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INTRODUCTION

Schistosomiasis is a neglected tropical disease caused by 
blood flukes of the genus Schistosoma, which remains prevalent 
in several nations. About 200 million people are infected world-
wide, and more than 600 million reside in endemic zones [1]. 
Although the most important causative species for human dis-
eases are Schistosoma mansoni, Schistosoma haematobium, and 
Schistosoma japonicum, a further species, Schistosoma mekongi, 
found along the Mekong River in Cambodia and Lao People’s 
Democratic Republic (Lao PDR), also infects humans. Mortali-
ty rates are high in all species infections [2]. Schistosomiasis ja-
ponica is widespread in China, Indonesia, and the Philippines 
[3]. Recent increases in the movements of foreign workers, mi-

grants, and travelers have meant that infected individuals might 
seek medical help and diagnosis far from the endemic source 
of their infection [4-7]. 

Microscopic methods to detect Schistosoma eggs in stools of 
final hosts or cercariae shed from snail intermediate hosts are 
time-consuming. The stool examination has certain problems; 
it is difficult to differentiate between eggs of S. japonicum and S. 

mekongi, eggs cannot be detected during the pre-patent period, 
and it has low sensitivity in cases of light intensity of infection. 
Moreover, morphological identification of Schistosoma cercari-
ae from snail intermediate hosts is also difficult. 

There are several reports dealing with molecular-based meth-
ods for the diagnosis of schistosomiasis. Most have focused on 
finding parasite DNA in samples such as feces [8-10], sera [11, 
12], urine [13], and in intermediate snail hosts [14]. Identifi-
cation and differentiation of major human schistosomes by 
real-time PCR has been reported for the detection of S. japoni-

cum [15-19], S. mekongi [20], S. mansoni [21,22], and S. haema-

tobium [22,23]. However, simultaneous differentiation and de-
tection of S. japonicum and S. mekongi eggs or cercariae in a 
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single real-time PCR assay has not been reported yet. Here, we 
report that the high resolution melting (HRM) real-time PCR 
can be a useful method for differential identification of S. ja-
ponicum and S. mekongi cercariae from infected snails, and also 
eggs in fecal samples from infected mice and rats.

MATERIALS AND METHODS

Parasites and DNA samples
S. japonicum (Japanese Yamanashi strain) cercariae were ob-

tained from experimentally infected Oncomelania nosophora 
snails and adult worms from experimentally infected mice. 
Similarly, S. mekongi (Loatian strain) cercariae were obtained 
from experimentally infected Neotricula aperta (beta race) 
snails, and adult worms were from experimentally infected 
rats. All those infected snails were obtained from the Applied 
Malacology Center, Department of Social and Environmental 
Medicine, Faculty of Tropical Medicine, Mahidol University, 
Thailand. All animal experiments were approved by the Ani-
mal Ethics Committee of Khon Kaen University, based on the 
Ethics of Animal Experimentation of the National Research 
Council of Thailand (reference no. 0514.1.12.2/70).

DNAs extracted from individual S. japonicum and S. mekongi 
adults and from experimentally infected snails were prepared 
using the Nucleospin Tissue kit (Macherey-Nagel GmbH & 
Co, Duren, Germany). Copro-DNAs were extracted from 100 
mg each of S. japonicum-infected mouse feces and S. mekongi-
infected rat feces using the QIAamp® DNA stool mini kit (Qia-
gen, Hilden, Germany). DNA was eluted in 50 μl of distilled 
water, 5 μl of which was used for each HRM real-time PCR re-
action. The DNA samples were kept at -70˚C until use.

The number of S. japonicum eggs in infected mice feces (n=  
9) was determined and expressed as eggs per gram (EPG) of 
feces (ranging from 100-1,100 EPG; geometric mean=367 EPG). 
Similarly, numbers of S. mekongi eggs in infected rats feces 
(n=12) were determined (ranging from 1,100-22,000 EPG; 
geometric mean=3,805 EPG). 

Determination of analytical sensitivity and specificity 
To determine analytical sensitivity, non-infected N. aperta or 

O. nosophora snails were crushed separately. Subsequently, in-
dividual aliquots of 1, 5 (pooled), and 10 (pooled) non-infect-
ed N. aperta and O. nosophora snail samples were each sepa-
rately inoculated with 1, 5, and 10 S. mekongi and S. japonicum 
cercariae. To determine detection limits for fluke eggs in fecal 

samples, 1, 2, 4, or 8 S. mekongi eggs were added to 100 mg ali-
quots of non-infected rat feces. Likewise, to 100 mg aliquots of 
non-infected mouse feces were added 1, 2, 4, or 8 S. japonicum 
eggs. Genomic DNA was then extracted from these samples 
(see above) and used for PCRs.

For evaluation of specificity, genomic DNAs from parasites 
other than S. mekongi and S. japonicum were used, e.g., human 
hookworms, intestinal lecithodendriid flukes, Taenia spp., 
Trichuris trichiura, Trichostrongylus spp., Strongyloides stercoralis, 
Stellantchasmus spp., Paragonimus heterotremus, Opisthorchis vi-
verrini, Haplorchoides spp., Haplorchis taichui, Isospora belli, Giar-

dia duodenalis, Echinostoma malayanum, Capillaria philippinensis, 
Clonorchis sinensis, and Ascaris lumbricoides. DNAs extracted 
from human leukocytes, feces of non-infected mice or rats, 
and non-infected snails were also used as controls.

Primer design and positive control plasmids
The 18S ribosomal RNA sequence (18S rRNA) of S. japoni-

cum (FJ176682) and S. mekongi (U89871) were selected and 
used to differentiate the 2 species. The PCR primers (Schis_F; 
5́ -GAC TTT CGG GTT GCC TGA TC -3́  and Schis_R; -5́ - ACC 
GGA TCG CTT CAA CAG T-3́ ) were designed to amplify a par-
ticularly variable region [24]. For the positive controls, plas-
mids were constructed by ligation of amplified products from 
each species into pGEM-T easy vectors (Promega, Madison, 
Wisconsin, USA), according to the manufacturer’s instructions. 
The PCR products were obtained by conventional PCR using 
the Schis_F and Schis_R primers and control plasmids as tem-
plate. Each recombinant plasmid was produced in Escherichia 
coli JM109. Each inserted amplicon was sequenced in both di-
rections to confirm its identity.

HRM real-time PCR assay
For differential detection, a LightCycler 480 High Resolution 

Melting Master Kit (Roche Applied Science, Mannheim, Ger-
many) was used. The reaction mixture contained 1×  LightCy-
cler 480 HRM Master Mix, which comprises HRM dye (Roche 
Applied Science), 2.25 mM MgCl2, and each of 0.4 µM Schis_
F and Schis_R primers. The total reaction volume was 20 µl. 
The PCR cycling for HRM curve presentation was done under 
the following conditions: 1 hold at 95˚C for 10 min; 45 cycles 
of 95˚C for 10 sec, 55˚C for 8 sec, and 72˚C for 15 sec; then, the 
mixture was held at 95˚C for 10 sec and 60˚C for 30 sec. The 
reaction products were then melted by increasing the tempera-
ture from 60˚C to 95˚C, with an increment of 0.11˚C/sec, to 
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obtain melting profiles. Amplified product was then cooled to 
40˚C for 30 sec. All samples were examined in duplicate in 96-
well plates.

To determine the analytical specificity of the HRM real-time 
PCR, DNAs extracted from specificity control samples (see 
above) were evaluated separately. Each run included one dis-
tilled water sample as a negative control and S. japonicum or S. 
mekongi plasmids in water (107 copies) as positive controls.

The melting temperatures (Tm) of each PCR product was 
determined by melting curve analysis using LightCycler 480 
gene scanning software (version 1.5) (Roche Applied Science). 
The cycle number (Cn), representing the target sequence copy 
number, was taken to be the number of PCR cycles needed for 
the change in fluorescence signal of the amplicons to exceed 
the detection threshold value. The sensitivity and specificity 
values were calculated and expressed using the method de-
scribed previously [25].

RESULTS

Standardization of the HRM real-time PCR
The analytical sensitivity of HRM real-time PCR was deter-

mined using 10-fold serial dilutions (4.3×107-4.3×102 copies) 
of the equal concentration mixture of S. japonicum and S. me-

kongi positive control plasmids in distilled water. The lowest 
detection was equal to or less than 4.3×102 copies of each posi-
tive control plasmid (Fig. 1) which is equivalent to 4×10-7 ng 
of each genomic DNA of S. japonicum and S. mekongi, when 
considering 40 cycles as the cut-off detection limit. As little as 
a single S. japonicum or S. mekongi egg (Fig. 2) mixed artificially 
in 100 mg of uninfected mouse or rat feces could be clearly 
detected. Similarly, a single S. japonicum or S. mekongi cercaria 
inoculated into an aliquot derived from 10 pooled non-infect-
ed N. aperta or O. nosophora snail samples could be detected. 
No fluorescence signal was detected when evaluated with the 
defined DNA controls (1 µg) other than S. japonicum and S. 
mekongi (see Materials and Methods).

HRM real-time PCR for detection of S. japonicum and S. 
mekongi in fecal and snail samples

The HRM real-time PCR yielded positive results for all fecal 
samples from S. japonicum-infected mice and S. mekongi-infect-
ed rats (Table 1). Under the conditions described here, the HRM 
real-time PCR successfully amplified a predicted 156 bp prod-
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Fig. 1. (A) Representative melting peaks (˚C) for Schistosoma japonicum (a), Schistosoma mekongi (b), mixed-plasmids (c), and distilled 
water (d). Amplification plot of fluorescence vs cycle number showing analytical sensitivity of HRM real-time PCR for detection of S. ja-
ponicum (B) and S. mekongi (C) plasmids: e-j; 10-fold serial dilutions of S. japonicum or S. mekongi plasmids, from 4.3×107 to 4.3 
×102 copies per reaction. k; distilled water (negative control).
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uct from the DNA of the S. japonicum and S. mekongi-infected 
fecal and snail samples (Fig. 3). The analytical sensitivity and 
specificity were both 100% for differential detection of S. ja-

ponicum and S. mekongi.
To ensure the accuracy of the method, the amplified prod-

ucts from S. japonicum and S. mekongi-infected fecal and snail 
samples were sequenced in both directions. The results showed 
that all sequences were completely identical (data not shown) 
with the corresponding gene sequences from the relevant spe-
cies. 

DISCUSSION

Since Wittwer et al. [26] revealed that the HRM real-time 
PCR assay can identify sequence variants, the method has 
been applied for rapid detection and identification of Brugia 

malayi, Brugia pahangi, Dirofilaria immitis [27], and human 
hookworms [28]. This allows closed-tube, homogeneous ge-
notyping without fluorescence-labeled probes, consequently 
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Fig. 2. Analytical sensitivity for detection of cercariae (A, B) and eggs (C, D) of S. japonicum (A, C) and S. mekongi (B, D). Cycle numbers 
for detection of 4 cercariae (l), 2 cercariae (m), 1 cercaria (n), and for detection of 8 eggs (p), 4 eggs (q), 2 eggs (r), and 1 egg (s). o and t; 
distilled water (negative control).

Table 1. The cycle number and melting temperature values of HRM real-time PCR

Cycle numbers Melting temperatures 

Range Mean±SD Median Range Mean±SD Median

S. japonicum-infected mice (n=9) 15.8-29.7 22.0±4.2 21.9 84.4-84.6 84.5±0.07 84.5
S. mekongi-infected rats (n=12) 19.5-29.2 23.5±3.4 22.6 85.6-85.7 85.7±0.04 85.7

200
100 156 bp

	 M	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10

Fig. 3. Ethidium bromide staining patterns of the PCR products 
on a 1.5% agarose gel. The arrows indicate the 156 bp of S. me-
kongi and S. japonicum specific bands. Lane M: DNA size mark-
ers (1 kb plus DNA ladder from Invitrogen, Carlsbad, California, 
USA). Negative control containing no DNA (Lane 1); S. mekongi 
positive control plasmid (Lane 2); S. japonicum positive control 
plasmid (Lane 3); S. mekongi-infected Neotricula aperta snails 
(Lane 4); non-infected N. aperta snails (Lane 5); S. japonicum-in-
fected Oncomelania nosophora snails (Lane 6); non-infected O. 
nosophora snails (Lane 7); S. mekongi-infected rat feces (Lane 8); 
negative healthy human feces (Lane 9); and S. japonicum-infect-
ed mice feces (Lane 10).
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decreasing the expense on a cost per-sample. Different sequenc-
es are represented by a change in the shape of the different 
melting curve plotted.

We have developed the HRM real-time PCR for differential 
detection of S. japonicum and S. mekongi in fecal samples of fi-
nal hosts and in tissues of snail intermediate hosts. A single 
Schistosoma egg in a 100 mg fecal sample (equivalent to 10 EPG) 
or a single cercaria in tissues from 10 pooled snails can be de-
tected. These detection are quite similar with single-species de-
tection limits for S. japonicum [19] or S. mekongi [20] using a 
real-time PCR assay with fluorescence resonance energy trans-
fer (FRET) hybridization probes. Similar levels of sensitivity 
have been found using SYBR green based real-time PCR; 10 EPG 
of S. japonicum in fecal samples could be reliably detected [15]. 
However, Zhou et al. [29] showed that the TaqMan real-time 
PCR assay can detect 1 S. japonicum egg in 500 mg fecal sam-
ple (equivalent to 2 EPG) [29]. 

For analytical specificity, DNA samples of the parasites other 
than the Schistosoma species tested did not give rise to an iden-
tifiable melting temperature peak, and the primers used did 
not amplify a 156 bp product, indicating 100% specificity.

As a result of the increase of outbound tourism from Asia 
and the increase of migrants within Asia due to One Asian 
Economic Community policy, there is an increasing potential 
for overlapping infections of the 2 Schistosoma species, S. japoni-
cum and S. mekongi. In the laboratory setting, the assay system 
reported here gave high sensitivity and specificity and will be 
most valuable for diagnosis of infection by either species, or to 
demonstrate co-infection. 

In conclusion, the method established in the present study 
has enabled rapid, sensitive, and specific differential identifica-
tion of S. japonicum and S. mekongi cercariae in infected snails 
and eggs in fecal samples of infected mice and rats. Its cost-ef-
fectiveness is much better than other probe-based real-time 
PCR methods.
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