
1/24https://immunenetwork.org

ABSTRACT

Studies over the last 2 decades have identified IL-17 and IL-21 as key cytokines in the 
modulation of a wide range of immune responses. IL-17 serves as a critical defender against 
bacterial and fungal pathogens, while maintaining symbiotic relationships with commensal 
microbiota. However, alterations in its levels can lead to chronic inflammation and 
autoimmunity. IL-21, on the other hand, bridges the adaptive and innate immune responses, 
and its imbalance is implicated in autoimmune diseases and cancer, highlighting its important 
role in both health and disease. Delving into the intricacies of these cytokines not only opens 
new avenues for understanding the immune system, but also promises innovative advances 
in the development of therapeutic strategies for numerous diseases. In this review, we will 
discuss an updated view of the immunobiology and therapeutic potential of IL-17 and IL-21.
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INTRODUCTION

Cytokines are essential components of the body that determine the nature and magnitude 
of immune responses. They facilitate cellular interactions that enable a sophisticated and 
effective immune response to various biological challenges, such as inflammation and cancer 
(1). By influencing cell growth, differentiation, movement, and inflammatory responses, 
they play a critical role in maintaining the body’s equilibrium and enhancing its defenses 
against pathogens. However, alterations in their activities can lead to various pathological 
conditions, from inflammatory and autoimmune diseases to increased susceptibility to 
infection, highlighting their complex role in health and disease (2).

IL-17 and IL-21 are key players in the body’s immunological orchestra, each providing 
unique and vital elements to the overall functionality of our defense mechanisms—host 
defense immunity. IL-17 is a versatile cytokine that is essential for shaping inflammatory 
responses and acting as the first line of defense against bacterial and fungal invasion (3). It’s 
key in mediating inflammation and maintaining the integrity of the body’s barriers against 
environmental and microbial threats. Derived from diverse cells such as Th17 cells, γδ T 
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cells and innate lymphoid cells, IL-17 is a versatile entity in immune regulation. While it acts 
as a stabilizer between the host and commensal microbiota, ensuring barrier integrity and 
microbial balance, its activity is a double-edged sword (4). Any imbalance in its functions 
can lead to chronic inflammation and autoimmunity and has been implicated in several 
inflammatory and autoimmune diseases. The balance of IL-17 activity is therefore critical for 
maintaining health.

IL-21, mainly synthesized by CD4+ T cells, particularly follicular helper T (Tfh) cells, is a key 
orchestrator of adaptive immune responses (5). It controls the differentiation, proliferation 
and functions of B, T and NK cells, which are essential for optimal antibody production and 
B cell function (6). In addition, the influence of IL-21 extends to the innate immune response, 
affecting cells such as dendritic cells (DCs) and macrophages, and acting as a bridge 
between innate and adaptive immunity (7). However, its imbalance is associated with several 
pathological conditions, including autoimmune diseases and cancer, highlighting its delicate 
and multifaceted role in health and disease.

The important roles of IL-17 and IL-21 have attracted considerable scientific attention and 
have become focal points in the development of novel immunotherapies. Understanding 
their intricate mechanisms and regulatory networks is crucial to harnessing their potential 
for therapeutic innovation, offering hope for the effective treatment of immune-mediated 
diseases. The study of IL-17 and IL-21 highlights the complexity of the immune system and 
provides invaluable insights and potential therapeutic avenues. In this review, we aim to 
outline the current understanding of the biology of IL-17 and IL-21 and present the latest 
advances in research into the therapeutic use of these cytokines.

IMMUNOBIOLOGY OF IL-17

Cells producing IL-17
IL-17 is primarily produced by conventional Th17 cells, a distinct subset of Th cells 
characterized by the expression of the master transcription factor RORγt and the induction 
of IL-17 production by IL-23 (8). However, aside from Th17 cells, various other immune cell 
types can also generate IL-17 in response to diverse stimuli. These include γδT cells (γδT17), 
NKT cells (NKT17), innate lymphoid cells (ILC3), mucosa-associated invariant T cells 
(MAIT17), Foxp3+ Tregs (Tr17), and CD8 T cells (Tc17) (Fig. 1) (9-11). These IL-17-producing 
“type 17” cells commonly express RORγt, which is pivotal for their development and IL-17 
production (12). However, environmental cues driving IL-17 production by each type 17 
cells may vary. Additionally, there have been reports suggesting that myeloid cells, such as 
neutrophils, may possess the capacity to produce IL-17 in response to inflammatory signals 
(13-15). Nevertheless, the extent and significance of IL-17 production by these myeloid cell 
types remain the subject of ongoing research (9).

Signaling pathways
The IL-17 cytokine family consists of a group of cytokines that share both structural and 
functional similarities with the prototypical member, IL-17A (commonly known as IL-17). 
In addition to IL-17A, this family includes several related cytokines, including IL-17B, IL-
17C, IL-17D, IL-17E (also known as IL-25), and IL-17F. Conversely, the IL-17 receptor (IL-17R) 
family consists of 5 members sharing structural similarities, which are IL-17RA, IL-17RB, 
IL-17RC, IL-17RD, and IL-17RE (9). Each cytokine within the IL-17 family interacts with its 
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specific receptor, and most of these receptors belong to the IL-17 cytokine receptor family. 
For instance, IL-17A, either as a homodimer or in conjunction with IL-17F, primarily engages 
with the IL-17RA/IL-17RC receptor complex (Fig. 1). IL-17C interacts with the IL-17RA/IL-17RE 
receptor combination. IL-17E binds to the IL-17RA/IL-17RB receptors, while IL-17B competes 
with IL-17E for binding to the IL-17RB receptor. IL-17RD was previously considered an orphan 
receptor until a recent study revealed that IL-17A functions as a ligand for IL-17RD, forming a 
receptor-ligand pair (16). Additionally, there is emerging evidence suggesting that CD93 may 
serve as a receptor for the orphan ligand IL-17D (17). These interactions between cytokines 
and their respective receptors are critical for initiating downstream signaling events within 
cells (18,19).

The IL-17R subunits share a conserved cytoplasmic motif known as a SEF/IL-17R (SEFIR) 
domain, which is analogous to the TLR and IL-1 receptor domain (9). The initial step in IL-
17R signaling involves the recruitment of Act1, a signaling protein that also contains a SEFIR 
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Figure 1. Comparison in the producers, receptors and signaling pathway between IL-17 and IL-21. 
IL-17 is produced by Th17, γδT17, NKT17, ILC3, MAIT17, Tr17, and Tc17 cells. IL-17 family cytokines, including IL-17A, B, C, D, E, and F, bind and transduce signals 
through the hetero-dimeric combination of IL-17 receptors, such as IL-17RA, RB, RC, RD, and RE. IL-17R signaling involves the recruitment of Act1, which in turn 
recruits and ubiquitinates TRAF6. TRAF6 activates TAK1, which phosphorylates and activates the IKK. The activated IKK degrades IκB, leading to the translocation 
of NF-κB to the nucleus. TRAF6 also promotes the activation of MAPK and AP-1 pathways, along with the activation of the C/EBP transcription factors. IL-21 is 
produced by Th17, Tfh, and NKT cells. The IL-21 receptor heterodimerizes with the common gamma chain receptor and subsequently transduces signals through 
the activation of the JAK-STAT signaling pathway. JAK phosphorylate STAT3 and STAT1, and STAT5. IL-21 receptor also activates the MAPK and the PI3K pathway. 
The IL-21 response elements, IRF4 and STAT3, play global role in the regulating IL-21-responsive genes. 
C/EBP, CCAAT/enhancer binding protein.



domain, which is crucial for its association with IL-17R (20,21). Act1 plays a pivotal role as 
a non-redundant activator of signals dependent on IL-17RA (Fig. 1). Notably, mice lacking 
Act1 exhibit similar characteristics to those lacking IL-17RA, and individuals with rare null 
mutations in Act1 display comparable traits, particularly susceptibility to fungal infections (9).

Upon stimulation by IL-17, Act1, acting as an E3 ubiquitin ligase, recruits and ubiquitinates 
TNF-receptor associated factor 6 (TRAF6) (22-24). TRAF6 catalyzes the formation of K63-
linked polyubiquitin chains, which serve as a signal to activate a protein kinase called TGF-β-
activated kinase 1 (TAK1). TAK1, in turn, phosphorylates and activates the inhibitor of NF-κB 
kinase (IKK) complex, and the activated IKK phosphorylates IκB, leading to the degradation 
of IκB. Degradation of IκB allows the translocation of NF-κB, which is usually sequestered 
in the cytoplasm when bound to IkB, to the nucleus. In the nucleus, NF-κB binds to specific 
DNA motifs and regulates the expression of various genes, including those involved in 
inflammation and anti-microbial immune responses. Additionally, TRAF6 also promotes 
the activation of MAPK and AP-1 pathways, along with the activation of the CCAAT/enhancer 
binding protein transcription factors (25). In contrast, IL-17-NF-κB signaling triggers the 
initiation of several negative feedback mechanisms that help regulate NF-κB activation. 
These mechanisms involve deubiquitinating enzymes, including A20 and ubiquitin-specific 
peptidase 25 and immunomodulatory cytokines (24,26,27). These feedback circuits play a 
crucial role in fine-tuning the inflammatory response (Fig. 1).

Functions of IL-17
IL-17 stands as a central orchestrator in the immune system, asserting profound effects on 
tissue physiology and homeostasis. This cytokine’s influence spans beyond mere defense 
mechanisms, modulating a complex array of cellular processes that are crucial in maintaining 
the body’s equilibrium. IL-17 not only induces acute inflammatory responses which are 
essential for immediate defense against pathogens but also modulates chronic inflammatory 
pathways that can influence the course of several autoimmune diseases. It’s also recognized for 
its role in maintaining the integrity of epithelial barriers, fundamental structures that protect 
against environmental assaults and prevent pathogen invasion. IL-17’s ability to induce the 
expression of tight junction proteins ensures that these barriers remain intact and functional.

Additionally, IL-17 is implicated in the recruitment and activation of fibroblasts, contributing 
to tissue remodeling and repair. Its regulatory actions extend to the orchestration of 
adaptive immune responses, where it can influence the activity and function of various 
cell types, including T cells, which are instrumental in shaping the immune response. 
Thus, IL-17 emerges not just as a participant in pathogen defense but as a key regulator of 
immune system homeostasis and an influential factor in the pathology of inflammatory and 
autoimmune conditions.

Neutrophil recruitment and tissue inflammation
IL-17 plays a crucial role in immune defense by orchestrating the recruitment of neutrophils 
to sites of infection. This process is mediated by the induction of chemokines like CCL2 
(also known as MCP-1), CXCL1, CXCL2 (also known as MIP-2), and CXCL8 (also known 
as IL-8) from non-hematopoietic cells, which serve as signals to direct neutrophils to the 
affected tissues (19). Beyond its role in chemokine-mediated recruitment of neutrophils, 
IL-17 enhances myeloid cell-mediated inflammation by stimulating the release of pro-
inflammatory cytokines such as G-CSF (Fig. 1) (9). G-CSF is a key cytokine that stimulates 
the differentiation of hematopoietic stem cells into neutrophils in the bone marrow. 
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Furthermore, IL-17 can directly activate neutrophils and macrophages to enhance bacterial 
killing (3).

Barrier function and antimicrobial defense
IL-17 contributes significantly to the maintenance of structural integrity of barrier tissues 
(28). Particularly in the intestinal epithelium, IL-17 induces proteins that fortify the mucosal 
barrier, a frontline defense against invading pathogens (29,30). IL-17’s influence extends 
to the skin and mucosal surfaces where it boosts the production of antimicrobial peptides, 
including β-defensins and S100A9. These peptides are essential for the body’s innate 
immunity, providing a robust defense against a spectrum of extracellular pathogens like 
Staphylococcus, Klebsiella, and fungal organisms such as Candida and Blastomyces (9,25). 
The significance of IL-17 in antimicrobial defense is underscored by genetic studies linking 
IL-17R signaling defects to increased susceptibility to mucocutaneous infections (31,32).

Tissue repair and wound healing
Emerging evidence highlights IL-17’s role in tissue regeneration and repair (25). During 
wound healing, IL-17 directly influences Lrig1+ stem cells located in the hair follicle, leading 
to the generation of progeny that actively contributes to wound closure (33). Furthermore, IL-
17 promotes the induction of key factors in tissue repair and wound healing, such as REG3A 
(34) and urokinase type plasminogen activator (uPA) (35). The anti-microbial peptide REG3A, 
produced by keratinocyte in response to IL-17, promotes the proliferation and differentiation 
of keratinocytes themselves, playing a pivotal role in skin repair processes following normal 
wound repair as well as pathological conditions like psoriasis (34). Additionally, IL-17-
mediated induction of uPA enhances the migration of peripheral blood mesenchymal stem 
cells to wounded skin, which is critical in tissue regeneration (35).

IMMUNOBIOLOGY OF IL-21

Cells producing IL-21
IL-21 and its receptor were discovered in 2000 (36). IL-21 is a cytokine that plays a crucial role 
in the regulation of the immune system, and it has been the subject of extensive research in 
the fields of immunology. IL-21 is a member of the γ-chain cytokine family, which includes 
several other cytokines. This family of cytokines shares a common γ-chain (gamma chain) 
receptor subunit, which is essential for their signaling. The cytokines in the γ-chain family 
include IL-2, IL-4, IL-7, IL-9, IL-13, IL-15, and IL-21 (36).

IL-21 cytokine is mainly produced by Th17, Tfh and NKT cells (Fig. 1). In bulk cell analysis, the 
production of IL-21 in CD4 T cells was initially identified in Th17 polarizing condition, where 
naïve CD4 T cells are stimulated with IL-6 and TGF-β (37). However, single cell level cytometric 
analysis revealed that majority of CD4 T cells producing IL-21 under Th17 polarizing 
condition do not produce IL-17A or IL-17F (38). Further studies have demonstrated that in 
vitro stimulation of naïve CD4 T cells with IL-6 induces IL-21 production in STAT3 dependent 
manner while TGF-β inhibits IL-21 production in SMAD3 dependent manner (37-39).

NKT cells have been shown to produce IL-21 when stimulated with anti-CD3/CD28 and this 
production is synergistically increased in the presence of IL-12 (40,41). Subsequent studies 
have identified that Tfh cells, a specialized subset of CD4 T cells crucial for orchestrating 
B cell responses and antibody production, also produce IL-21 within the germinal center, 
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underscoring their pivotal role in regulating humoral responses (42-45). Recently, multiple 
studies have demonstrated that glucocorticoid-induced tumor necrosis factor receptor 
(GITR) agonism triggers the differentiation of IL-21 producing Tfh cells in the tumor 
microenvironment and the infectious tissue (46-48).

Signaling pathway of IL-21/IL-21R
The expression of IL-21 receptor was initially discovered on various immune cell types, 
including T, B, and NK cells (36,49). The IL-21 receptor heterodimerizes with the common 
gamma chain receptor and subsequently transduces signals through the activation of the 
JAK-STAT signaling pathway. Upon binding of IL-21 to its receptor, Jak1 and Jak3 kinases, 
which interact with IL-21 receptor and common gamma chain receptor respectively, 
become activated. These kinases phosphorylate STAT3 and STAT1, and to a weaker extent 
of STAT5 (Fig. 1). This phosphorylation leads to the dimerization of STAT proteins and 
their translocation into the cell nucleus, where they bind to regulatory elements of target 
genes (50). Interestingly, the activation of STAT1 and STAT3 by IL-21 receptor signaling have 
opposing effects on the expression Th1 related genes including Tbx21 and Ifng (51). IL-21 
has been observed to synergize with IFN-γ to induce the optimal expression of interferon-
stimulated genes (ISGs) in both human and mice (51,52). Notably, the expression of ISGs 
appears to be independent of STAT3 signaling (53). Moreover, IL-21 receptor engagement 
can also activate the MAPK and the PI3K pathways (50). IL-21 induces the transcription of the 
suppressor of cytokine signaling 1 (SOCS1) and SOCS3 proteins, which subsequently function 
to downregulate the JAK-STAT signaling pathway, representing an important feedback 
mechanism in immune regulation (54). The IL-21 response element has been demonstrated 
to consist of a dual-component element capable of binding to 2 key transcription factors 
interferon regulatory factor 4 (IRF4) and STAT3. These dual-component response elements 
were discovered in a genome-wide analysis and were found to be globally implicated in the 
regulation of numerous IL-21-responsive genes (55). Hence, within T cells, numerous target 
genes of IL-21 are controlled through the transcription factors BATF, JUN, IRF4, and STAT3 
(Fig. 1) (54,56-59).

Function of IL-21
The IL-21 receptor is expressed in various immune cell types, including T cells, B cells, DCs, 
and NK cells and extensive research has been conducted to understand their responses to 
IL-21 (60-62).

Th17 cells
IL-21 functions as an autocrine factor secreted by Th17 cells, playing a pivotal role in promoting 
and sustaining Th17 lineage commitment (37). In mice, TGF-β has been observed to inhibit 
IL-21 production from naïve CD4 T cells, whereas in humans, IL-21 has been implicated in 
collaboration with TGF-β in the differentiation of naïve CD4 T cells into Th17 cells (63-65). IL-21 
expression and Th17 differentiation depend on the presence of the transcription factor IRF4. 
IRF4 not only regulates the expression of RORγt and RORα, key factors in Th17 differentiation, 
but also directly binds to the IL-21 promoters (66,67) (Fig. 1). Furthermore, IL-21 has the ability 
to induce its own expression through an autocrine loop and also upregulates the expression 
of IL-23 receptor. IL-23 is recognized as essential for amplifying Th17 cell programs, and 
notably, cells lacking IL-21 also fail to express the IL-23 receptor (64). IL-21 exerts its effects 
by enhancing the expression of IL-23 receptor, which subsequently enables heightened 
cellular responsiveness to IL-23. Additionally, IL-21 induces the expression of RORγt, further 
contributing to the differentiation and maintenance of Th17 cells (18).
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Tfh cells
IL-21 is not only produced by Tfh cells, but also is required for generation of Tfh cells. CD4 T 
cell intrinsic IL-21 is essential for the efficient development and germinal center responses of 
Tfh cells (44). IL-21 plays a role in upregulating the transcription factors BCL-6 and Maf, both 
of which are central to the transcriptional program of Tfh cells, contributing to their proper 
differentiation and function (68,69). In dextran sodium sulfate induced colitis model, IL-21 
deficiency decreased the frequency of Tfh cells in the colon tissue, resulting in amelioration 
of colitis (70). IL-21 increases Tfh cells and reduces follicular regulatory T cells in lungs upon 
respiratory syncytial virus (RSV) infection. In this model, IL-21 induces the formation of 
tertiary lymphoid structures and the production of neutralizing antibody against RSV, thereby 
reducing severity of infection (71).

Th1 cells
Studies in human cells have demonstrated that IL-21 can also promote Th1 differentiation, 
leading to enhanced expression of Th1-associated transcription factors such as STAT4 and 
T-bet, along with increased IFN-γ production (72). IL-21 is highly detected in lamina propria 
of Crohn’s disease patients, and neutralization of IL-21 decreased the phosphorylated STAT4 
and T-bet expression, resulting in inhibition of IFN-γ production (73). In viral infection, IL-21 
signaling has opposing effects on IFN-γ production in CD4 T cells. While STAT3 signaling 
suppresses IL-21 mediated T-bet and IFN-γ expression in CD4 T cells, IL-21 enhanced STAT1 
signaling is required for the production of IFN-γ in CD4 T cells (51).

CD8 T cells
While IL-21 alone has limited effects on CD8 T cell proliferation, it exhibits strong synergy 
with either IL-7 or IL-15, resulting in the induction of both proliferation and IFN-γ production 
(74). In the presence of IL-2, IL-21 optimally enhance the clonal expansion and effector 
function of naïve CD8 T cells in STAT4-independent manner (75). After the transfer of 
IL-21 primed CD8 T cells into tumor-bearing mice, these cells display the characteristics of 
memory T cells and enhanced persistence in vivo (76). In the tumor microenvironment, GITR 
stimulation has been shown to enhance the antitumor function of CD8 T cells, and this is 
mediated through the IL-21 produced by Tfh cells (47). A recent study has identified single 
cell level transcriptomic profiles of IL-21 producing CD4 T cells in the LCMV infection model 
and found that Tfh cell-derived IL-21 was crucial for sustaining CD8 T cell responses and viral 
control (77).

B cells
It has been demonstrated that antigen-specific memory B cells and plasma cells failed to 
expand in IL-21 receptor deficient mice, highlighting the critical role of IL-21 signaling in 
humoral responses (78). IL-21 receptor knockout mice exhibit a normal distribution of B cell 
subsets but impaired B cell function, characterized by elevated IgE production and reduced 
levels of IgG (79). The increased levels of IgE are contingent on IL-4, as demonstrate by Il4 
and Il21r double knockout mice, which exhibit markedly reduced level of all immunoglobulin 
isotypes, including IgE. This pattern resembles the pan-hypogammaglobulinemia observed 
in individuals with X-linked severe combined immunodeficiency and underscores the 
importance of both IL-4 and IL-21 in normal B cell response (6). IL-21 receptor signaling 
serves as a key regulator that triggers the secretion of all IgG subclasses, with a particular 
emphasis of IgG1 and IgG3 (80,81). Additionally, IL-21 plays a critical role in the regulation 
of B cell proliferation and is essential for the proper formation of germinal centers, 
differentiation into plasma cells, immunoglobulin production, and facilitating isotype 
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switching towards IgG, IgM, and IgA (82-84). IL-21R signaling in B cells promotes Bcl6 
expression by B cells (85,86). B cell intrinsic IL-21 signaling, along with downstream STAT3 
signaling, has been attributed to the generation and development of long-lived antibody 
responses (87,88). In line with their elevated immunoglobulin levels, IL-21 transgenic mice 
exhibit an increased abundance of plasma cells, indicating a positive correlation between IL-
21 expression and plasma cell differentiation (83).

Treg cells
The role of IL-21 in suppressive T cells have been elucidated through numerous studies. The 
numbers of Treg cells are elevated in both Il21 and Il6 knockout mice. This is attributed to 
TGF-β signaling favoring the generation of Treg cells over Th17 cells in the absence of either 
IL-21 or IL-6 (89,90). This phenomenon appears to be mediated by IRF4, as IL-21 failed to 
reduce the differentiation of Treg cells in IRF4-deficient T cells (91). Conversely, other data 
suggest that IL-21 may enhance the suppressive function of Treg cells (92). Certain data 
indicate that IL-21 plays a role in the development of IL-10 producing Tregs type 1 (Tr1), which 
exhibit suppressive properties on effector T cells (93). This aligns with a study demonstrating 
that IL-21 induces IL-10 production in naïve CD4 T cells, CD8 T cells, and B cells (94).

NK cells
IL-21 exerts a dual role as it limits NK cell responses while simultaneously promoting 
antigen-specific T cell activation (95). IL-21 activates human NK cells and influences the 
expression of their surface receptor (96). During the tumor progression, exhausted NK cells 
have been identified in the tumor microenvironment and IL-21 reinvigorated the exhausted 
NK cells, restoring their functionality (97). The expansion of NK cells through IL-21 has been 
explored as a potential autologous cell therapy for chronic lymphocytic leukemia (98).

DCs
IL-21 may also have negative regulatory effect on the maturation and function of DCs 
(7,99). IL-21 exhibits potent inhibitory activity against the activation and maturation of DCs 
induced by GM-CSF (7). Following study has demonstrated that IL-21 can strongly induce the 
apoptosis of conventional DCs through a mechanism dependent on STAT3 and BIM while it 
has a modest effect on plasmacytoid DCs (100).

ROLES IN DISEASES

A number of studies on the genetic association or murine models have suggested a crucial role 
of IL-17 and IL-21 in diverse autoimmune diseases as well as in cancer immunity (101-106).

Autoimmune diseases
IL-17
The role of IL-17 has been demonstrated in several types of autoimmune diseases, including 
systemic lupus erythematosus (SLE), multiple sclerosis (MS), rheumatoid arthritis and 
psoriasis. In 1999, IL-17 producing cells were found to be increased in the cerebrospinal fluid 
of MS patients. (107). Using the experimental autoimmune encephalomyelitis (EAE) model, 
a rodent model of MS, IL-17 deficiency has been shown to improve the development of EAE 
(108). IL-17 is produced not only by T cells but also by glial cells in inflamed central nervous 
system tissue, as shown by immunohistochemical analysis of MS patients (109).
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High concentration of IL-17 has been found in the synovial fluid of rheumatoid arthritis 
patients and most of them were produced by CD4 T cells (110,111). IL-17 deficiency 
significantly reduced the severity of diseases in both collagen-induced arthritis and LPS-
induced bone destructive model (Fig. 2) (112,113).

Lupus-prone BXD2 mice express high levels of IL-17 and spontaneously develop germinal 
centers. In these mice, blocking IL-17 signaling significantly reduced germinal center 
formation and autoantibody production through regulation of the Rgs13 and Rg16 genes. 
Plasma IL-17 levels are elevated in SLE patients and correlate positively with disease severity 
in SLE patients (114).

It has also been shown that IL-17A, IL-17 and IL-17F are increased in lesional skin samples 
from psoriasis patients (115). Recent studies have shown that blocking of IL-17 signaling 
reduces the skin inflammation in psoriasis (116).

This evidence underscores IL-17’s broad impact in autoimmune pathology and its potential as 
a therapeutic target in various autoimmune diseases (Fig. 2).
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Figure 2. Role of IL-17 in diseases and potential therapeutics. 
IL-17 play critical roles in many diseases, and drugs targeting IL-17 have been clinically used or are under investigation. In psoriasis, IL-17 stimulates keratinocytes 
to produce S100A8, S100A9, and AMP which in turn activate the proliferation of keratinocytes. In arthritis, IL-17 induces osteoblast to secrete RANKL, leading to 
osteoclast formation and subsequent bone destruction. In lupus, IL-17 recruits neutrophils and exacerbates tissue damage. In tumors, IL-17 recruits immune-
suppressive myeloid cells contributing to tumor growth. In MS, IL-17 contributes to the degradation of myelin in the central nervous system.



IL-21
Dysregulated IL-21 expression is associated with multiple inflammatory conditions, 
including Crohn’s disease, celiac disease and arthritis (117-119). IL-21 is highly produced in 
human subjects with Crohn’s disease and the blockade of the IL-21/IL-21R signaling axis 
in these patients resulted in reduced production of IFN-γ by mucosal lymphocytes (73). As 
such, the lack of an intact IL-21/IL-21R signaling axis in mice (Il21r−/−) resulted in attenuated 
inflammatory responses and reduced colitis in a murine model of human Inflammatory 
bowel disease (120). The activation of STAT3 in target cells has been proposed as a 
mechanism by which the IL-21/IL-21R signaling promotes tissue inflammation (117). These 
findings suggest that IL-21/IL-21R axis could be part of a positive feedback loop that amplifies 
an inflammatory response in the gut (Fig. 3) (73,121).

IL-21 expression is increased in skin of psoriasis patients and the intradermal treatment of IL-
21 directly induces the hyperplasia of keratinocytes (122). Disease score of psoriasis patients 
is positively correlated with the frequency of IL-21 producing CD4 T cells and Th17 cells (123). 
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Figure 3. Role of IL-21 in diseases and potential therapeutics. 
IL-21 plays crucial roles in both tumors and other autoimmune diseases, and the drugs targeting IL-21 are 
currently under investigation in clinical trials. In the context of tumors, IL-21 activates NK and CD8 T cells within 
the tumor microenvironment, while not stimulating Treg cells. IL-21-activated NK and CD8 T cells induce the 
destruction of tumor cells. In lupus, IL-21 activates B cells, promoting the production of autoantibodies, which 
further exacerbates tissue damage. In inflammatory bowel diseases, IL-21 stimulates T cells to secret IFN-γ, 
leading to severe inflammation in the affected tissues.



In line with this context, recent study has demonstrated that IL-21 may promote psoriatic 
inflammation by inducing imbalance in Th17 and Treg populations (124).

Significantly increased percentages of IL-21 expressing CD4 T cells and CD8 T cells were 
found in SLE patients compared to healthy control. The frequency of IL-21 expressing T 
cells were positively correlated with the frequency of IL-17 expressing T cells in SLE patients, 
suggesting a crucial role of IL-21 in the pathogenesis of SLE (125). Recent finding suggests 
that IL-21 potently expand unique CD11chiT-bet+ B cells and differentiate these cells into 
autoreactive plasma cells in SLE patients (Fig. 3) (119).

Tumor immunology
IL-17
In the tumor microenvironment, IL-17 plays a role in recruiting neutrophilic myeloid cells, 
which are often referred to as either myeloid-derived suppressor cells (MDSCs) or tumor-
induced neutrophils (Fig. 2) (126-128). In humans, it has been observed that the frequencies 
of intra-tumoral granulocytic polymorphonuclear MDSCs correlate with the presence of IL-17-
producing cells in both gastric and colorectal cancers (127,129). The induction of pathogenic 
myeloid cells has been linked to tumor progression in various IL-17-dependent murine cancer 
models, encompassing lung, colon, liver, and breast cancer (126,128,130-132). The depletion 
of Gr1+CD11b+ cells resulted in the suppression of tumor growth in lung adenocarcinoma 
model (131). Collectively, multiple studies have demonstrated that IL-17 mediates tumor 
progression by recruiting immune-suppressive myeloid cells. Nonetheless, in certain studies, 
IL-17 has been found to stimulate anti-tumor immunity by facilitating the recruitment of 
neutrophils that, in turn, mount effective anti-tumor immune responses, particularly in cases 
of squamous cell carcinoma and bladder cancer (133,134).

IL-21
Extensive research has been dedicated to understanding the role of IL-21 in anti-tumor 
immune responses. In vitro studies have demonstrated that IL-21, in synergy with IL-15, 
robustly enhances the proliferation of both memory and naïve phenotype CD8 T cells, along 
with an augmentation of IFN-ɣ production (Fig. 3). Consequently, in vivo administration of 
IL-21 in combination with IL-15 not only increased the numbers of antigen-specific CD8 T 
cells but also demonstrated a synergistic effect in promoting tumor regression in established 
B16 melanomas (74). The antitumor effect of IL-21 is enhanced in Erbitux-based IL-21 tumor-
targeting fusion protein through the proliferation of tumor-infiltrating PD-1intTIM-3- CD8 T 
cells (135). A recent study has demonstrated that the protein BATF serves as a key molecule 
of IL-21 mediated antitumor effect of CD8 T cells (136). Additionally, in the MCA205 tumor 
model, it was observed that overexpression of the IL-21 cytokine inhibited tumor growth in a 
manner that depended on NK cells rather than T cells (137). The intraperitoneal injection of 
recombinant IL-21 protein elicited antitumor responses in NK cell dependent manner against 
4T1 breast carcinoma, Lewis Lung carcinoma, and RM-1 tumors transfected with NKG2D 
ligand (138). Furthermore, IL-21 has been shown to directly induce the apoptosis of certain 
types of tumor cells in vitro. IL-21 induces BIM up-regulation and combination of IL-21 with 
fludarabine or rituximab enhances the direct cytotoxic effect in chronic B-type lymphocytic 
leukemia (139,140), follicular lymphoma (5,141), and diffuse large B cell lymphoma (142,143).
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THERAPEUTIC IMPLICATIONS

Therapeutic Implications of IL-17
IL-17 has emerged as an important target in immunotherapy due to its extensive and 
pivotal role in immune responses, particularly in inflammatory and autoimmune diseases. 
Therapeutic strategies are diverse, ranging from small molecule therapy to monoclonal and 
bispecific antibodies (144).

Clinical development and applications
A number of IL-17 inhibitors have not only entered clinical trials but have also received 
approval for clinical use, reflecting their significant therapeutic potential. Secukinumab 
and ixekizumab, both monoclonal antibodies targeting IL-17A, have been approved and are 
effectively used in the management of plaque psoriasis, psoriatic arthritis, and ankylosing 
spondylitis. Their clinical success has been a testament to the importance of IL-17 in the 
pathophysiology of these autoimmune conditions (145). Additionally, gumokimab and 
vunakizumab are currently in Phase 3 clinical trials, showing promise particularly in the 
treatment of plaque psoriasis and other immune-mediated diseases. 608-3SBio (608 Q2W), 
another monoclonal antibody, is currently in Phase 3 and is being studied primarily for its role 
in the treatment of chronic plaque psoriasis. Its advancement to this stage indicates potential 
efficacy and applicability in alleviating symptoms associated with psoriasis (Fig. 2) (146).

Preclinical innovation
Several drugs targeting IL-17 are in the preclinical stage, investigating efficacy and safety in 
conditions such as cancer indications and autoimmune diseases. AVIDIO/CRC (CARG-2020), 
a combination of an immune checkpoint modulator, oncolytic virus and small hairpin RNA, 
is under preclinical investigation for use in colorectal and ovarian cancer, illustrating the 
broad scope of IL-17-targeted therapies beyond autoimmune diseases (147).

Discontinued and inactive therapeutics
Despite the promising therapeutic implications, some drugs, including remtolumab, have 
been discontinued or are not active, underscoring the challenges and complexities associated 
with the development of IL-17-targeted therapies. The discontinuation of these drugs 
highlights the complexity of developing effective and safe IL-17 inhibitors and underscores 
the importance of continued research and refinement in this area (148).

Bispecific antibodies and small molecule therapies
The development of bispecific antibodies such as BCD-121 and BH1657 (149), which are in 
early stages of development, provides a nuanced approach that allows simultaneous targeting 
of IL-17 and other cytokines such as TNF-alpha. Small molecule therapies such (150) and 
Novel Scaffold Program #1 & #2 are being investigated for their potential to modulate IL-17 
activity in conditions such as psoriasis and other inflammatory diseases, offering a more 
targeted and specific approach to therapy (Table 1) (151).

Therapeutic implications of IL-21
IL-21, a cytokine with an extensive role in the immune response, especially in adaptive 
immunity, has become a target for therapeutic development in immunotherapy. Its importance 
is seen in various stages of drug development involving monoclonal antibodies, fusion proteins, 
peptides, immunocytokines, and oncolytic viruses, each of which aims to explore the potential 
of IL-21 in treating various diseases ranging from autoimmune diseases to cancer.
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Table 1. Current and emerging therapies targeting the IL-17 pathway
Drug names Therapeutic class Drug developers Targets Disease indication Highest phase 

of development
608-3SBio Monoclonal antibody 3SBio, Inc.; Sunshine 

(Sansheng) Guojian 
Pharmaceuticals (Shanghai) 

Co., Ltd.

IL-17 Chronic plaque psoriasis; Plaque 
psoriasis (psoriasis vulgaris); 

Psoriasis

3

AVIDIO/CRC Immune checkpoint 
modulator; Oncolytic 

virus; Small hairpin RNA

CaroGen Corporation; 
University of Connecticut 

Health Center

IL-17; IL-12; PD-1 Colorectal cancer; Ovarian cancer Preclinical

BCD-121 Bispecific antibody; 
Monoclonal antibody

Biocad IL-17; TNF-alpha Healthy volunteers 1

BH1657 Bispecific antibody Hanmi Pharma IL-17; TNF-alpha Autoimmune disease Preclinical
E-36041 Small molecule therapy Ensemble Therapeutics IL-17 Inflammation Preclinical
EBI-028 Cytokine Sesen Bio IL-17 Eye disorders Preclinical
Gumokimab Monoclonal antibody Akeso Biopharma (Zhongshan 

Kangfang Biomedical Co., 
Ltd.)

IL-17 Ankylosing spondylitis; Plaque 
psoriasis (psoriasis vulgaris); 
Psoriasis; Psoriatic arthritis

3

HB0017 Monoclonal antibody 
humanized

Huabo Biopharm IL-17 Ankylosing spondylitis; Chronic low 
back pain; Chronic plaque psoriasis; 
Healthy volunteers; Plaque psoriasis 

(psoriasis vulgaris); Psoriatic 
arthritis; Sacroiliitis

2

HB0043 Antibody Huabo Biopharm IL-17; IL-36 Pustular psoriasis; SLE; Ulcerative 
colitis

Preclinical

IS-217 Antineoplastic; Peptide Issar Pharmaceuticals IL-17; IL-23; p38 MAPK; 
VEGFR-2

Angiogenesis; Inflammatory bowel 
disease; Psoriasis

Preclinical

Izumerogant Biological therapy Immunic Therapeutics IL-17 Castration resistant prostate cancer; 
Healthy volunteers; Metastatic 

prostate cancer; Psoriasis

1

JNJ-63823539 Bispecific antibody Covagen; Janssen 
Pharmaceuticals

IL-17; TNFR Rheumatoid arthritis Preclinical

LY-3114062 Bispecific antibody Eli Lilly and Company IL-17; TNF-alpha Inflammatory arthritis (arthritis) 1
Netakimab Monoclonal antibody 

humanized
Biocad IL-17 Ankylosing spondylitis; Healthy 

volunteers; Liver cirrhosis; Plaque 
psoriasis (psoriasis vulgaris); Primary 
biliary cholangitis; Psoriasis; Psoriatic 

arthritis

3

NVS451 Fusion protein; Small 
molecule therapy

Shulan (Hangzhou) Hospital; 
Changchun Institute of 

Biological Products Co., Ltd.

IL-17; Undisclosed Healthy volunteers; Plaque psoriasis 
(psoriasis vulgaris)

1

Orega Biotech Anti-
IL-17 antibody

Monoclonal antibody Orega Biotech IL-17 Cancer indications Preclinical

P243876 E3 modulator; Small 
molecule therapy

Progenra Inc. IL-17; ITCH Immune mediated disease; Psoriasis Preclinical

Remtolumab Bispecific antibody Abbott; Abbvie IL-17; TNF-alpha Psoriatic arthritis; Rheumatoid 
arthritis

2

RG7990 Bispecific antibody Genentech, Inc.; Hoffmann-La 
Roche

IL-17; IL-13 Asthma; Healthy volunteers 1

SCT650A Cytokine Sinocelltech Ltd. IL-17 Cancer indications Preclinical
SO11806 Small molecule therapy Eli Lilly and Company IL-17 Healthy volunteers; Plaque psoriasis 

(psoriasis vulgaris); Psoriasis
2

VPI-131 (IL7-Vault) Cytokine-nanobody Vault Pharma IL-17 Idiopathic pulmonary fibrosis; Lung 
cancer

Preclinical

Vunakizumab Monoclonal antibody 
humanized

Jiangsu HengRui 
Pharmaceutical Co., Ltd.

IL-17; IL-17A/F Ankylosing spondylitis; Cancer 
indications; Chronic plaque psoriasis; 
Graves' disease; Healthy volunteers; 

Lupus nephritis; Plaque psoriasis 
(psoriasis vulgaris); Psoriasis; 

Psoriatic arthritis

3

ZL1102 Antibody Crescendo Biologics; Zai Lab 
(Shanghai) Co., Ltd.

IL-17 Chronic plaque psoriasis 1

This table provides a comprehensive overview of drugs targeting the IL-17 pathway and associated immunological processes. It includes specific drug names, 
their therapeutic classes (such as monoclonal antibody or bispecific antibody), the drug developers, targeted biological pathways (like IL-17, IL-12, PD-1), the 
diseases or conditions each drug aims to treat (e.g., chronic plaque psoriasis, colorectal cancer), and the current phase of development ranging from preclinical 
to advanced clinical trials.



Clinical development and applications
Several IL-21-targeting drugs are in various stages of clinical development to treat conditions 
such as SLE, various cancers and Crohn’s disease. Avizakimab (BOS161721), a humanized 
monoclonal antibody targeted for SLE, has completed its Phase 1/2 clinical trials. Similarly, 
JS014 (AWT008, Exenokine-21), a cytokine nanobody, is in Phase 1 trials in advanced cancers, 
lymphomas and solid tumors (Fig. 3).

Preclinical innovations
The potential of IL-21 is also being explored at the preclinical level with various therapeutic 
strategies. AB821 is a preclinical immunocytokine being developed by Asher Bio for cancer 
indications. AWT030, a fusion protein being developed by Anwita Biosciences, is being 
investigated for its efficacy in solid tumors. PIO-001, a monoclonal antibody, and RBM-011, 
an aptamer, are in preclinical stages to explore their potential in cancer and pulmonary 
arterial hypertension, respectively (54).

Discontinued and inactive therapeutics
Not all developments have progressed, illustrating the challenges of IL-21-related 
therapeutic development. ATR-107 (PF-05230900) (152), developed by Pfizer and Wyeth, was 
discontinued after clinical trials in Crohn’s disease. BITRAP, a protein targeting IL-21R and 
TNF-alpha for rheumatoid arthritis, is not active at the preclinical stage, underscoring the 
complexity and challenges of developing effective and safe IL-21 targeting therapeutics (153).

Oncolytic viruses and fusion proteins
IL-21 research also extends to oncolytic viruses, such as CVD-1301.V01 (hV01), which is 
clinically active and under investigation for advanced solid tumors and cancer indications 
(154). VVLΔTK-STCΔN1L-IL21 (VVL-21) is a preclinical stage oncolytic virus targeting 
diseases such as glioblastoma multiforme and pancreatic cancer (155).

Recombinant proteins and immune checkpoint modulators
The development of recombinant proteins such as Werewolf Therapeutics’ WTX-712 (IL-21 
INDUKINE) and immune checkpoint modulators such as Amgen’s latikafusp (AMG 256) 
illustrate the diversity of approaches to harnessing the potential of IL-21 in immunotherapy 
(156,157). These developments illustrate the variety of strategies used to modulate IL-21 
activity in immune responses (Table 2).

FUTURE DIRECTION AND CONCLUSION

The study of IL-17 and IL-21 has revealed a spectrum of opportunities and challenges in 
immunology and medicine. As we move forward, it’s essential to carefully unravel the 
complexities and intricacies of these fascinating cytokines in order to realize their full 
therapeutic potential. The first steps in this journey should prioritize the advancement of 
current clinical trials and explore a broader range of disease indications, with a focus on the 
pathological conditions, such as various inflammatory and autoimmune diseases, in which 
these cytokines play a pivotal role (3,158). IL-17 and IL-21 are cornerstones of our body’s 
defense mechanisms, and their diverse roles in immunological processes necessitate a broad 
exploration of their therapeutic applications. By broadening the scope of research, new 
dimensions of their implications in various pathological conditions, including infectious 
diseases, can be revealed. This diversified exploration is not only about better understanding 
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their therapeutic implications, but also about exploring previously unexplored territories of 
intervention points and applications (1,151).

It is also imperative to delve deeper into the underlying mechanisms that contribute 
to resistance to therapies targeting IL-17 and IL-21. A nuanced understanding of these 
mechanisms will provide insights into why certain therapies either fail or are discontinued 
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Table 2. Emerging treatments targeting IL-21 and associated receptors
Drug names Therapeutic class Drug developers Targets Disease indication Highest phase of 

development
AB821 Immunocytokine Asher Bio IL-21 Cancer indications Preclinical
ATR-107 Monoclonal antibody 

humanized
Pfizer; Wyeth (subsidiary of Pfizer) IL-21R Crohn's disease

Avizakimab Monoclonal antibody 
humanized

Boston Pharmaceuticals IL-21 Healthy volunteers; SLE 1/2

AWT030 Fusion protein Anwita Biosciences IL-21 Solid tumors Preclinical
BITRAP Protein Y-Biologics IL-21R; TNF-

alpha
Rheumatoid arthritis Preclinical

BNZ-2 Peptide Bioniz Therapeutics, Inc.; Equillium IL-21; IL-15 Celiac disease; Healthy 
volunteers

1

CAR-T cis-targeted 
IL-21

Immunocytokine Asher Bio IL-21; EGFR Cancer indications Preclinical

CVD-1301.V01 Oncolytic virus Hangzhou Converd Co. Ltd. IL-21 Advanced solid tumors; Cancer 
indications

1

Denenicokin Recombinant protein Bristol-Myers Squibb IL-21 Advanced melanoma; 
Advanced solid tumors; 
Melanoma; Metastatic 

melanoma; Metastatic solid 
tumors; Neoplasms; Solid 

tumors

1

Fred Hutchinson 
Cancer Research 
Center autologous 
IL-21 modulated CD8+ 
antigen-specific T cells

Non-Engineered CTLs (CD8+) Fred Hutchinson Cancer Research 
Center

IL-21 Melanoma; Metastatic 
melanoma

1/2

JS014 Cytokine-nanobody Shanghai Junshi Bioscience Co., Ltd.; 
Anwita Biosciences

IL-21R Advanced cancers; Advanced 
malignant tumors; Advanced 

solid tumors; Lymphoma; 
Malignant neoplasm; Solid 

tumors

1

latikafusp Bispecific antibody; Fusion 
protein; Immune checkpoint 

modulator

Amgen IL-21R; PD-L1 Advanced solid tumors; 
Locally advanced solid tumor; 

Metastatic solid tumor

1

M.D. Anderson Cancer 
Center autologous IL-
21-primed CD8+ tumor 
antigen-specific CTLs

Non-engineered CTLs (CD8+) M.D. Anderson Cancer Center IL-21 Advanced ovarian cancer; 
Platinum resistant ovarian 
cancer; Recurrent ovarian 

epithelial cancer

1/2

mV01 Oncolytic virus Hangzhou Converd Co. Ltd. IL-21 Hodgkin lymphoma; Non-
Hodgkin lymphoma

1

NN-9828 Monoclonal antibody Novo Nordisk IL-21 Type 1 diabetes mellitus
PIO-001 Monoclonal antibody Monash University; Pio Therapeutics; 

BioCurate
IL-21 Cancer indications Preclinical

RBM-011 Aptamer Ribomic Inc; National Cerebral 
and Cardiovascular Center; Japan 
Agency for Medical Research and 

Development

IL-21 Pulmonary arterial 
hypertension

Preclinical

VVLΔTK-STCΔN1L-IL21 Oncolytic virus Queen Mary University of London; 
Zhengzhou University

IL-21; B5R Glioblastoma multiforme; 
Pancreatic cancer

Preclinical

VVLΔTKΔN1L-mIL-21 Guide RNA-mediated gene 
editing; Oncolytic virus

Zhengzhou University IL-21 Colorectal cancer Preclinical

WTX-712 Recombinant protein Werewolf Therapeutics IL-21 Solid tumors Preclinical
This table details emerging treatments focusing on the IL-21 pathway and its receptors. It lists drugs by name, their therapeutic classification (including 
immunocytokine, monoclonal antibody humanized, etc.), the developers behind these drugs, their specific biological targets (such as IL-21, IL-21R), the medical 
conditions targeted (like cancer indications, Crohn’s disease), and the highest phase of clinical development achieved, from preclinical stages to phase 1/2 trials.



in certain conditions, leading to the development of more effective and precisely targeted 
interventions. We should not overlook the importance of refining therapeutic strategies 
to increase specificity and selectivity. The development and refinement of small molecule 
inhibitors, bispecific antibodies and fusion proteins can further optimize therapeutic 
approaches and allow precise modulation of IL-17 and IL-21 activities in different 
physiological contexts (150,151). Advances in therapeutic strategies should be accompanied 
by innovations in drug delivery methods. By developing novel drug delivery systems, we can 
improve the bioavailability and therapeutic efficacy of interventions, potentially reducing 
adverse effects and improving patient outcomes. Such advances may include innovations 
in formulation technologies and delivery methods that could significantly optimize the 
therapeutic index of these interventions.

In the era of personalized medicine, the integration of sophisticated diagnostic tools and 
predictive analytics is essential. These tools will allow us to stratify patients based on their 
likelihood of responding to IL-17 and IL-21 targeted therapies, fostering the development of 
more personalized therapeutic strategies, and optimizing treatment outcomes. Advanced 
diagnostic methods coupled with predictive analytics can revolutionize patient management 
and allow for the tailoring of therapeutic regimens based on individual response profiles. In 
addition, a deeper understanding of the biological and molecular mechanisms underlying 
the actions of IL-17 and IL-21 is critical (25,159). Such exploration may reveal novel targets for 
therapeutic intervention and provide invaluable insight into their role in immune regulation 
and response. The quest to understand these complexities holds the promise of uncovering 
new therapeutic innovations and providing profound insights into immune-mediated 
diseases (155).

In summary, delving into the intricate worlds of IL-17 and IL-21 has emerged as a beacon of 
hope in immunological research, revealing potential pathways to unprecedented advances 
in both the study and development of therapeutic interventions. Unraveling the intricate 
mystery of IL-17 and IL-21 is not only a quest to understand the intricate workings of the 
immune system, but also a journey toward innovations that have the potential to alleviate 
human suffering by addressing a wide range of pathological conditions.
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