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Abstract
This study aimed to investigate the feasibility of using a knowledge-based plan-
ning technique to detect poor quality VMAT plans for patients with head and
neck cancer. We created two dose–volume histogram (DVH) prediction mod-
els using a commercial knowledge-based planning system (RapidPlan, Varian
Medical Systems,Palo Alto,CA) from plans generated by manual planning (MP)
and automated planning (AP) approaches. DVHs were predicted for evaluation
cohort 1 (EC1) of 25 patients and compared with achieved DVHs of MP and
AP plans to evaluate prediction accuracy. Additionally, we predicted DVHs for
evaluation cohort 2 (EC2) of 25 patients for which we intentionally generated
plans with suboptimal normal tissue sparing while satisfying dose–volume lim-
its of standard practice. Three radiation oncologists reviewed these plans with-
out seeing the DVH predictions. We found that predicted DVH ranges (upper–
lower predictions) were consistently wider for the MP model than for the AP
model for all normal structures. The average ranges of mean dose predictions
among all structures was 9.7 Gy (MP model) and 3.4 Gy (AP model) for EC1
patients. RapidPlan models identified 7 MP plans as outliers according to mean
dose or D1% for at least one structure, while none of AP plans were flagged.
For EC2 patients, 22 suboptimal plans were identified by prediction. While re-
generated AP plans validated that these suboptimal plans could be improved,
40 out of 45 structures with predicted poor sparing were also identified by oncol-
ogist reviews as requiring additional planning to improve sparing in the clinical
setting. Our study shows that knowledge-based DVH prediction models can be
sufficiently accurate for plan quality assurance purposes. A prediction model
built by a small cohort automatically-generated plans was effective in detecting
suboptimal plans. Such tools have potential to assist the plan quality assurance
workflow for individual patients in the clinic.
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1 INTRODUCTION

Knowledge-based planning (KBP) and automated plan-
ning techniques have been extensively explored to
tackle the challenge of inconsistent and inefficient treat-
ment planning in radiation therapy.1 KBP typically uses
a library of plans from previously treated patients as
a knowledge base and develops models associating
geometric features and corresponding dosimetry from
those plans to predict possibly achievable dosimetry for
a new patient.2,3 The objectives of plan optimization are
then created based on the predicted dosimetry, followed
by manual or automatic adjustment of those objectives
in multiple rounds until desired dosimetric measures
are achieved and the optimal plan is generated.4,5 In
addition to active research on KBP techniques, KBP-
based tools have been introduced in commercial treat-
ment planning systems (TPS), including Eclipse (Var-
ian Medical Systems, Palo Alto, CA),6–8 RayStation
(RaySearch Laboratories AB, Stockholm, Sweden)9,10

and Pinnacle11 (Philips Healthcare, Fitchburg, WI)),12

to enhance consistency and efficiency in planning and
improve plan quality in clinical practice.

Recent reports have shown promising results when
using KBP solutions in routine clinical planning and clin-
ical trials.6,13–17 As an automated tool capable of pro-
viding dose predictions and recommending optimiza-
tion objectives for individual patients, KBP may guide
the plan optimization process to achieve high-quality
plans more efficiently than the conventional approach,
which is entirely based on trial and error. Therefore, cur-
rent studies on KBP primarily focus on its utility in plan
generation.18–20 However, implementing a KBP solution,
whether in-house or commercial, for plan generation still
requires a certain amount of customization, including
how to train the prediction model and how to optimize
the plan. Even with a given prediction model, a multi-
round optimization process with intelligent (i.e., manual)
intervention is needed, as a single round of optimiza-
tion using automatically generated objectives typically
is unable to produce a clinically acceptable plan. While
such customization gives clinics flexibility to tailor plans
for their own clinical practices and goals, it also can lead
to inconsistent performances and hinder its adoption
and potential gain in efficiency.

There are other potential applications of KBP in
the clinical practice of radiation therapy, including plan
quality assurance (QA) without user customization of
optimization steps. Specifically, a selected cohort of
patients with plans with consistent and high-quality
dosimetry could be used to build a prediction model
with KBP, and the resulting model could be used as
an independent QA tool to automatically detect sub-
optimal plans for new patients. Potential advantages
of KBP-based QA include minimum manual interven-
tion, low barrier for clinical adoption, little interruption
to the clinical workflow, and assuring consistent plan

quality for clinical trials. Unlike dose–volume histogram
(DVH)-based checklists, which can flag unsafe plans,
KBP-based QA could potentially be used to flag sub-
optimal plans—that is, plans that could be further
improved. Several groups have reported evaluations
of in-house and commercial DVH prediction models
for organs at risk (OARs) in intensity-modulated radi-
ation therapy (IMRT) planning,3,16,21–24 and Tol et al.25

evaluated the performance of using RapidPlan, a KBP
solution available in the Eclipse TPS, for volumetric arc
therapy (VMAT) plan QA. Each of these studies used
plans with consistent dosimetric quality to both train
and evaluate the prediction models. They all found that
accurate DVH prediction could be achieved with these
models.

In the present study, we mainly investigate (1) the
effectiveness of using KBP trained by consistent and
high-quality automated plans to detect suboptimal plans;
and (2) the potential impact on physician plan review in
clinical practice. We aimed to provide a preclinical vali-
dation of using RapidPlan DVH prediction for VMAT plan
QA for patients with head and neck cancer. Four unique
aspects of this work include:

∙ One DVH prediction model were trained by a small
cohort of patients with consistent and high-quality
automated plans;

∙ One evaluation cohort had clinically acceptable plans,
and plans in the other cohort were intentionally gen-
erated to have suboptimal normal tissue sparing;

∙ Besides anatomical structures, non-anatomical struc-
tures to control normal sparing were also evaluated;

∙ Plans were reviewed by multiple radiation oncologists
from different institutions.

2 METHODS

2.1 Creating DVH prediction models

For model generation and evaluation, we selected 50
patients with head and neck cancer who had been
treated with VMAT at our institution. This analysis was
performed with Institutional Review Board approval.
The cohort included patients with a variety of primary
tumor locations, including cancers of the oropharynx,
nasopharynx, hypopharynx, larynx, and oral cavity. Geo-
metrical data included the original clinically utilized tar-
gets, OARs, and planning structures; there were up to
three separate planning target volumes (PTVs) drawn
by physicians with different dose levels. The planning
of clinical plans for these patients had involved 10
dosimetrists at our clinic and the assignments of cases
were random given each dosimetrist’s schedule and
workload. The plans were created based on our work-
ing planning protocol and approved by attending physi-
cians. In addition to the clinical plan used in treatment,
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TABLE 1 Clinical characteristics of training and evaluation cohorts of head and neck cancer patients; 25 patients in each cohort

Training cohort Evaluation cohort 1 Evaluation cohort 2

Primary
tumor
site

Number
of
patients

PTV dose, Gy*

median (range)
Number of
patients

PTV dose,
Gy*

median
(range)

Number of
patients

PTV dose,
Gy* median
(range)

Oropharynx 10 69.96 (60–70) 11 69.96
(60–70)

9 69.96 (69.96–70)

Nasopharynx 5 60 (60–66) 5 60 (60–66) 2 69.96 (69.96–70)

Hypopharynx 2 70 (70–70) 4 68 (60–68) 1 70 (70–70)

Oral cavity 5 60 (60–70) 4 60 (60–70) 9 60 (60–69.96)

Larynx 3 70 (66–70) 1 70 (70–70) 4 70 (60–70)

*PTV dose indicates the highest prescribed dose for a PTV.

an automated plan was generated for each patient using
a fully automated TPS, the RadiationPlanning Assis-
tant (RPA).26–30 The RPA is able to generate clini-
cally acceptable VMAT plans with high consistency for
patients with head and neck cancer;additional details of
the planning process have been published.31

We used 25 patients from the 50-patient cohort to
form a training cohort for training the DVH prediction
model in RapidPlan (Varian Medical Systems, Palo Alto,
CA). The other 25 patients formed evaluation cohort
1 (EC1) to assess model prediction accuracy (see
Table 1). Two separate RapidPlan models were created
according to two different training libraries, that is, man-
ual plans (clinical plans created manually by planners’
or physicians’ intervention and used for treatment) and
automated plans (automatically generated by the RPA
without intervention or modification; also reviewed and
deemed clinically acceptable by a radiation oncologist).
We will call these two models the manual planning (MP)
and automated planning (AP) models, respectively.

RapidPlan in the eclipse TPS is configured to build
a model that correlates the geometric relationships
between PTVs and OARs with DVHs of the input
training plans by principal component analysis and
regression analysis. After the model is trained, that
is, after the model parameters are determined, it can
predict DVHs of matched OARs for a new patient
anatomy. Both the MP and AP models included the
following OARs: left parotid, right parotid, larynx, oral
cavity, esophagus, mandible, brainstem, and spinal cord.
Mean doses and goodness-of -fit model parameters R2

for these 8 OARs are listed in Table 2. The average R2

values [range] are 0.680 [0.405,0.878] for the MP model
and 0.886 [0.630, 0.961] for the AP model. Furthermore,
for the AP model, two non-anatomical structures that are
used in the RPA automatic planning, that is, a posterior
neck (PostNeck_Avoid) and pharyngeal airway plus cer-
vical vertebrae (Airway_Avoid) were also included (see
Figure S1 in the Supporting information for examples).
These two structures were automatically generated
by the autocontouring tools within the RPA in order
to assist plan optimization for controlling hotspots in

normal tissues located in the posterior area of the neck
and approximal region around the vertebral column
(e.g., the vertebral column adding a 5-mm margin and
subtracting all PTVs). The R2 values were 0.834 and
0.856 for PostNeck_Avoid and Airway_Avoid models,
respectively.

2.2 Evaluating prediction accuracy

To assess the prediction accuracy of the two RapidPlan
models, we used an evaluation cohort of 25 patients
(EC1 in Table 1). Plans used in model training and eval-
uation were generated by the same planning approach,
that is, either manual or automated planning for the
MP or AP models, respectively. RapidPlan can predict
a range (mean ± 1 standard deviation) of DVHs for
a selected OAR. These predicted DVHs of all OARs
included in the RapidPlan model were compared with
the achieved DVHs of the manual and automated plans
for EC1 patients. Importantly, target coverage goals were
met for all plans, as the same dosimetric requirements
for the target were guaranteed during plan generation,
for example, at least 95% of the high-dose PTV receiv-
ing no less than 95% of the prescribed dose, no more

TABLE 2 Mean doses and model parameters R2 of both manual
planning (MP) and automated planning (AP) RapidPlan models for
eight organs at risk (OARs)

Goodness of fit: R2

Structure
Mean dose
(Gy) MP model AP model

Left parotid 25.2±13.2 0.405 0.939

Right parotid 26.1±9.7 0.405 0.939

Larynx 53.5±12.6 0.659 0.943

Oral cavity 37.8±9.5 0.877 0.961

Mandible 38.9±8.4 0.803 0.849

Esophagus 30.9±10.9 0.878 0.883

Brainstem 16.2±9.9 0.836 0.940

Spinal cord 26.0±3.8 0.577 0.630
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than 1 cm3 of the high-dose PTV receiving more than
107% of the prescribed dose, etc. Of note, RapidPlan
does not predict DVH for target volumes.

2.3 Plan quality assurance
and physician review

We evaluated a cohort of another 25 patients (EC2
in Table 1) that were unseen by the RapidPlan mod-
els. Two dosimetrists were tasked with generating man-
ual plans with suboptimal normal tissue sparing for this
cohort. The test plans were optimized such that their
target coverage and OAR sparing met the dosimet-
ric requirements of our clinical protocols, but additional
OAR sparing could be achieved (automated plans were
also generated for those patients as the benchmark
for comparing OAR sparing with the test plans; details
will be discussed in Section 3). No interaction between
dosimetrists and physicians took place. In other words,
these plans had not gone through a comprehensive val-
idation and iterative review as for clinical plans, so they
could mimic plans that are suboptimal but not in very
poor quality as outliers seen in practical practice. These
plans from EC2 were used to assess the effectiveness
of KBP as a QA tool when the training and evaluation
plans are generated by different planning approaches,
unlike plans from EC1.

The AP model was used to predict DVHs for these
manual test plans. The AP model was selected over the
MP model for two main reasons: (1) the AP RapidPlan
model may be more precise than the MP model because
the plan quality is more consistent for automated plans
than manual plans based on our experience31; and (2)
the AP model includes additional non-anatomical plan-
ning structures to assess more normal tissues than the
MP model.

To assess the clinical acceptability of these plans,
three radiation oncologists specializing in treating
head and neck cancer from three different institutions
reviewed the dosimetric quality of the test plans with-
out seeing the DVH predictions. In a free-form review,
each oncologist examined slice-by-slice dose distribu-
tions, DVH curves, and dose statistics, and then pro-
vided their judgment as to whether sparing of each of
the structures included in the RapidPlan model needed
improvement. We then analyzed the degree of agree-
ment between physician reviews and model predictions.

3 RESULTS

3.1 Prediction accuracy evaluation
of the MP and AP models

The trained RapidPlan models generated a range of
DVHs between the upper and lower prediction, that is,

TABLE 3 Mean, minimum, and maximum of predicted range
(upper–Lower prediction) of mean or D1% dose in Gy for different
organs at risk (OARs) among 25 patients in evaluation cohort 1

MP model AP model
Structure Mean Min, Max Mean Min, Max

Left parotid (Dmean) 13.2 3.8, 16.1 3.0 1.7, 5.4

Right parotid
(Dmean)

14.0 10.3, 16.3 3.2 2.3, 5.4

Larynx (Dmean) 8.7 2.1, 12 5.0 2.7, 7.8

Oral cavity (Dmean) 6.1 1.0, 9.9 2.6 1.5, 3.2

Mandible (Dmean) 7.2 2.8, 10 5.9 3.2, 7.5

Esophagus (Dmean) 9.0 1.0, 19.7 3.5 0.5, 5.2

Brainstem (D1%) 12.4 3.2, 17.7 1.6 0.0, 3.6

Spinal cord (D1%) 6.8 0.2, 14.2 2.7 0.0, 8.8

Abbreviations: AP, automated planning; MP, manual planning.

mean ± 1 standard deviation, for each patient in EC1.
The ranges (upper – lower predictions) were consis-
tently wider for the MP model predictions than for the
AP model for all normal structures. For the 25 patients
in EC1, the average range of mean dose predictions
among all structures were 9.7 Gy (ranging from 6.1 to
14.0 Gy) for the MP model,and 3.4 Gy (ranging from 1.6
to 5.9 Gy) for the AP model. Detailed data can be found
in Table 3. Larger ranges between upper and lower pre-
dictions resulted in the MP model than the AP model
reflects higher variability in OAR sparing of MP plans
used in model training compared to that of AP plans for
all structures.

The average of the upper and lower predicted DVHs
was computed to evaluate the prediction accuracy for
EC1 patients. Figure 1 shows the comparison of pre-
dicted and achieved mean doses for the left parotid,
oral cavity, and esophagus, as examples. Results for
other OARs are included in Figure S2. Note that the
MP and AP models were evaluated by achieved man-
ual and automated plans, respectively.For all OARs,pre-
dicted mean doses showed a linear relationship with the
achieved mean doses for both models. The average of
R2 from the linear regressions for different OARs was
0.86 for the MP model and 0.97 for the AP model. This
indicated that the AP model was more precise in pre-
dicting OAR mean doses than the MP model. Slopes of
the linear fits were almost all less than 1, meaning that
both models might overpredict achievable mean doses,
except the MP model for the oral cavity, which had a
slope slightly higher than 1.

To establish a threshold of predicted dose that could
identify suboptimal OAR sparing, the difference between
the predicted and achieved doses was first analyzed.We
compared the upper prediction from the RapidPlan mod-
els with the achieved dose in order to account for model
errors and avoid overprediction (Figure 1). Mean dose
was used to evaluate parallel organs including parotids,
larynx,and oral cavity,and D1% (dose received by 1% of
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F IGURE 1 Linear regression between achieved and predicted mean doses to the left parotid, oral cavity, and esophagus for the 25 patients
in evaluation cohort 1. Solid lines are fitted by the achieved mean dose of manual or automated plans and the predicted mean dose (derived
from the average of upper and lower predicted dose–volume histograms (DVHs) by RapidPlan) of the manual planning (MP) or automated
planning (AP) models. Dashed lines indicate regressions using the upper and lower predictions

a structure) was used to evaluated serial organs includ-
ing brainstem and spinal cord.

Figure 2 shows the dose differences for different
OARs among EC1 patients. The majority of the dif-
ference values were below 0, which means that the
achieved dose levels were not worse than the predic-
tion. This was mainly because the upper bound of OAR
DVH predictions were used here. With 200 structures
(8 OARs for 25 patients) evaluated, 24 (12%) manual
plans and 12 (6%) automated plans had worse spar-

ing compared to prediction. When we added a margin
of 3 Gy to 0 as a threshold (indicated by the dashed
line in Figure 2), eight structures from the manual plans
and two from the automated plans were outside the
threshold. As we had matched manual and automated
plans for each patient, we validated that suboptimal
sparing of the eight identified structures of manual plans
could be improved to reach at least the 3-Gy threshold,
as seen in the corresponding automated plans. How-
ever, the two automated plans identified with suboptimal
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F IGURE 2 Box plots of differences between achieved and predicted doses from 25 patients with head and neck cancer in evaluation
cohort 1. Panel (a) evaluates manual plans with the RapidPlan model trained with manual plans; in panel (b), the training and evaluation plans
were all automated plans. Mean doses were used for analyzing left and right parotid, larynx, oral cavity, mandible, and esophagus. D1% doses
were used for brainstem and spinal cord. Mean and D1% doses were derived from the upper bound of predicted dose–volume histograms
(DVHs) by corresponding RapidPlan models

D1% dose for the spinal cord could not be improved by
re-optimization without affecting other structures. This
could have been caused by prediction error as outliers.
Therefore, none of the automated plans should have
been flagged with the 3-Gy threshold. This threshold of
dose difference plus 3 Gy was then used to flag subop-
timal plans for evaluating plans from EC2.

3.2 Plan QA and physician review
of manual test plans

Figure 3 summarizes the plan evaluation results for
the 25 patients in EC2 by the AP model. Only struc-
tures identified with lower predicted than achieved mean
doses are included. Black bars indicate differences
between achieved and predicted mean doses for dif-
ference structures; 45 structures (from 22 plans) were
identified with positive differences, meaning possible
suboptimal sparing. Note that the test plans (for EC2
patients) used in the analysis were manual plans with
satisfactory dose limits but without physician review
and extensive planning. Comparisons between predic-
tions and automated plans are shown with gray bars in
Figure 3.All of the identified suboptimal test plans could
be improved, as shown in the regenerated automated
plans. In those automated plans, 3 of the 45 structures
still had higher mean doses than predictions, including
1 for brainstem, 1 for PostNeck_Avoid, and 1 for Air-
way_Avoid. However, the differences were all within the
margin of 3 Gy as used for flagging AP plans from EC1
cohort.

Figure 3 also includes the structures identified as
having possible poor sparing by physician reviews; the
red circles indicate that the corresponding structures
were flagged by at least one physician. For these struc-
tures, the physicians would intend to request additional
planning for further improvement. The severity of over-
dose perceived by physicians was not considered in
the plan review, so all requests from each physician
were collected. Of 45 of the structures identified by the
RapidPlan model, 40 (89%) were also flagged by physi-
cians. In the post-review discussion, physicians indi-
cated that the five remaining structures were not flagged
because they did not think further improvement was pos-
sible or because satisfactory sparing had already been
achieved. All structures flagged by physicians and the
RapidPlan model are included in Table S1).

4 DISCUSSION

In the treatment planning for complex cancer sites, such
as the head and neck, with large tumor targets that
are close to normal structures, it is challenging for a
treatment planner to judge plan quality owing to neces-
sary tradeoffs among various structures for individual
patients. Simply meeting normal tissue dose constraints
does not mean that the plan cannot be further improved.
Without significant caution and time-consuming manual
interventions, inferior plans are likely to pass standard
QA or peer reviews.32

The purpose of generating and evaluating unap-
proved plans in this study was to show that our
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F IGURE 3 Difference between achieved and predicted mean doses for structures in suboptimal plans identified by the RapidPlan model for
25 patients with head and neck cancer. Of 45 structures with insufficient sparing based on the predictions, 40 were also identified by physician
reviews

automatic QA tool could detect potentially inferior
plans. We attempted to use these plans to represent
ones that meet dosimetric requirements but have not
been optimized to reach the lowest possible doses to
OARs. Then, we demonstrated the utility of this auto-
matic tool for evaluating such plans in comparison with
physician evaluations.

In addition, the complexity of radiation planning for
head and neck cancer is especially impactful in low-
resource settings, in which staffing, time, and patient
load can limit the ability to provide high-quality plans for
all patients. A knowledge-based model can best predict
superior dose distributions or dosimetric measures for a
given anatomy only if the model is trained by superior
(i.e., high-quality) historical plans. Therefore, KBP could
be a useful tool for the transfer of expert knowledge of
treatment planning among hospitals and ultimately min-
imize the gaps in plan quality across the country and
around the world.

Knowledge-based QA does not interfere with the plan
generation process and can serve as an independent
tool for plan quality check,so it can be easily adopted by
a clinical practice.It can be used to assist treatment plan-
ning and adjust optimization using various approaches
of a planner’s choice before presenting a final plan to
the physician, or to provide the prediction as an addi-
tional reference to the optimized plan to support physi-
cian peer review.

As demonstrated in this study and others,24,25 Rapid-
Plan was effective in translating dosimetric quality of
training plans into model predictions for new patients.
More importantly, our data show that the model trained
by automated plans was more accurate than the one
trained by manual plans. For example, the predicted and
achieved doses showed a stronger linear relationship
for the AP model than the MP model (e.g.,Figure 1).The
AP model also showed higher precision than the MP
model in predicting DVHs,as more consistent plan qual-
ity in OAR sparing of training AP plans than MP plans
led to narrower predicted DVH band or upper-lower
DVH range (e.g., Table 3), which was determined by
standard deviation and standard error of the RapidPlan
regression model. In addition, for plan QA purposes,
if the predicted DVH band is too wide, flagging out
suboptimal or outlier plans based on such prediction
would be either extremely challenging or useless. In all,
these highlight the importance of using consistent and
high-quality plans in training a dose prediction model in
general. Details of the auto planning approach utilized
to generate AP plans in this study can be found in our
previous work.31

It is necessary to determine a threshold of dosimet-
ric index to distinguish suboptimal from “optimal” plans
when using dose predictions for plan QA. In this study,
the upper bound of the predicted mean dose was effec-
tive in evaluating the manual test plans for EC2 patients.
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However, an additional margin of 3 Gy added to the
upper prediction was more effective in evaluating AP
plans for EC1 patients because only plans that could
not be improved (e.g., spinal cord in Figure 2), or false
positive predictions, were found beyond this threshold.
There is unlikely to be a universal threshold for differ-
ent implementations of QA projects. An effective dose
threshold for QA should depend on the accuracy of the
prediction model and dosimetric preferences and should
be determined by an evaluation study for each individ-
ual project.We should also note that using mean or max
dose as a threshold alone could be insufficient to quan-
tify plan quality especially when specific dose–volume
limits to OARs are prescribed.Moreover,using the same
recipe of threshold, for example, upper prediction or an
additional margin, for all OARs may also lead to flagging
false positive or false negative plans. Therefore, devel-
oping more flexible and comprehensive approaches
to flagging suboptimal plans are important directions
in our future work, such as including dose–volume
indices, weighted plan quality score (e.g., Plan Qual-
ity Metric33), structure-specific threshold, etc., in future
models.

The inclusion of the two planning structures in the
DVH predictions is unique to our study.We have learned
from our previous experience that these structures are
important to control and measure overdose to normal
tissues in the back of the neck (PostNeck_Avoid) and
the swallowing structures between two lateral PTVs (Air-
way_Avoid) in many head and neck VMAT plans.31 This
practice was successfully reflected in the RapidPlan
model trained by automated plans and used for QA of
new test plans (EC2) with good agreement with physi-
cian reviews (Figure 3). This study demonstrated that
RapidPlan can predict DVHs not only for anatomical
structures but also for non-anatomical ones that are use-
ful in evaluating plan quality.

While physician reviews largely concurred with the
knowledge-based QA results (Figure 3), 23 of 63 struc-
tures flagged by physicians were not identified by the
RapidPlan models (Table S1). This highlights the com-
plexity of plan quality evaluation, both manual and auto-
mated. First, automatic QA can provide a useful tool to
assist plan evaluation,but still needs manual approval by
the treatment planner or physician. For example, in one
of the three cases,where the spinal cord was flagged by
physicians but not RapidPlan, the regenerated auto plan
could reduce maximum spinal cord dose to the model
predicted range. This was caused by inaccurate DVH
prediction for this case. The same happened for one of
the cases where the oral cavity was flagged by physi-
cians. Second, variability in physicians’ preferences for
plan quality and clinical practices also exists. For exam-
ple, one physician did not favor certain overdosing to
the mandible in a few plans, but those plans were not
detected by the automated QA. This discrepancy was
essentially caused by different practices among institu-

tions, as our model training plans sometimes included
part of the mandible in PTVs, which was discouraged
at this physician’s home institution. Third, a physician’s
judgment of plan quality may favor exceptional protec-
tion of certain normal tissues but may allow slightly
higher doses to structures that had already achieved
adequate sparing. Therefore, automatic QA may allow
these scenarios to be identified in clinical practice, high-
lighting what could be improved (if desired). Importantly,
we may also note that automatic QA is not aimed to
replace manual or physician review in which patient
medical evaluation is considered comprehensively and
physician preferences are enabled. It is possible to build
KBP models per physician, which is an open question
currently. In all, the goal of the present work should be
facilitating plan review to improve its efficiency and help-
ing identify possible suboptimal sparing that might be
overlooked in manual review.

One limitation of this study is to only include a sub-
set of OARs in head and neck radiotherapy and only
mean and maximum dose metrics for model genera-
tion and evaluation. However, there are many other crit-
ical structures such as submandibular glands, brachial
plexuses, optic nerves, etc., as well as more descrip-
tive dose-volume metrics to measure plan quality.Based
on the present proof of concept study, we will expand
our model and analysis in our future works. Another
limitation of RapidPlan DVH predictions is that tar-
get DVHs cannot be modeled and predicted. Thus, the
user’s judgment on satisfactory dosimetry for targets,
for example, coverage, homogeneity and conformity, is
required when assessing predicted OAR DVHs. In the
present study, we only ensured that target doses of
the evaluation plans met our clinical standards. This
could be remedied by using methods that can predict
DVH for both target volumes and OARs.34,35 Recent
studies have also proposed methods to predict voxel-
based 3D dose distributions,36–38 which are additional
promising tools for plan quality control and assurance.
Our future work may include building RapidPlan models
from reoptimized plans according to multiple physician
reviews such as ones collected in this study. Further-
more, future KBP solutions can also extend plan qual-
ity measures such as robustness, plan complexity, and
delivery efficiency,39 in addition to dosimetric indices, in
prediction models.

5 CONCLUSION

Our study shows that knowledge-based DVH prediction
models can be sufficiently accurate for plan QA pur-
poses. A RapidPlan model trained by a small cohort
of automated plans was effective for detecting subopti-
mal plans for patients with head and neck cancer. Re-
generated automated plans validated that OAR spar-
ing of those detected plans could be further improved.
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While the majority of the suboptimal plans identified by
DVH prediction were in agreement with physicians’ plan
review, we also observed variability in plan quality pref-
erence among physicians. Nevertheless, accurate DVH
prediction models have potential for improving consis-
tency and efficiency of the plan QA workflow for individ-
ual patients in the clinic.
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