-
tion of orthogonal tools. However, the fact that none of these tools is able to completely classify the
distribution and physical characteristics of aggregates, implies that there exists a need for additional ana-
lytical methods. We report one such method for characterization of heterogeneous population of proteins
using transmission electron microscopy. The method involves semi-automated, size-based clustering of
different protein species from micrographs. This method can be utilized for quantitative characterization
of heterogeneous populations of antibody/protein aggregates from TEM images of proteins, and may also
be applicable towards other instances of protein aggregation.
� 2020 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Complex protein-based therapeutic drugs are prone to struc-
tural and functional alterations [1]. Changes in the primary
sequence, expression system, post-translational modification, pH
and temperature variations can result in loss-of-function or aggre-
gation, and consequently unwanted immune response when
administered clinically [1,2]. The complexity inherent in therapeu-
tic proteins suggest that even minor changes to the protein struc-
ture can significantly affect the safety and efficacy of
biotherapeutics [3–7]. Since the development of biotherapeutics
is witnessing an enormous growth worldwide, it has become
imperative to establish effective protocols for quickly analyzing
their stability and purity [8,9].

Protein aggregation is an important phenomenon in biophar-
maceutical formulations due to the immunogenicity associated
with aggregates. Protein aggregates are generally classified into
two categories – 1) reversible, and 2) irreversible, based on the
strength or reversibility of the association amongst their con-
stituent monomers [10,11]. Reversibility of aggregates is generally
defined on the basis of the bonding between different constituent
monomers or oligomeric species. Weaker molecular interactions
includes non-covalent Van der Waal’s, electrostatic, hydrophobic
interactions, hydrogen bonding etc. [11], while strong molecular
interactions such as covalent bonding requires higher energy for
dissociation. Irreversible aggregation is generally attributed to
covalent interactions between monomeric and oligomeric
molecules [11], and tends to form in proteins over long storage
or transportation conditions. Stages in this process include nuclei
formation, protein unfolding and formation of metastable states
[11].

A myriad of techniques are available for characterizing biomo-
lecules and their aggregates in varied size range, from a few
nanometres to several micro andmillimetres [12]. A few such tech-
niques with their projected size range of detection are – size
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exclusion-high performance liquid chromatography (SE-HPLC)
(1 nm-50 nm), asymmetric flow field flow fractionation (AF4)
(2 nm�1 mm), microscopic methods (light (0.8 mm–150 mm), elec-
tron (1 nm–2 mm), atomic force microscopy), static and dynamic
light scattering (SLS and DLS) (1 nm–5 mm), analytical ultra-
centrifugation (AUC) (1 nm–100 nm), light obscuration (LO)
(1 mm–200 mm), coulter counter (CC) (0.4 mm–1.6 mm), nanoparti-
cle tracking analysis (NTA) (30 nm–1 mm) and micro flow imaging
(MFI) (2 mm–300 mm) [13].

These techniques vary widely in their mode of detection, sam-
ple quantity and preparation method, robustness, and sensitivity
[13].

Among these variables, the sample preparation step has an out-
sized effect on the susceptibility of proteins towards aggregation,
and the ability of various methods to detect aggregation. There is
always the possibility of introducing artefacts in samples during
preparation steps which could either cause new aggregate forma-
tion or destruction of existing aggregates, thus affecting the overall
accuracy of the detection method [10,13]. Some common steps of
sample preparation include centrifugation, sample dilution and
concentration. All of these steps have the potential to drastically
change the aggregate content in the sample. SEC, which is consid-
ered as the gold standard for aggregate detection, can be difficult to
interpret if the aggregate size is larger than the size range of the
stationary phase matrix. Larger insoluble aggregates might be
trapped in the column prefilter and impact the overall sample
mass balance and analysis [13,14]. Similarly, heating or reducing
conditions during sample preparation for polyacrylamide gel elec-
trophoresis can cause aggregate dissociation due to breakage of
covalent bonds [15,16]. Therefore it is always recommended that
multiple orthogonal tools be utilized for analysing aggregated sam-
ples to ensure the accuracy and reliability of the results obtained
[15,16]. Converging results from varied techniques are essential
for inferring the status of biotherapeutics, which may be highly
immunogenic at aggregated states.

The current, widely used orthogonal techniques for aggregate
detection have certain drawbacks. SEC-based separation, as men-
tioned before, suffers from lack of resolution in the higher molec-
ular weight range, trapping of larger aggregate species in the
column pre-filter or eluting in column’s void volume, aggregated
species adsorbing to stationary phase, aggregates breaking or
forming during analysis, etc., all of which can skew molecular
weight analysis [17–19]. DLS, which predicts the average hydrody-
namic size of the sample [20,21], is a high throughput technique,
but lacks the ability to accurately separate or quantify aggregated
species. Circular Dichroism (CD) is an important tool for secondary
and tertiary structure determination [22], however it cannot iden-
tify reversible aggregates, that could have expected secondary
structure. While SEC-MALS and hydrogen deuterium exchange
mass spectroscopy (HDX-MS), are more effective for analysing
altered conformational and aggregated states [23], they do not
allow for direct visual examination of aggregated species in a pop-
ulation. Given these limitations in existing techniques, it is imper-
ative to develop additional analytical methods, ideally for both
visual and quantitative analysis of aggregates in therapeutic pro-
tein samples.

Electron microscopy is arguably the only technique that can
provide visual information about aggregated species in submicron
range present in therapeutic proteins. Negative stain electron
microscopy has been utilized for investigating the effect of extra-
neous factors such as storage, temperatures, time, and stress on
the aggregation status of biotherapeutics like monoclonal antibod-
ies [13,24,25]. However, the output has been limited to visual
assessment of aggregation, in order to supplement data from tech-
niques such as DLS and SEC [26,27]. Typically, negative stain elec-
tron microscopy has been useful in studying morphology of protein
complexes, nanoparticles, and biological ultrastructures. Most of
the studies have been based on visual or qualitative parameters,
however, there have been very few efforts to quantify information
obtained from low resolution electron micrographs. Some exam-
ples include quantification of additive dispersion [28]; and that
of nanoparticle uptake into cells from TEM images [29]. In case
of therapeutic proteins, numerical analysis of images has the
potential to deliver an accurate physical distribution of aggregates
in a wide size range and might be useful as an orthogonal method
for effective monitoring of samples. Aggregated species in the sub-
micron range or larger are expected to be fairly non-uniform and
heterogeneous in terms of shapes and sizes. Size-based analysis
of aggregates from micrographs requires automated procedures
since manual quantification involves significant time input and
may incorporate substantial user-specific variations in the output
[30]. Although automated particle picking and classification tech-
niques are available for 3D reconstruction procedures from elec-
tron cryo-micrographs, categorizing an entirely heterogeneous
population requires different approaches.

In this work, we attempted to combine automated detection
and numerical size distribution of aggregates in images from con-
ventional electron microscopy. The micrographs were subjected to
de-noising, low-pass filtering and background normalization, con-
verted to binary images, and aggregates of heterogeneous sizes and
shapes were automatically picked and clustered to obtain a distri-
bution of higher order species present in the sample. Data from
visual or manual characterization of micrographs were found to
correlate well with the size histogram of heterogeneous units.
When applied towards samples of therapeutic monoclonal anti-
bodies, this method was found to correlate with, but provide infor-
mation above and beyond that is generated from traditional
analytical methods like SEC. To the best of our knowledge, auto-
mated quantification of aggregates from electron micrographs
has not been attempted before, and we expect that this method
will be applicable to the study of aggregation in biotherapeutics
as well as protein complexes in other systems.
2. Materials and methods

2.1. Reagents

Three monoclonal antibodies, designated as mAb A, B and C,
from subclass IgG1 were procured for EM-based analysis. Both
mAb B and C are biosimilars of an anti CD-20 molecule. While
mAb B is a commercialised, marketed product, mAb C was donated
by a major Indian biosimilar manufacturer. mAb A, an antibody
against flagellin of Salmonella typhi, was a kind gift from a col-
league. All antibodies were stored at 4 �C. All buffers used in the
study were filtered using a 0.22-lm filter and degassed.
2.2. Sample preparation

mAb B is a commercialised anti CD-20 molecule as mentioned
previously. It was procured in its commercial formulation buffer
at pH 6.5 (polysorbate 80 (0.7 mg/mL), sodium chloride (9 mg/
mL), sodium citrate dihydrate (7.35 mg/mL)). mAb C is a biosimilar
of anti CD-20, provided by a major Indian manufacturer, in 20 mM
acetate buffer at pH 5.0. Both mAbs were dialysed into Dulbecco’s
phosphate-buffered saline (DPBS) using Nanosep� Centrifugal
Devices with OmegaTM Membrane 10 K (Pall Corporation, NY, US)
at 4 �C, followed by size exclusion chromatography for an estimate
of the aggregate content in the sample. SECwas carried out at 25 �C
using a Superdex 200 column (10/30, GE Healthcare, USA) in con-
junction with a Dionex Ultimate 3000 UHPLC unit (Thermo Scien-
tific, USA). Each mAb was eluted isocratically over 30 min, at a
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constant flow rate of 0.5 ml/min, with a mobile phase containing
50 mM phosphate, pH 6.8, and 300 mM NaCl. UV absorbance at
280 nm was monitored to detect the eluted protein. Monomer
and aggregate contents were estimated by calculating the percent-
age area under the corresponding peaks using Chemstation� (Agi-
lent). No sample precipitation was observed during sample
preparation and analysis by SEC, and total protein peak area was
conserved during repeated sample injections. mAb A is an antibody
against the flagellin of Salmonella typhi, produced in mice by an
academic laboratory. It was stored and provided in DPBS, and
was used as a control in our studies after optimum dilution with
DPBS.

2.3. Negative staining and electron microscopy

4 ml of therapeutic mAbs, at a concentration of 400 lg/ml, was
placed on the carbon face of 200 mesh glow discharged carbon
coated copper grids (Agar Scientific) and allowed to adsorb for
1 min. Grids were glow discharged for 60 s at 20 mA (SC7620 Mini
Sputter Coater/Glow Discharge system, Quorum Technologies),
prior to usage. Grids were washed 3 times with 10 ml of double dis-
tilled water, followed by blotting with Whatmann filter paper. For
staining, 4 ml of 2% uranyl acetate, pH ~ 7.0 was applied onto the
grid twice, for a time period of 20 s and 40 s, respectively, and
the surplus stain was removed by blotting in each case. The grid
was dried at room temperature for 2 min and visualized at a mag-
nification of 100,000x in a FEG-TEM (FEI Tecnai) operating at
200 kV. Three micrographs from different grid squares were col-
lected for each sample.

2.4. Manual counting

A black isosceles triangle was placed as a fiducial marker in the
center of each area of density corresponding to either a monomer
or aggregate on the micrographs in order to prevent duplicate
counting. Antibodies on the same micrographs were counted by
a trained electron microscopist (User A) and a novice (User B), in
order to estimate the accuracy of counting (Supplementary Fig. 1
(d)).

2.5. Implementing MATLAB

A MATLAB GUI application was developed to obtain the image
mask with labelled particles and enable the user to plot histograms
of radii and area of aggregates automatically, while visualizing the
picked particles at the same time. The GUI application ‘softEM’ was
developed in MATLAB using suitable functions from the Image Pro-
cessing Toolbox. The application first de-noises the image itera-
tively by reducing the Huber penalty function, as described in
the next section. The de-noised image is then low-pass filtered,
in order to obtain a highly blurred background of the image. This
background is used to normalize the image so that a single thresh-
old can be applied to the whole image. This threshold, applied to
determine the binary mask from the image, is slightly higher than
the one estimated using Otsu’s method (Supplementary Fig. 2). The
user is provided the option to vary this threshold as well as the
background filter size in order to ensure that the mask can be
determined efficiently from micrographs with different number
of aggregates and different extent of staining. The 8-connected
components are labelled as particles and information such as area
characteristics, equivalent radii, position and boundaries of aggre-
gates can be easily determined from the mask image.

2.5.1. Size characterization
The algorithm for size characterization is described below:
(a) Themicrograph is first de-noised by reducing the Huber pen-
alty function [31], which is a well-known ‘‘edge-preserving”
penalty, i.e., it de-noises the image while preserving the fea-
tures of interest. The Huber penalty function is defined as:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffis2 3

H gð Þ ¼

X
k¼all pixels

1þ jrgkj2
d2

� 14 5

Here g is the 2D image and the parameter d is determined using

the statistics of gradient magnitudes jrgkj for index k ranging over
all pixels in the image. For image pixels with gradient magnitude
� d, the penalty function is effectively a quadratic gradient penalty
which is known to have smoothening property. On the other hand
for pixels with gradient magnitude� d the penalty is equivalent to
the Total Variation (TV) which is known to be edge preserving. This
penalty function is minimized using 20 iterations of gradient des-
cent which lead to a de-noised image [32].

(b) The next step is to estimate the local background variations
in the micrograph due to uneven presence of the negative
stain. This is done by low-pass filtering the micrograph using
a very small aperture window. This window size is provided
as a parameter in the GUI which can be altered by the user in
case the user feels the background estimation is not being
done correctly, which may happen if the magnification is
much higher than 100,000. In this case, the window size
must be reduced further so that the particle information is
not included in the background.

(c) After the background has been estimated, this background is
used to normalize the de-noised micrograph image. This
yields a background flattened image, where the variations
in the micrograph due to the presence of stain have been
removed. In this image, a single threshold can be applied
to the whole image. This threshold is calculated using the
well-known Otsu’s method, which involves minimizing the
variance of the background as well as foreground pixels. In
practice, it was observed that a threshold slightly higher
(b = 1.1) than the calculated threshold provided better
results. The applied threshold (=b*Otsu’s threshold) can be
controlled by the user in case the default threshold does
not yield satisfactory results.

(d) Once the binary mask has been obtained after applying the
threshold, the white pixels are characterized as aggregates
while the black pixels are treated as background. The statis-
tics of the size distribution of these aggregates is determined
using Blob (binary large object) analysis method, where 8-
connected pixels are treated as a single aggregate. This algo-
rithm is able to determine the number of aggregates and
area of each of these aggregates in square pixels. The calcu-
lation of actual area of each pixel is described in the next
section and using this value, the area of each aggregate can
be calculated in square nano-meters.

2.5.2. Size-based clustering of aggregated species
The pixel size was converted to nm based on the scan parame-

ters of the camera (FEI Eagle 4 k � 4 k CCD attached to a 200 KV
FEI-Tecnai FEG-TEM). The characterized antibody aggregates were
clustered based on their equivalent radius (re) defined as

re ¼
ffiffiffiffi
A
p

r

where the area A = np � area of each pixel for the system, where np
is the number of pixels occupied by the aggregate. This is the equiv-
alent radius of a circle having the same area. The aggregated species
were clustered and distributed into bins of equivalent radii.
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3. Results and discussion

3.1. Negative staining electron microscopy of mAbs show
heterogeneous aggregates in varied quantities

Three monoclonal antibodies, mAb A, B, and C, were used in this
study. mAb A showed discrete particles with limited aggregation in
DPBS buffer (Fig. 1A). mAb B and C showed varied degrees of
heterogeneous, aggregated species in buffers containing 15 mM
Phosphate, pH 6.5 and 200 mM NaCl (Fig. 1B–C), while aggregation
of mAb B appeared to be significantly reduced in DPBS (Fig. 1D). To
quantify the degree of aggregation by other means, mAb B in DPBS
buffer was subjected to size-exclusion chromatography, and the
percentage of aggregation was determined by measuring the area
under monomer and aggregate peaks. However, the percentage
aggregation (~0.48%) obtained from SEC (Supplementary Fig. 1
(e)), did not correlate with visual analysis of aggregate sizes or pat-
terns (Fig. 1D). This discrepancy could be attributed to the co-
migration of different sized species in the same SEC peak, due to
limitations in achievable resolution. We therefore attempted a
manual, size-based classification of aggregated species frommicro-
graphs directly, with the goal of quantifying the degree of aggrega-
tion, independent of the information obtained from SEC.

3.2. Manual counting of aggregates from electron micrographs

For optimizing manual counting methods, mAb B in DPBS was
subjected to multiple SEC runs to quantify the degree of aggrega-
Fig. 1. TEM images of different mAbs showing individual antibody as well as varying p
different heterogeneous aggregates. (B) (C) high level aggregation in different mAbs. (D)
Bar 50 nm.
tion, which remained at ~ 0.5% (data not shown). Concurrently
with SEC, the samples were also visualized by electron microscopy
multiple times, and the particles in representative micrographs
were subjected to manual counting by a person trained in electron
microscopy (user A), and a novice (user B), for the purpose of com-
parison of data generated by different users.

It was observed that the count varied widely, depending on the
number and size of aggregated species present in the image. Partic-
ularly, images with a granular distribution of relatively smaller
antibody aggregates were hard to quantify correctly (Supplemen-
tary Fig. 1(a–c)). This underlined the essentiality of introducing
automation in the identification of small size proteins/particles.

3.3. Automated identification of aggregates from electron micrographs

Attempts were made to utilize the ‘‘particle picking” module
from single particle reconstruction softwares for automated identi-
fication of various species from negatively stained micrographs of
mAb B. Usually, these softwares use a specific box size for particle
picking; and a set of particles of same size and shape but different
orientations, are used for automated identification. Such methods
are difficult to implement in cases where there are a significant
amount of aggregated or oligomeric species of different sizes and
shapes. When applied to our samples, we observed that these soft-
wares identified particles randomly, probably due to the large vari-
ability in size and morphology of particles, and the counts varied
widely. Other available tools for cell counting were also utilized
with limited success (Fig. 2).
atterns of aggregation: (A) mAb A showing discrete individual particle along with
mAb B particles showing varied smaller aggregates. Magnification 100,000X. Scale



Fig. 2. Counting of monoclonal antibodies using available methods: An electron micrograph of a fraction of mAb B (panel a), subjected to automated counting of ‘‘particles”
using the 3D reconstruction program Relion, version 1.4 (panel b) and by Fiji, a cell counting extension of ImageJ (panel c).

Fig. 3. Validation of algorithm: (A) Schematic depiction of the method utilized to count and cluster heterogeneous aggregates from electron micrographs. (B–F) Pictorial
depiction of the method with panels representing the raw micrograph, histogram of the micrograph, and binary form of a micrograph (B–D), clustering of aggregates in
groups based on equivalent radii (E), and a Y-Y plot showing agreement between manual and automated counting values of 5 such micrographs (F).
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In order to identify and classify heterogeneous species present
in micrographs, we developed a connected component labeling-
based method, which was capable of automatically selecting a
highly heterogeneous population of aggregates and performing a
size-based classification (Fig. 3A–F).

First, efforts were made to reduce background noise in the
micrographs, particularly in images containing a granular distribu-
tion of density. An examination of micrographs revealed that first,
they have a high frequency of pixel noise and second, the grey-
scale values for densities corresponding to antibodies are normally
distributed, but skewed (Fig. 3B). On applying Gaussian filter
directly to these images, the densities tended to lose information
at their edges and became blurry. A Huber penalty was applied
to preserve the information by smoothing the edges of these aggre-
gates. About 20 gradient descent steps were used to reduce the
Huber cost, which ultimately resulted in images where the back-
ground noise smoothened out and various species could be clearly
visualized. To select the visualized antibody units from a de-noised
image we applied Otsu thresholding [32] and the connected com-
ponent labelling method [33]. The processed de-noised image was



Fig. 4. Application of algorithm to antibody samples: Application of the algorithm to fractions of mAb B and mAb C (top and bottom), with aggregation levels of 0.48% and
0.63%, computed from SEC profiles. Upper panels A, B, C, D and below panels I, J, K and L represent the stages of the algorithm (raw micrograph (A/I), binary image (B/J),
intensity histogram of raw micrograph (C/K), and clustering (D/L)) as applied to the fractions respectively.
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divided by its highly blurred low-pass version that flattened the
background of the whole micrograph so that the same threshold
could be applied across the whole image. The binary thresholded
image was subjected to a series of morphological image operations
applying the connected component labelling method to create a
masked image which represented the required clustered areas in
the original image (Fig. 3D). For counting individual units, the
mean cluster area of the unit was determined and a user-defined
threshold was set to include area values higher or lower than the
mean (Fig. 3C, E). The method was applied to more than 23 micro-
graphs corresponding to different fractions of mAbs A, B, and C. Of
these, the number of aggregates in 5 micrographs were counted
manually in triplicates and compared with semi-automated pick-
ing defined by the algorithm. A comparison of the number of units
manually counted by User A and calculated by the algorithm
demonstrated satisfactory agreement, with the Y-Y plot providing
an R2 value of 0.7146 (Fig. 3F). This suggested that the method is
successful in the semi-automated picking of heterogeneous parti-
cles, and can closely mimic the trajectory of manual picking by a
trained electron microscopist.
3.4. Clustering of aggregates

As the aggregates picked were irregular in shape, the number of
pixels associated with each aggregate, which is a function of the
width of the filter chosen by the user, was utilized to calculate
its equivalent radius (Fig. 3E). The distribution of aggregated spe-
cies present in a sample (Fig. 3E) could be qualitatively verified
by reverting to the binary image corresponding to the original
micrograph.
3.5. Generating a numerical distribution of aggregation in samples

Our method produced size-distribution profiles of mAb units
that quantitatively represented micrographs. The method was
applied to different fractions of mAbs B and C containing similar
levels of aggregation (0.48% and 0.63% respectively), as measured
by SEC (Fig. 4).

However, negative staining and electron microscopy showed
that the aggregate sizes in the two fractions substantially (Fig. 4A
and I). While size-distribution histograms for the first sample indi-
cated primarily smaller size particles, which can correspond to
monomers or smaller oligomeric species (Fig. 4B, D), the corre-
sponding analysis for the second sample showed several species
present in relatively larger size ranges, which could indicate larger
oligomers or aggregates (Fig. 4J, L). This identification of larger
sized aggregates in a therapeutic mAb formulation constitutes
information over and above that obtained through gold-standard
SEC, and may direct further characterization of the formulation.
4. Discussion

Since the development of biotherapeutics is witnessing an enor-
mous growth worldwide, it has become imperative to establish
effective protocols for quickly analyzing their stability and purity
[8,9].

Characterization of biosimilars or other therapeutic proteins is
often accomplished by using a multitude of high resolution,
orthogonal analytical tools. Mass spectroscopy, CD spectroscopy,
HPLC, electrophoresis-based assays etc. are utilized for generating
a detailed physicochemical profile for pre-clinical assessment [34],
however, none of these techniques provide a direct visualization-
based size categorization. On the other hand, 3D structure determi-
nation techniques such as X-ray crystallography, Nuclear Magnetic
Resonance, and cryo-electron microscopy, while ideal for
molecular-level comparisons, are not suitable for analysis of a
highly heterogeneous population of morphological units. We pro-
pose an electron microscopy based semi-quantitative method,
which can potentially fill the gap between non-visual, indirect
techniques and direct, high-resolution structure determination by
providing the means to obtain a numerical distribution of hetero-
geneous aggregates present in protein-based drugs, and provide
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requisite information to reduce aggregation under various condi-
tions of manufacture and storage.

Conventional electron microscopy is a useful tool to detect mor-
phological units present in a heterogeneous sample by direct visu-
alization [24]. Apart from the visualization of oligomerization and
aggregation, micrographs can also provide information regarding
the physical nature of aggregates like shape, size and indicate
potential resolvability. Our method involves de-noising micro-
graphs by minimizing the Huber penalty to compensate for edge
blurring effect, flattening of background, followed by Otsu thresh-
olding, and obtaining a numerical map of morphological units pre-
sent in the micrograph by application of the connected component
labelling method. The various species are eventually clustered into
groups based on their equivalent radii to generate a size histogram,
and in our hands has provided the best match with manual charac-
terization, compared to other available methods (Fig. 3). A draw-
back of the method at this point is determination of equivalent
radii of species, and not their exact dimensions; however, this
method does provide an understanding of the categories of higher
order species present in a sample, which probbaly cohabit in SEC
chromatograms (Fig. 4D and Supplementary Fig. 1(e)). The applica-
tion of this algorithm to different samples of mAbs adds signifi-
cantly to data obtained from traditional techniques like SEC.
Unlike SEC and DLS, this method also offers the opportunity for
side-by-side, visual evaluation of micrographs, and their corre-
sponding binary images.

This method for size characterization of a heterogeneous popu-
lation is distinctly different from currently available particle pick-
ing routines for cryo-electron microscopy and 3D reconstruction,
which have completely different targets and purpose [35,36].
These methods are trained to pick similar particles at different ori-
entations, and are thus not applicable to largely heterogeneous
samples (Fig. 2). As protein aggregates are fairly diverse in terms
of shape and size, we found it essential to develop an automated
particle picking method, which could identify objects that are
widely dissimilar in terms of shape and size. Connected component
labelling has been applied towards particle picking previously for
heterogeneous populations [35,37], but additional denoising and
thresholding produced comparatively better results for studying
smaller heterogeneous particles (Fig. 3). Although we have applied
this method to negatively stained electron micrographs, it is
equally applicable to images of diverse particles generated through
other visual techniques. Cryoelectron microscopy and 3D recon-
struction can be applied to understand high resolution moleular
structures of monomeric proteins and discrete oligomeric species.
However, the necessity for a simpler method without extensive
sample processing or computational requirements, to accurately
identify the presence and gross dimensions of aggregated species
in samples, exists in parallel.

Traditionally, techniques such as mass spectroscopy (MS), cir-
cular dichroism (CD) spectroscopy, dynamic light scattering
(DLS), and size exclusion chromatography (SEC) have been utilized
to monitor the primary sequence, amino acid modifications, sec-
ondary structure, and aggregation state of therapeutic proteins
[19,22,34]. In our study, SEC of mAb B and C indicated the presence
of similar, negligible degrees of aggregation (Supplementary Fig. 1
(e)). The DLS size distribution profiles showed peak maxima
at ~ 10 nm of hydrodynamic diameter for both mAbs, and no other
species (Supplementary Fig. 3). We attribute these discrepancies to
the lack of adequate resolution in these methods resulting in co-
migration of different species in same peaks. The CD spectra of
mAb B and C were characteristic of typical antibody profiles, with
a dip at 218 nm indicating significant presence of anti-parallel b
sheet secondary structures (Supplementary Fig. 4). This is expected
in cases of oligomerization and reversible aggregation, where
unfolding of the protein secondary structure is not expected. How-
ever, our method combining visual and quantitative evaluation
detects a difference in the size of species present in the mAbs indi-
cating potential aggregation, which constitutes essential informa-
tion in context of biosimilar production.

Avoiding aggregation during production, transport, and storage
is essential in order to reduce unwanted immune reactions
towards complex protein therapeutics [38,39]. Although tradi-
tional 3D structure determination techniques can provide compre-
hensive data about secondary and tertiary structures as well as
conformational alterations and posttranslational modification of
protein therapeutics, it is essential to have a simple, quantitative
method to identify and characterize heterogeneity in proteins at
submicron ranges. Our method here showed that picking of hetero-
geneous particles from softEM provide additional information in
terms of size and distribution of mAbs that validates the require-
ment of present analysis for rationalized development and assess-
ment of heterogeneous proteins.

5. Conclusion

We have developed a GUI based software ‘‘softEM” for auto-
mated picking and size-based clustering of all species present in
negatively stained electron micrographs of protein samples. This
method combines visual and quantitative methods for identifica-
tion of aggregates from image data, and can be applied to multiple
types of images containing heterogeneous populations of biomole-
cules. It is hoped that this freely available method can serve as an
orthogonal technique for analysis of aggregation in therapeutic
proteins.
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