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Abstract

Social networks rely on basic rules of conduct to yield functioning societies in both human and animal populations. As
individuals follow established rules, their behavioral decisions shape the social network and give it structure. Using dynamic,
self-organizing social network models we demonstrate that defying conventions in a social system can affect multiple levels
of social and organizational success independently. Such actions primarily affect actors’ own positions within the network,
but individuals can also affect the overall structure of a network even without immediately affecting themselves or others.
These results indicate that defying the established social norms can help individuals to change the properties of a social
system via seemingly neutral behaviors, highlighting the power of rule-breaking behavior to transform convention-based
societies, even before direct impacts on individuals can be measured.
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Introduction

Social interactions determine positions of individuals within

their group (and the associated fitness consequences), and also

define a quantifiable social structure indicative of the overall

group organization [1–7]. While relative success of behavioral

strategies in a population will depend on their selective

(dis)advantages [8–10], breaking the rules of conduct will

inevitably affect others [11–14]. Defying social norms has the

potential to change the functioning of an entire system [15–17],

affecting the social success and/or fitness of all group members.

For example, an individual’s actions could facilitate population-

wide change by making other strategies less viable through

mechanisms such as selection or cultural transmission [8,18], as

well as co-evolution in social dilemmas and similar evolutionary

games based on cooperation [7,9,19,20], reviewed in [10].

Similarly, the interaction structure of a group may be altered

by behavioral actions of individuals, disrupting processes such as

flow of information [21] or connectedness of different network

components [22,23]. Group organization may be important if it

helps the emergence of key individuals which will then have a

beneficial effect on survival of the entire group [22,24]. Removal

or disruption of the emergence of such individuals may therefore

harm all involved, even though immediate social positions of

other individuals are not directly altered [16,25,26]. A system’s

social structure could also be more or less robust to the effects of

behavioral decisions that break the rules of established norms

[27]. If living within a social network with clearly defined

structure and rules of conduct has benefits, for example by

reducing the need for repeated tests of competence from

interacting individuals [28], rule-breaking behavior has the

potential to transform the system beyond its immediate impacts,

altering not only the expected social success at the individual

level, but also the structure and global properties of a system. The

consequences of such rule violations should therefore be

investigated not only through ramifications for the individuals

that perform them, but also through the broader social impacts of

rule-breaking behavior on network properties.

Elegant studies have already investigated how individual

cooperative behaviors, motivated by self-interest and returns from

cooperative strategies, can be selectively maintained from the

perspective of evolutionary game theory [7,9,10,19,20]. Further

work has explored the emergence of institutional organizations

from these strategies [29–31], frequently relying on reinforcement

from either reward [32–34] or punishment [17,35–38]. To

complement and contrast these game-theoretic methods, in which

rational individuals choose social partners or strategies on the basis

of known fitness payoffs from games, we instead focused on a

system in which individuals can evaluate only relative network

positions of partners as indirect proxy measures for potential

payoffs, but are unable to accurately predict the fitness impacts of

their choices. To study the emergence of organization and

potential for individual and organizational success in such groups,

we therefore simulated a network of individuals that chose their

social partners exclusively by using partner’s perceived social

prominence. Such a framework is particularly well suited for this

purpose [39], as social networks permit quantification of both

individuals’ personal positions within a group [6,40] and the global

properties of an entire group [41,42]. Our networks featured

dynamic, individual-based behavioral rules, in which each

individual’s social prominence fluctuated as a result of social

decisions of others, while system-wide properties emerged from

this self-organization. In these simulations, all social choices were

free: individuals were only concerned with retaining desirable
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social partners and did not consider the effects of their actions on

others nor did they coordinate actions to achieve a common good.

Systems of this kind yield stable emergent properties of social

structure despite their inherently stochastic nature [39], allowing

independent characterization of the impacts of divergent behav-

ioral decisions at multiple levels.

Individuals in our networks chose ‘friends’ using two different

measures of social centrality (Fig. 1; see also [6,40,43]), either

according to the partner’s quality as a necessary intermediary

between others (also called betweenness) or according to the

partner’s popularity (also called in-degree), to determine which

affiliations to maintain. While these measures may be considered

proxies for any evaluative metric by which a self-organizing social

system yields differences in centrality among individuals [6],

populations that employ such centrality measures or their proxies,

and their potential implications for individual fitness, have been

documented in real-world networks [13,14,22]. Individuals that

did not follow these rules of conduct instead changed their social

partners at random, thus breaking the social conventions used by

the rest of the group. Initially, all affiliations were assigned

randomly and all individuals had the same probability of being

chosen as partners. This random initial structure then dictated

each individual’s desirability as a partner according to the assigned

affiliation criteria: for individuals that followed conventions, the

more prominent the individual’s social position, the more likely

others were to remain affiliated with it. The criteria for affiliation

were treated as simple social conventions [44,45]: while they may

or may not have specific fitness analogues in particular systems, in

our simulations they served only to drive the self-organizing

behaviors in non-deterministic social systems.

To determine how breaking the rules of conduct affects a social

network, we compared networks of individuals who all preferred

partners with high individual centrality (by either the quality-as-

intermediary or popularity metric; Figs. 2A and 3A, respectively)

to those featuring different frequencies of rule-breakers: either with

only a single rule-breaking individual (Figs. 2B and 3B) or with a

substantial proportion (20%) of rule-breaking individuals (Figs. 2C

and 3C). We then calculated the individual centrality that each

individual could expect to attain, and the group-wide level of

centrality as an emergent property of the group. By calculating the

impact of rule-breaking behavior at different levels of organiza-

tional success, we determined that it is possible to affect the

organizational structure of a group without directly affecting the

social positions of individuals. Such system-level consequences

offer quantitative insights into the transformative powers of rule-

breaking behavior in groups that adhere to social norms and

conventions and/or rely on the network structure to function

effectively.

Results and Discussion

Behavioral decisions by which individuals chose their social

partners significantly affected both their own position and the

social organization of the group. Moreover, the two scenarios

produced markedly different results: individuals primarily affected

their own social position in the intermediary-based networks, while

in the popularity-based networks they affected the overall social

structure without producing any immediate effects at the

individual level.

When intermediary quality was the social convention guiding

partner choice, individuals that broke the social rules of conduct

affected their own success (Fig. 4A), the social success of

convention-abiding majority (Fig. 4B), and the group organization

as a whole (Fig. 4C). Even a single individual that affiliated

randomly directly affected its own social position. Such direct

consequences would then either cause such rule-breaking behavior

to spread in, or disappear from, the population. However, since a

single individual had no effect on others and did not affect the

group-wide organization, breaking social rules would make it

either more or less successful than the rest. This effect alone would

then determine whether rule-breaking would become more

prevalent. If rule-breaking becomes more common due to a

positive effect on that individual, the initial advantage would

persist while the success of convention-abiding individuals, as well

as group-wide organization, would change. Thus, in the

intermediary examples, breaking conventions primarily affected

Figure 1. A 3-node network examples demonstrating how
individual centrality metrics were measured. A) Betweenness
centrality: individual in the middle is the necessary intermediary
between the left and right individual, as it lies on the shortest path
between those individuals; the middle individual therefore has higher
individual betweenness centrality than the other two individuals; B) In-
degree centrality: both left and right individual have connections
towards the middle individual, making the middle individual ‘popular’
as a partner; middle individual therefore has higher individual in-degree
centrality than the other two individuals.
doi:10.1371/journal.pone.0026652.g001

Figure 2. Examples of intermediary-based networks. A) Uniform intermediary-based network; B) Intermediary-based network with a single
rule-breaking individual; C) Intermediary-based network with 20% of individuals that did not follow this convention. While the simulations were not
spatially explicit, the size of the individuals in a network is proportional to its quality as an intermediary (betweenness centrality). Individuals that
broke the rules of conduct (identified by their blue color) enjoyed progressively higher social success as they increased in frequency, whereas the
success of the convention-abiding individuals decreased at the same time.
doi:10.1371/journal.pone.0026652.g002

Rule-Breakers and Social Networks
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the individual itself, and only influenced other levels of a social

system at higher frequency. Sufficient punishment (such as fitness

loss from not connecting to successful intermediaries) would

therefore prevent a single individual from changing the success of

a group, whereas a reward to the rule-breaking individual could

eventually bring down the entire system. This is consistent with

observed mechanisms in animal and human societies that prevent

rule-breaking, maintaining the functional structure of a group

[46,47].

Interestingly, in popularity-based networks rule-breaking indi-

viduals did not affect their own success (Fig. 5A) or the social

success of others (Fig. 5B), but they did affect the overall group

organization (Fig. 5C). As a single individual was not able to

produce this effect, breaking the social rules of conduct would

initially appear to be completely neutral to the social network and

its constituents. Rule-breaking individuals would have the same

success as if they abided by conventions, and the convention-

abiding majority would not be affected. However, if rule-breaking

behavior was then to increase in frequency (for example, due to

chance in the absence of strong pressure either for or against it),

the success of either rule-breaking or convention-abiding individ-

uals themselves would still not change, but the structure of the

group as a whole would. In these popularity-based networks, rule-

breaking individuals were able to change the structure of a social

network and the nature of how an entire social system works,

achieving this without necessarily affecting any individual in

particular. Despite their potentially global impact, it was only

possible to gauge the true influence of these individuals on the

network by taking into account the system-wide properties. If a

specific network structure is essential for the community (for

example, in hierarchies or other highly centralized network or

organization where most individuals connect only to the few most

popular individuals) a growing number of rule-breakers or

dissenters could affect the success of the entire social group

[16,29].

These multifaceted effects on organized social systems demon-

strate that even simple changes in social behavior can affect

systemic social network properties, which in turn challenges the

way we think about animal and human social networks. Though

the level at which we observe the costs and benefits must be an

individual, the full extent of the impact from individuals’ actions

cannot be gauged without exploring their effects on a community

or a population as a whole. Many social systems, both animal and

human, are based on social rules of conduct which are not always

(evolutionarily or socially) optimal (such as certain sexual taboos

[46], or respect for resource ownership [48]), but which are also

not always arbitrary [48,49], and frequently help make the system

more efficient [26,29,37,47,50,51]. Whereas violation of social

rules often carries direct consequences for the actor, such as

through direct punishment or withdrawal of future cooperation

[17,35,37,38,52,53], even behavioral decisions that seem imme-

diately neutral for the involved individuals (and likely would not

Figure 3. Examples of popularity-based networks. A) Uniform popularity network; B) Popularity network with a single rule-breaking individual;
C) Popularity network with 20% of individuals that did not follow this convention. While the simulations were not spatially explicit, the size of the
individuals in a network is proportional to that individual’s popularity (in-degree centrality). Even though the individuals that used rule-breaking
behavior (identified by their blue color) had social success comparable to the convention-abiding individuals, the emergent properties of the system
changed: with more individuals not playing by the rules, the group became more decentralized.
doi:10.1371/journal.pone.0026652.g003

Figure 4. Effects of rule-breakers on intermediary-based networks. Individuals using rule-breaking strategy primarily affected (A) their own
social position (H(2) = 213.18, p,0.0001), but also made an impact on the other aspects of the social system, affecting (B) the social position of others
(H(2) = 6.79, p = 0.034) and (C) group organization (H(2) = 125.3, p,0.0001) as their frequency in a population increased. The boxes show medians,
quartiles, minima and maxima. Results significantly different from a relevant uniform network with no rule-breaking behavior (p,0.05 in Dunn’s
multiple comparison test for comparing each group with control) are designated with *.
doi:10.1371/journal.pone.0026652.g004
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provoke a punishment) can still profoundly change how the system

works. The studies of such actions should therefore consider

system-wide properties of both animal and human social networks

without sacrificing any attention to the individual-level conse-

quences of social actions. By changing the properties of the

network on a global level, a single individual has the potential to

change its entire social environment by the power of its own

actions alone. We should therefore aim to determine such systemic

consequences of social behaviors and rule-breaking decisions

before any such actions can be described, and dismissed, as truly

neutral.

Materials and Methods

Modeling environment and dynamics
The modeling environment was designed as a graph G, in which

n individuals were represented as nodes, or vertices, V = {v1, v2, …,

vn} in a network and their interactions as connections between

those nodes. Interactions were directed, in that the distinction was

made between sources and recipients of social interactions so that

an individual vi’s choice to be affiliated to another individual vj was

represented by an arc (vi, vj) in G, thus resulting in a directed graph,

or digraph. If an arc (vi, vj) exists, individual vj was said to be an

out-neighbor of individual vi. These connections were then used to

determine centrality metrics of individual nodes (individual

centrality), measures of position and connectivity in an interaction

network, as well as centrality of the digraph as a whole (group-wide

centrality). This digraph structure was then used as a basis for

development of a dynamic, self-organizing, individual-based social

network framework in which individuals could display different

social affiliation preferences. All affiliations between individuals

were freely formed, and individuals could only directly affect the

interactions they themselves initiated (that is, choose their own

out-neighbors), but not the actions of other individuals (they could

not directly affect the choices of others to select them as out-

neighbors or not). Each network consisted of a constant number of

50 individuals in total, with each individual assigning outgoing

connections to five out-neighbors. Individuals had no inherent

personal advantages that would prime them to be selected as social

partners, and all subsequent choices were made using dynamic

centrality properties to assess out-neighbors. When the network

was initialized the connections between all individuals were

assigned randomly, giving a graph G0, but were then updated

according to the built-in preference of the individuals for partners

of certain centrality.

The ability of individuals to choose their ‘friends’ by dropping

the connections to existing out-neighbors and forming connections

to new out-neighbors resulted in a self-organizing dynamic

network in which the organization of connections was constantly

updated in accordance to the preset affiliation rules. The dynamics

of the models took place in discrete time steps. At each time step t

in graph Gt, each individual ranked the centrality values of its five

out-neighbors according to its predetermined affiliation prefer-

ence. It then opted to remain affiliated with out-neighbors it

perceived as desirable social partners by retaining the 3 highest

ranking ones while dropping the 2 lowest ranking ones. It then

added 2 new out-neighbors at random from the entire group

(excluding the two it just dropped) before next time step, which

completed the iteration and (when completed by all individuals)

resulted in graph Gt+1. Alternatively, individuals could also drop

out-neighbors completely at random, thus foregoing the conven-

tional assessment of out-neighbor quality through centrality

comparisons in their affiliation choices. Such individuals were

denoted as exhibiting divergent strategy, abandoning the conven-

tional choice of social partners and using an alternative, rule-

breaking strategy in an otherwise convention-abiding, ordered

group of individuals. In all scenarios, the total edge density of the

network was constant since, in each Gt, each individual always had

exactly five out-neighbors; the only parameter that varied between

iterations was the arrangement of connections.

Our goal was to demonstrate the impact of rule-breaking on an

organized group of individuals, rather than achieve any optimi-

zation of social organization in a group. As such, the individuals

did not coordinate their actions to achieve a common goal, did not

consider the effects of their actions on others, and in general did

not behave optimally in an evolutionary sense as there are likely to

be many behaviors, and/or centrality measures by which to

evaluate them, that could do a better job at maximizing

individual’s social prominence [39], such as coercion or cheating.

We also did not aim to ascribe any qualitative importance to

centrality in a social network as a measure of prominence in a

biological group; specific selection pressures can cause either high

or low betweenness or in-degree centrality to be considered

positive [13,14,22] or even to have no directly measurable fitness

Figure 5. Effects of rule-breakers on popularity-based networks. Individuals using rule-breaking strategy did not significantly affect either (A)
their own social position (H(2) = 2.99, p = 0.22) or (B) the social position of others (H(2) = 0.24, p = 0.89). However, as their presence in the population
increased, the behavior of these individuals will start to make an impact, affecting (C) the overall group organization (H(2) = 284.55, p,0.0001) even
though there is no concurrent measurable effect on the individual values. The boxes show medians, quartiles, minima and maxima. Results
significantly different from a relevant uniform network with no rule-breaking behavior (p,0.05 in Dunn’s multiple comparison test for comparing
each group with control) are designated with *.
doi:10.1371/journal.pone.0026652.g005
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correlates. We instead used these very simple social conventions to

illustrate the fact that even the simplest affiliation differences can

result in distinct and quantifiable changes in group organization

properties even with constant density of social contacts, and that

such properties can be disrupted by breaking the rules of social

conduct.

Centrality measures for individuals and groups
As neither the rules of affiliation nor initial characteristics of

individuals inherently implied any position for individuals or social

structure of a group, centrality measures for individuals and

groups were emergent properties of the social structuring

processes. Two centrality measures were used as proxies of social

quality of partners [6,39,40,54]: betweenness and in-degree.

Betweenness B of individual vi is defined as

B við Þ~
2count við Þ
n{1ð Þ n{2ð Þ

where count(vi) is the number of shortest paths between any two

individuals in a network that contain node vi as an intermediate

node, and n is the total number of individuals in a network.

Betweenness measures how essential an individual is as a necessary

intermediary between pairs of individuals. In-degree D of

individual vi is defined as

D við Þ~
din við Þ
n{1

where din(vi) is the number of individuals that form connection to vi,

and n is the total number of individuals in a network. It is

essentially equal to the number of incoming connections to vi,

measuring how ‘popular’ vi is as a partner. In addition to

measuring centrality of individuals, centrality of groups as an

emergent property was also quantified. Group-wide betweenness B

of group G is measured as

B Gð Þ~

Xn

i~1

B við Þ

n{1ð Þ n{2ð Þ

where B(vi) denotes the betweenness of individual i, and n is the

total number of individuals in a network. Group-wide in-degree D

of group G was measured as

D Gð Þ~

Xn

i~1

P �{din við Þ½ �

n{1ð Þ n{2ð Þ

where din(vi) is the number of individuals that form connection to

vi, P* = max [din(vi) | i = 1,…,n], and n is the total number of

individuals in a network. Both of these group-wide metrics

quantify how well the group is organized as a whole according

to the respective centrality measure of individuals.

Simulations and analyses
There were a total of 6 network types: 3 betweenness-based (a

uniform betweenness network consisting of only betweenness

individuals, a betweenness network with a single rule-breaker

affiliating randomly, and a betweenness network with 10 randomly

affiliating rule-breakers), and 3 in-degree based types (a uniform

in-degree network consisting of only in-degree individuals, an in-

degree network with a single rule-breaker affiliating randomly, and

an in-degree network with 10 randomly affiliating rule-breakers).

We ran 100 independent Monte Carlo realizations per network

type, and recorded the respective centrality measures of each

individual and group centrality after 200 time steps. Both numbers

were deemed statistically sufficient due to convergence of outcome

variance and comparable stability calculations, as described in

[54]. We used networks in which all individuals had an identical

preference, preferring to remain affiliated with partners of either

high betweenness or high in-degree, as a basal state against which

subsequent scenarios were compared. A random subset of the

sampled measures was used in all comparisons so as to account for

differences in sample sizes, giving the sample size of 100 for each

group in each comparison. We used nonparametric tests (two-way

Kruskal-Wallis ANOVA and corresponding nonparametric

Dunn’s post-hoc comparisons of each group with control) in

statistical analyses due to the heteroscedasticity and non-normal

distributions of the results. The networks were visualized using

Gephi 0.8 (Bastian M, Heymann S, Jacomy M, unpublished).
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7. Poncela J, Gómez-Gardeñes J, Traulsen A, Moreno Y (2009) Evolutionary game

dynamics in a growing structured population. New J Phys 11: 083031.

8. Maynard Smith J (1982) Evolution and the theory of games. New York:

Cambridge University Press. 224 p.

9. Pacheco JM, Traulsen A, Nowak MA (2006) Coevolution of strategy and structure

in complex networks with dynamical linking. Phys Rev Lett 97: 258103.

10. Perc M, Szolnoki A (2010) Coevolutionary games - a mini review. Biosystems 99:

109–125.

11. Hock K, Huber R (2007) Effects of fighting decisions on formation and structure

of dominance hierarchies. Mar Freshw Behav Physiol 40: 153–169.

12. Hock K, Huber R (2009) Models of winner and loser effects: A cost-benefit

analysis. Behaviour 146: 69–87.

13. Godfrey SS, Bull CM, James R, Murray K (2009) Network structure and

parasite transmission in a group living lizard, the gidgee skink, Egernia stokesii.

Behav Ecol Sociobiol 63: 1045–1056.

Rule-Breakers and Social Networks

PLoS ONE | www.plosone.org 5 October 2011 | Volume 6 | Issue 10 | e26652



14. Madden JR, Drewe JA, Pearce GP, Clutton-Brock TH (2009) The social

network structure of a wild meerkat population: 2. Intragroup interactions.
Behav Ecol Sociobiol 64: 81–95.

15. Parrish JK, Viscido SV, Grunbaum D (2002) Self-organized fish schools: An

examination of emergent properties. Biol Bull 202: 296–305.
16. Sih A, Watters JV (2005) The mix matters: Behavioural types and group

dynamics in water striders. Behaviour 142: 1417–1431.
17. Rand DG, Nowak MA (2011) The evolution of antisocial punishment in

optional public goods games. Nat Commun 2: 434.

18. Whiten A (2005) The second inheritance system of chimpanzees and humans.
Nature 437: 52–55.

19. Szolnoki A, Perc M, Danku Z (2008) Making new connections towards
cooperation in the prisoner’s dilemma game. EPL 84: 50007.

20. Szolnoki A, Perc M (2009) Resolving social dilemmas on evolving random
networks. EPL 86: 30007.

21. Borgatti SP (2005) Centrality and network flow. Soc Networks 27: 55–71.

22. Lusseau D (2007) Evidence for social role in a dolphin social network. Evol Ecol
21: 357–366.

23. McDonald DB (2007) Predicting fate from early connectivity in a social network.
Proc Natl Acad Sci USA 104: 10910–10914.

24. Wittemyer G, Douglas-Hamilton I, Getz WM (2005) The socioecology of

elephants: Analysis of the processes creating multitiered social structures. Anim
Behav 69: 1357–1371.

25. Williams R, Lusseau D (2006) A killer whale social network is vulnerable to
targeted removals. Biol Lett 2: 497–500.

26. Naug D (2008) Structure of the social network and its influence on transmission
dynamics in a honeybee colony. Behav Ecol Sociobiol 62: 1719–1725.

27. Flack JC, Krakauer DC, de Waal FBM (2005) Robustness mechanisms in

primate societies: A perturbation study. Proc Roy Soc B 272: 1091–1099.
28. Drews C (1993) The concept and definition of dominance in animal behaviour.

Behaviour 125: 283–313.
29. Sparrowe RT, Liden RC, Wayne SJ, Kraimer ML (2001) Social networks and

the performance of individuals and groups. Acad Manage J 44: 316–325.

30. Sigmund K, De Silva H, Traulsen A, Hauert C (2010) Social learning promotes
institutions for governing the commons. Nature 466: 861–863.
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