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Abstract

Background: We present a novel conformal Bayesian network (CBN) to classify strains of Mycobacterium
tuberculosis Complex (MTBC) into six major genetic lineages based on two high-throuput biomarkers: mycobacterial
interspersed repetitive units (MIRU) and spacer oligonucleotide typing (spoligotyping). MTBC is the causative agent
of tuberculosis (TB), which remains one of the leading causes of disease and morbidity world-wide. DNA
fingerprinting methods such as MIRU and spoligotyping are key components in the control and tracking of
modern TB.

Results: CBN is designed to exploit background knowledge about MTBC biomarkers. It can be trained on large
historical TB databases of various subsets of MTBC biomarkers. During TB control efforts not all biomarkers may be
available. So, CBN is designed to predict the major lineage of isolates genotyped by any combination of the PCR-
based typing methods: spoligotyping and MIRU typing. CBN achieves high accuracy on three large MTBC
collections consisting of over 34,737 isolates genotyped by different combinations of spoligotypes, 12 loci of MIRU,
and 24 loci of MIRU. CBN captures distinct MIRU and spoligotype signatures associated with each lineage,
explaining its excellent performance. Visualization of MIRU and spoligotype signatures yields insight into both how
the model works and the genetic diversity of MTBC.

Conclusions: CBN conforms to the available PCR-based biological markers and achieves high performance in
identifying major lineages of MTBC. The method can be readily extended as new biomarkers are introduced for TB
tracking and control. An online tool (http://www.cs.rpi.edu/~bennek/tbinsight/tblineage) makes the CBN model
available for TB control and research efforts.

Background
Tuberculosis (TB) is an acute or chronic infection
caused by Mycobacterium tuberculosis complex
(MTBC). TB is a leading cause of death from infectious
diseases world-wide. TB genotyping enriches traditional
epidemiological approaches and plays an increasingly
important role in TB control strategies. It helps track
transmission routes, distinguish reactivation of latent
infections from potential recent transmissions, and iden-
tify outbreaks and quantify their severity. Additionally,
laboratory cross-contamination events can be detected.

Multiple DNA fingerprinting methods are used for TB
and their use has evolved over time. Since May 2009,
two types of DNA fingerprinting methods based on PCR
are routinely used for genotyping all culture-positive TB
cases in the United States: spacer oligonucleotide typing
(spoligotyping) and mycobacterial interspersed repetitive
units – variable-number-tandem-repeat (MIRU-VNTR).
Spoligotyping is based on 43 polymorphisms found in
the direct repeat locus of the mycobacterial chromo-
some [1], while mycobacterial interspersed repetitive
units (MIRU) is the number of repetitive units present
in multiple loci [2].
Currently, the Centers for Disease Control and Pre-

vention (CDC) collect spoligotype and 24 loci of MIRU
for all culture positive TB patients in the US. The
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availability of biomarker data by each of these finger-
printing methods depends on when the method was
adopted for TB control. Spoligotyping was developed
first, so there are massive collections of spoligotypes
maintained by the CDC and the Institute Pasteur. Sub-
sequently, MIRU typing with 12 loci of MIRU became
the standard. We refer to this set of biomarkers as 12-
loci MIRU. In May 2009, spoligotyping plus 24 loci of
MIRU became the standard for universal genotyping of
TB in the US. We refer to this set as 24-loci MIRU. The
amount of data available for each DNA fingerprinting
method depends on how long that type of data has been
collected. Since 2001, over forty thousand MTBC iso-
lates have been genotyped for spoligotypes and 12-loci
MIRU. A relatively small number of isolates have been
typed by spoligotyping and 24-loci MIRU, since geno-
typing focuses primarily on current patients.
Classification of strains of MTBC into lineages may

help implement suitable control measures, especially
given recent studies on the existence of stable host-
pathogen associations [3] and phylogeographic distri-
butions of strains [4]. The most definitive work for
classifying strains of MTBC predominantly relies on
deletion analysis to distinguish lineages [5,6]. Unfortu-
nately, deletion analysis results are often not available
in large genotyping data collections, or for routine
public health TB patient investigations. So, alternatives
such as mathematical models and visual rules for subli-
neage classification based on spoligotyping alone have
been developed [7,8]. Traditionally, Restriction Frag-
ment Length Polymorphism (RFLP) typing has also
been used for lineage identification. However, this
method requires maintaining live cultures of TB,
which is time-consuming and the results are not com-
parable between labs. MIRU-VNTRplus[9] is a multi-
marker-based curated database that classifies strains by
finding their nearest neighbors in the database. High
accuracy was reported on classification performed
using MIRU types of strains alone, which were further
boosted when augmented with other biomarkers: spoli-
gotypes, large sequence polymorphisms (LSPs), and
single nucleotide polymorphisms (SNPs).
The goal of this paper is to develop a method for major

lineage classification using any combination of PCR-based
genotyping methods routinely collected as part of TB
control and tracking efforts. When only spoligotypes are
available, the model predicts the lineage using only spoli-
gotypes. When the full set of spoligotypes plus 24-loci
MIRU is available, the model predicts using all these avail-
able markers. In addition, the method should be readily
adaptable to include new genomic biomarkers as they
become available. The lineage classification model is
trained using all available data (currently spoligotypes and
up to 24 loci of MIRU), but the number of records

available for each PCR-based genotype in the training set
varies. At the time of prediction, the models must conform
to the set of biomarkers available for prediction.
Understanding this need, this paper introduces the

Conformal Bayesian Network (CBN), a probability-based
model, to classify isolates into the major genetic lineages
using different blends of PCR-based biomarkers. CBN
identifies 6 major lineages of MTBC as identified by
LSPs [4] consisting of three ancestral strains (Indo-
Oceanic, M. bovis, and M. africanum) and three modern
strains (Euro-American, East African Indian (CAS), and
East Asian (Beijing)). Note that in East African Indian
(CAS), East African Indian refers to the lineage name in
[10] determined by LSPs, and CAS refers to the spoligo-
type family such as in [5]. This convention is also used
for East Asian (Beijing). In other studies, Indo-Oceanic
is also referred to by its spoligotype family name EAI,
but we will not use that name here to avoid confusion.
CBN was created using two datasets provided by the

CDC. The first historical dataset, cdc1, consists of 31482
isolates genotyped by spoligotype and 12-loci MIRU,
while the second more recent dataset, cdc2, consists of
3255 isolated genotyped by spoligotypes and 24-loci
MIRU types. Both sets comprise results from genotyping
of isolates collected from TB culture-positive patients
across the United States as part of TB control efforts.
CBN achieves high accuracy on the CDC data and on
two other independently collected datasets from
MIRU-VNTRplus and a study in Brussels [11]. This
high accuracy is maintained even when the set of DNA
fingerprints used for prediction changes. The conformal
model outperforms a traditional Bayesian Network con-
structed using only isolates genotyped by spoligotypes
and 24-loci MIRU.
An online tool that classifies MTBC strains into

lineages using CBN is available at http://www.cs.rpi.edu/
~bennek/tbinsight/tblineage . Users may upload their
strains genotyped by any combination of spoligotype,
12-loci MIRU or 24-loci MIRU. The strains are classi-
fied using CBN and the results are instantly provided.
We also visualize the probabilistic signature of spoli-

gotype and the 24-loci MIRU profile for the CDC data.
The signature extends visual rules, popularly used for
spoligotypes, to MIRU, and provides insight in to the
models and data.
We now provide background information on Bayesian

networks, MIRU analysis, and spoligotyping.

Bayesian network
We created a hierarchical Bayesian network (BN) to pre-
dict the 6 major lineages of the MTBC. A BN is a gra-
phical representation of a probability distribution.
Formally speaking, a BN is a directed acyclic graph
G N E( , ) consisting of a set of nodes X x x Ni i  |
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to represent the variables and a set of directed links that
connect pairs of nodes to represent conditional
dependencies.
Each node has a conditional probability distribution

that quantifies the probabilistic relation between the
node and its parents, such that for a network of k nodes:

P x x x P x parents xk i

i

k

i( , ,..., ) ( | ( ))1 2
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Therefore, one can compute the full joint probability
distribution from the information in the network. In
other words, a well-represented Bayesian network can-
capture the complete nature of the relationship between
a set of variables.

MIRU analysis
MIRU typing based on 24 loci used in conjunction with
spoligotyping has become the standard method for
MTBC DNA fingerprinting in the US, allowing high-
throughput, discriminatory, and reproducible analysis of
clinical isolates. Because of their portable data format,
spoligotypes and MIRU can potentially be used for indi-
vidual strain identification based on large reference data-
bases or classification models. Beyond studying the
genetic diversity of the MTBC, MIRU has become a
major method for epidemiological tracking of MTBC
because of its portable data format and discriminatory
power [9,12]. Altogether, there are 41 MIRU loci, of
which up to 24 are used in this study. These 24 MIRU
loci can be viewed as consisting of 3 subsets, MIRU locus
2677/MIRU24, MIRU1 consisting of loci 154/MIRU02,
580/MIRU04 , 960/MIRU10, 1644/MIRU16, 2059/
MIRU20, 2531/MIRU23, 2996/MIRU26, 3007/MIRU27,
3192/MIRU31, 4348/MIRU39, and 802/MIRU40, and
MIRU2 comprising loci 424/Mtub04, 577/ETRC, 1955/
Mtub21, 2163B/QU11b, 2165/ETRA, 2347/Mtub29,
2401/Mtub30, 2461/ETRB, 3171/Mtub34, 3690/Mtub39,
4156 /QUB4156, and 4052/QUB26. We refer to MIRU
locus 2677/MIRU24 by its alias MIRU24. The group 12-
loci MIRU consists of MIRU1 plus locus MIRU24. The
group 24-loci MIRU contains 12-loci MIRU plus MIRU2.

The Bayesian Network is designed to exploit the
known properties of MIRU. The 24 MIRU loci are scat-
tered throughout the chromosome of MTBC. Hence,
the numbers of repeats present at each locus are inde-
pendent of each other. Each locus exhibits different
degrees of allelic diversity. MIRU24 is known to corre-
spond to the TbD1 deletion, a known marker for ances-
tral versus modern strains [9,14]. Modern strains (i.e.
Euro-American, East Asian, and East African Indian)
have less than 2 repeats at locus MIRU24. With rare
exceptions, ancestral strains (i.e. Indo-Oceanic, M. bovis
and M. Africanum) have 2 or more repeats at MIRU24.

A Hierarchical BN for major-lineage classification using
MIRU has been developed [15] and forms the basis of
the MIRU part of the proposed BN model.

Spoligotyping
Spacer oligonucleotide typing (spoligotyping) is a com-
monly used, amplification-based method for genotyping
MTBC isolates. Because the assay is inexpensive, quick,
and robust, it is often used as a first-line genotyping
method. It is based on the polymorphisms found in the
direct repeat (DR) locus that is present in all M. tuberculo-
sis complex isolates. The DR locus contains multiple 36-bp
DRs separated by 30- to 40-bp unique spacer sequences
[13]. Spoligotyping detects the presence or absence of
43 different spacer sequences by hybridizing labeled ampli-
cons of the DR locus to oligonucleotide probes for each of
the spacers arrayed on a membrane (a reverse line blot
hybridization) [16]. Mathematically, each isolate is charac-
terized as a 43-dimensional vector of 0s and 1s represent-
ing the presence and absence of each spacer.
A key fact about the evolution of spoligotypes is that

once a spacer is lost, it is extremely unlikely to be
regained. It is hypothesized that spoligotypes evolve by
deletion of a single or multiple contiguous DRs, whereas
insertion of DRs is very unlikely. The SPOTCLUST
Bayesian Network models the asymmetric evolution of
spacers using a Bayesian Network with “hidden parents”
[7].The Bayesian network can be thought of as a genera-
tive model. The hidden parents of a lineage generate the
members of the lineage. They capture evolution of spoli-
gotypes without generating the full phylogeny. A spacer
in the hidden parent may be lost with small probability.
A spacer that is absent in the parent is almost never
gained. This allows the Bayesian network to capture the
deletions that are known to characterize spoligotype
lineages. The hidden parent technique of SPOTCLUST
is used for the spoligotype parts of the CBN model.

Results
The following sections describe and discuss the three
main results of this paper:

1) Development of the CBN model for prediction of
major lineages based on available biomarkers.
2) Computational experiments establishing the effec-
tiveness of CBN in both in- and out-of sample test-
ing on three datasets.
3) Visualization of joint spoligotype-MIRU signatures
to provide insight into TB lineages, biomarkers, and
models.

Conformal Bayesian network for mixed DNA fingerprints
We first designed a hierarchical Bayesian Network (BN)
probability model for lineage classification that captures
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domain knowledge about the properties of spoligotypes
and MIRU. The same probability model is used by both
the conformal and traditional BN. The model, shown in
Figure 1, is

P L M M H S P S H P H L P M L P L M P Mj j j

j

i

i

( , , , , ) ( | ) ( | ) ( | ) ( | ) (24 24 
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Where the random variable L represents the lineage,

and the random variables S S jj  { | } with

 { ,.., }1 43 and H H jj  { | } with  { ,.., }1 43

represent the spoligotype spacers and their hidden
parents respectively. The variable M24 indicates
whether or not 2 or more repeats are present
at MIRU24 locus. The random variables M M ii  { | }

  MIRU MIRU1 2 represent the MIRU loci as indexed by
their loci number.
This BN is a hierarchical generative model. The value

of locus MIRU24 generates the lineage, which in turn,
determines the number of repeats in the remaining
MIRU loci. Thus patterns in the occurrences of repeats
at each loci for each lineage are captured. The lineage
also generates the hidden parents of the lineage which
in turn generate the spoligotype spacers.

The BN reflects the known mechanisms of evolution
of the spoligotype. As discussed above, with rare excep-
tions, ancestral strains have 2 or more repeats at
MIRU24. Thus the top-level variable, M24, indicates
whether MIRU24 is less than two (indicating modern
lineages with high probability) or at least two (indicating
ancestral lineages with high probability). The BN
assumes that MIRU loci and the spoligotype hidden par-
ents are conditionally independent given the lineage.
The MIRU loci are scattered throughout the chromo-
some of MTBC in locations away from the DR locus
used for spoligotypes. Thus, the assumptions of inde-
pendence between the MIRU loci, and between MIRU
and spoligotype, are well supported biologically. The
conditional independence assumption of spacers is a
model simplification previously made in the SPOT-
CLUST BN model [7].
Both the Conformal BN (CBN) and Traditional Baye-

sian Network (TBN) use the same underlying BN. The
difference is in how they are trained and used for pre-
diction. The TBN assumes there are no missing data.
The training data can only contain isolates for which
the spoligotypes and all 24 MIRU loci are known. To
predict the lineage of a new isolate, all of the 43 spoligo-
types and MIRU must be observed. In contrast, CBN is

Figure 1 Hierarchical Bayesian network developed to predict TB major lineages using spoligotypes and MIRU. The model first uses M24

to distinguish modern versus ancestral lineages. The spacers and MIRU are treated as conditionally independent given the lineage. The
unobserved variables H j capture the fact that spacers are lost and almost never gained. The shaded nodes refer to hidden variables.
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trained using all available data even if is not complete.
Each conditional distribution in the model is estimated
using all the data pertinent to the distribution available.
The independence of the spacers and MIRU in the
model makes this possible.
We have one data set (cdc1) consisting of 31,482 iso-

lates genotyped by spoligotypes and 12-loci MIRU typ-
ing and one data set (cdc2) consisting of 3,255 isolates
genotyped by spoligotypes and 24-loci MIRU typing.
The CBN is trained using the information from all
34,737 isolates. The TBN can only exploit the 3,255
data points, because the original 31,482 isolates from
cdc1 are in some sense incomplete.
At the time of prediction, TBN must either have all

spacers and all 24 loci of MIRU available for the isolates
to be predicted, or the missing biomarkers must be trea-
ted as missing values in the BN, which is a potentially
expensive proposition. On the other hand, because of
conditional independence of the biomarkers in the BN
model, CBN can conform to the set of available biomar-
kers without any expensive missing value computations.
None of the genotyping variables in the BN are treated
as unobserved except for the hidden parent spacers
(which are always unobserved) and possibly M24.
Figure 2 illustrates the use of the CBN for prediction.

Computational results
The computational experiments address three questions:

1) How well does the CBN predict the six major
lineages overall?
2) Does the CBN that exploits historical data per-
form better than the traditional BN?
3) Can the CBN effectively predict using different
subsets of the available biomarkers?

Datasets
Four datasets were used in this study. CBN was trained
using data collected by the CDC as part of routine TB
surveillance in the United States from 2004-09. The
CDC consists of two subsets:
(1) cdc1: A historical patient dataset of 31,482 isolates

captures the distribution of MTBC in TB patients in the
United States. It consists of spoligotypes and 12-loci
MIRU.
(2) cdc2: A more current patient dataset of 3,255 iso-

lates captures the distribution of MTBC in TB patients
in the US. It consists of spoligotypes and 24-loci MIRU.
Two additional datasets collected and labelled in inde-

pendent studies, MIRU-VNTRplus and Brussels [11],
were used to test the models.
(3) MIRU-VNTRplus: A curated dataset of 163 iso-

lates, each genotyped by spoligotype and 24-loci MIRU

plus additional biomarkers. This highly curated dataset
is designed to capture the genetic diversity of MTBC
worldwide.
(4) Brussels: A patient dataset of 432 isolates reflects

the distribution of strains of MTBC in patients in
Brussels. The isolates are genotyped by spoligotype and
24-loci MIRU. Table 1 provides the distribution of the
families within the lineages.

Overall accuracy of CBN
In the first experiment, we evaluated the overall accu-
racy of CBN on the CDC dataset and out-of-sample
accuracy on three datasets. The model achieves excellent
results overall when trained on the CDC data. Table 2
shows the confusion matrix detailing classification
results on this data. The diagonal elements represent
the number of strains predicted correctly for each class.
Note that the total number of isolates is reported (i.e.
each distinct genotype is weighted by the number of
occurrences). F-values greater than 96% were reported
on predictive tests on the CDC dataset for all lineages.
The recall (percentage of the isolates in a given lineage
correctly identified as being in that lineage) is over 99%
is for all lineages. The precision (the percentage of iso-
lates predicted to be in a lineage that are actually in the
lineage) is greater than 99% for four of the six lineages.

The F-value was computed as: F
precision recall
precision recall

  
2 .

Examining the precision and recall of the individual
lineages yields further insight. The precision of East
Asian is slightly lower at 97.3%. Deletion of spacers 134
is characteristic of strains of the East Asian lineage.
Therefore, P(Hj|East Asian) ~0, for j in {1,2..34}. So,
strains with many spacers missing amongst the first 34
spacers, as is the case with some Euro-American strains,
are likely to be classified as East Asian. The precision
for M. africanum drops to 92.9%, primarily because of
confusion with Indo-Oceanic. This can be explained by
the fact that the training set contains few strains of M.
africanum, since strains of this lineage are rarely
observed in the US. The lower recall of Euro-American
(99.4%) can be explained by the existence of greater
diversity in the Euro-American lineage. This is discussed
further in the section about spoligotype signatures.
Since no clear signature exists, strains of the Euro-
American lineage get misclassified.
Finally, some of the misclassifications result because of

the assumption that the MIRU24 discriminates between
the ancestral and modern strains. Although the model
represents this assumption based on the probability of
occurrence of the number of repeats at locus MIRU24,
a strain that deviates from the expected number of
repeats at the MIRU24 may be misclassified.
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Figure 2 Conformal Bayesian network (CBN) using different combinations of spoligotypes and MIRUs. In (a) only spoligotypes and 12
loci of MIRU (MIRU1 + M24) are observed. The components of the network corresponding to the 12 loci of MIRU in MIRU2 are ignored as
shown by the dotted lines. (b) CBN predicts using spoligotype only, treating M24 as a missing variable and ignoring all other MIRU portions of
the network. The shaded nodes refer to hidden values in each case, and the nodes represented with dotted outlines are not used for prediction.
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We performed out-of-sample testing using the MIRU-
VNTRplus and Brussels datasets [9,11] to examine the
predictive accuracy of CBN. Table 3 represents the predic-
tive accuracy as measured by F-value on these datasets. It
also includes generalization results on CDC using 10%
stratified cross validation of the distinct records, repeated
20 times. CBN performed well on all datasets for all
lineages. The F-value on the CDC data was greater than
94.7% percent for all lineages. The F-values on the Brus-
sels dataset were very close to the overall CDC results,
with over 99% on four lineages, and slightly less accuracy
on M. africanum and East Asian. The MIRU-VNTRplus
dataset is designed to capture the breadth of diversity of
MTBC. On that dataset Indo-Oceanic (F-value 89.7%)
proved to be the most challenging, once again experien-
cing overlap with Euro-American.

Comparison of the CBN with the Traditional Bayesian
Network (TBN)
The next comparative study shows that CBN achieves
better generalization than TBN by exploiting historical
data even though it may be incomplete. Both TBN and
CBN are trained on the CDC dataset, and then tested
on MIRU-VNTRplus and Brussels. TBN can only be
trained on the newer subset of the CDC data, cdc2,
which has spoligotypes and all 24 loci of MIRU avail-
able, while CBN can exploit both cdc2, and the histori-
cal cdc1. To estimate the generalization on CDC, 10%
stratified cross validation of the distinct records in the
cdc2 dataset was repeated 20 times. TBN is trained
using 90% of cdc2. CBN is trained using 90% of cdc2,
plus the historical but incomplete dataset, cdc1, which
contains only spoligotypes and 12-loci MIRU. The

Table 2 Overall accuracy of CBN on the CDC dataset

Predicted Lineage

Recall Indo-Oceanic M. africanum M. bovis Euro-American East Asian East African Indian

0.998 4931 7 0 1 1 0 Indo-Oceanic

1.000 0 131 0 0 0 0 M. africanum

1.000 0 0 661 0 0 0 M. bovis Actual Lineage

0.994 4 3 0 22897 127 11 Euro-American

1.000 0 0 0 0 4646 0 East Asian

0.995 0 0 0 7 0 1310 East African Indian

0.999 0.929 1.000 1.000 0.973 0.992 Precision

0.999 0.963 1.000 0.997 0.986 0.993 F-value

This confusion matrix for CDC dataset shows precision, recall, and F-Value for each lineage achieved by the CBN. Diagonal elements represent correctly classified
cases, and off-diagonal elements indicate misclassified records.

Table 3 F-values of predictions made by the CBN

F-Value

Indo-Oceanic M. africanum M. bovis Euro-American East Asian East African Indian

CDC 0.998 0.947 1.000 0.997 0.986 0.992

MIRU-VNTRplus 0.897 0.945 1.000 0.967 1.000 1.000

Brussels 1.000 0.917 1.000 0.994 0.938 1.000

CBN achieves high accuracy on generalization tests performed on 3 datasets (1) CDC using 10% stratified cross validation, (2) MIRU-VNTRplus, and (3) Brussels
datasets.

Table 1 Distribution of lineages in each dataset

Lineage

Dataset Total Indo-Oceanic M. africanum M. bovis Euro-American East Asian EastAfricanIndian

cdc1* 31482 4409 123 583 20965 4188 1214

cdc2* 3255 531 8 78 2077 458 103

CDC 34737 4940 131 661 23042 4646 1317

Brussels 432 26 13 17 331 15 30

MIRU-VNTRplus 163 16 29 11 87 10 10

The datasets used in this study were (1) cdc1 (2) cdc2 (3) MIRU-VNTRplus, and (4) Brussels datasets. The number of strains of each of the 6 lineages observed is
detailed in the table above. *The CDC dataset is of the union of cdc1 and cdc2.
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testing sets for TBN and CBN are identical subsets of
cdc2. The results by lineage are shown in Figure 3. CBN
provides predictions that have equal or greater accuracy
than those made by the TBN, across all of the lineages,
and for all of the datasets. Therefore, using all available
data for training results in more powerful predictive
models. For MIRU-VNTRplus, CBN improves generali-
zation for Indo-Oceanic, M. africanum, and Euro-

American. For Brussels, CBN improves generalization
on M. africanum and Euro-American. Almost no differ-
ence exists between the performance of TBN and CBN
on CDC.
The improvements occur in cases where there are dif-

ferences in the underlying strain distributions in the
datasets. For TBN and CBN on CDC, the training and
testing sets are both drawn from cdc2, so adding cdc1 to

Figure 3 Comparison of F-values of predictions made by the CBN and TBN for all 6 lineages. Tests performed on 3 datasets (1) CDC
using 10% stratified cross validation, (2) MIRU-VNTRplus, and (3) Brussels. CBN achieves equally good or better performance than TBN for all
lineages on all datasets. The largest gains are seen on MIRU-VNTRplus and Brussels which have different distributions than the CDC dataset used
for training.
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the training set of CBN does not add much more rele-
vant information. However, the distribution of strains in
cdc1, MIRU-VNTRplus, and Brussels are quite different.
The strains of TB commonly found in patients in the
US and Brussels are different. MIRU-VNTRplus was
deliberately constructed to capture the diversity of
strains worldwide, thus the underlying strain distribu-
tion is very different from both cdc1 and cdc2. MIRU-
VNTRplus includes diverse M. africanum strains and M.
africanum is very rare in the US; there are only 8 M.
africanum isolates in the cdc2 database. The massive
historical cdc1 dataset captures more genetic diversity in
these rare strains, thus it can significantly improve pre-
diction of M. africanum. This experiment underscores
the need for models that can exploit historical databases,
even if they don’t contain all of the currently used
biomarkers.

Comparative study: use of different combinations of
biomarkers
The next set of experiments show that CBN predicts
accurately on testing data consisting of different subsets
of biomarkers. Predictive tests were repeated 20 times
on the CDC dataset using 10% cross-validation and the
results were averaged. MIRUVNTRplus and Brussels
were tested using a CBN model trained on the CDC
data. Each test involved the use of different combina-
tions of biomarkers for prediction (all were used for
training): 1) Spoligotype alone (Spoligo), 2) 12-loci
MIRU (12M) , (3) 24-loci MIRU (24M), 4) Spoligotype

+12-loci MIRU (Sp+12M), and 5) Spoligotype+24-loci
MIRU (Sp+24M). The overall generalization accuracy is
shown in Figure 4, while the accuracy for each lineage is
shown in Figure 5.
Figure 5 compares F-values obtained by CBN in out-

of-sample testing using different combinations of bio-
markers. In general, performance of the CBN improves
or stays the same when a greater number of biomarkers
are used. Improved performance is observed when spoli-
gotype and MIRU are used in combination as compared
to when they are used individually. In addition, in most
cases, the F-value is higher when 24 loci of MIRU are
used as compared with 12 loci. The performance of
East-Asian improves considerably with the use of 24-
loci MIRU, as compared to 12-loci MIRU especially on
the Brussels dataset. Similar improvement in the F-
values is observed on this dataset with spoligotype + 24-
loci MIRU as compared to spoligotype +12-loci MIRU
for the East-Asian lineage. This improvement can be
explained on the basis of the marked differences
between the MIRU2 profiles of East Asian and Euro-
American. This is discussed further under the section
on spoligotype signatures.
On the other hand for M. africanum, the classification

accuracy is higher when 12-loci MIRU is used as com-
pared to 24-loci MIRU. The low percentage F-value
using 24 loci of MIRU can be attributed to the fact that
there are very few records (8 distinct strains) of M. afri-
canum for which MIRU2 data is available in the training
set. Based on the performance of the model on 12-loci

Figure 4 CBN average F-value over all the lineages. F-values obtained by CBN using different combinations of biomarkers 1) Spoligotype
alone (Spoligo) 2) 12-loci MIRU (12M) 3) 24-loci MIRU (24M) 4) Spoligotype + 12-loci MIRU (Sp+12M) and 5) Spoligotype + 24-loci MIRU (Sp
+24M). Out-of-sample testing was done on CDC (using 10% stratified cross-validation), MIRU-VNTRplus and Brussels. In general, the performance
improves when the spoligotype is used in conjunction with the MIRU profile as compared to using a single type of biomarker.
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MIRU, if more data is available for training, the perfor-
mance of the model using 24-loci MIRU can improve as
well. In addition, due to the small size of the test set, the
percentage recall drops greatly even if a few strains of
M. africanum are mislabeled. Eg. In the MIRU-VNTRplus
dataset, 3 of the 29 strains of M. africanum get labelled
Euro-American, reducing the recall to 89.7%.

Spoligotype and MIRU lineage signatures
In order to construct the models we studied the probabil-
ity distributions of each spacer and MIRU locus for each
lineage. The visualization of these probability distributions

as heat maps in Figure 6 reveals distinctive signature
patterns for each lineage. We observed that the numbers
of repeats at a given loci for a lineage tend to take values
that lie in a close range. Distinct patterns of spoligotype
spacers and MIRU loci distributions were found for each
lineage. However, it is difficult to capture these patterns in
simple rules or decision trees [5]. Probability-based models
such as the proposed BN can do a better job of capturing
the lineages than rules can. Spoligotype signatures
have been previously established, in which deletions of
one or more contiguous spacers have been identified as
characteristic of certain lineages. [6,17].

Figure 5 F-values of predictions averaged over all 6 lineages. 3 datasets were used: 1) CDC – with stratified sampling, 10% cross-validation
2) MIRU-VNTRplus and 3) Brussels. Results shown for all the combinations of bio-markers used: 1) Spoligotype alone (Spoligo) 2) 12-loci MIRU
(12M) 3) 24-loci MIRU (24M) 4) Spoligotype + 12-loci MIRU (Sp+12M) and 5) Spoligotype + 24-loci MIRU (Sp+24M). Comparison shows that the
overall performance improves when the spoligotype and MIRU are used in combination rather than individually. Improved performance is
observed in most cases when 24-loci MIRU is used as compared to 12-loci MIRU.
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Evidently, MIRU signatures exist too. It may be
observed that, for a lineage, at a given locus, a certain
number of repeats are present with high probability.
The occurrence of this specific number of repeats may
be unique to the lineage, and may not be observed at
this locus for other lineages. Therefore, this feature may
be used, possibly in combination with other markers, to
identify the lineage of the strain, e.g. for M. bovis, 3
repeats at MTub39 and 6 repeats at ETRB are observed
with high probability, while this pattern is not observed
for other lineages.
One can clearly see how MIRU24 discriminates

between the ancestral and modern strains with high
probability. But, there are rare exceptions where
MIRU24 does not discriminate between ancestral and
modern strains.
An analysis of the heat map also shows that some

lineages exhibit greater variability in the numbers of
repeats present at MIRU loci than others. Where the
color red is seen in the signatures, it indicates greater
diversity in the value of the loci. This fact can be used
in further dividing a lineage into its sublineages. It can
be seen that for Euro-American, the number of repeats
at locus QUB26 may range from 3-8, and each value
occurs with an equal probability of ~0.2, as indicated by

red blocks. Similar variability is observed at loci
MIRU40, MTub04, MTub21, and QUB11b. The lack of
a clear signature implies very few of the features occur
with very low or very high probability. So, for any value
of the number of repeats at a MIRU locus, there is no
strong evidence of the strain belonging to the Euro-
American lineage. This may explain the misclassification
errors pertaining to Euro-American strains. This obser-
vation may also be viewed as evidence for the need to
further classify Euro-American into sub-lineages. Defini-
tive signatures have been established for sublineages of
the Euro-American class such as Latin American Medi-
terranean (LAM) and Haarlem [6,17].
The greater discriminatory power of 24-loci MIRU

over 12-loci MIRU combined with the spoligotype sig-
nature can help resolve the difference between some
lineages. We can see that the East-Asian lineage has
some very clear patterns in MIRU2. On the other hand,
the Euro-American lineage shows a lot of diversity in
the MIRU2 profile within the lineage. Therefore, the use
of additional markers helps achieve higher classification
accuracy.
An evaluation of the models and the probability distri-

butions shows that performance may be improved by
using different features. The CBN model assumes

Figure 6 Heat Map indicating probability distribution of spoligotype spacers and MIRU loci by lineage. The probability of a spacer being
present at each of the 43 loci of the spoligotype is shown for each lineage. Each MIRU locus is modelled as a multinomial distribution with
possible values 0, 1…8, and ≥ 9 (9+). In the MIRU heat map for each lineage, the X axis represents the MIRU loci, Y axis the number of tandem
repeats, and each square represents the probability of occurrence of the number of repeats at the specified locus. The range of probability
values from 0 to 1 are depicted by colors ranging from black to white.
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independence of each spacer in the spoligotype. But
contiguous deletions characteristic of a lineage are often
observed in spoligotype sequences. From Figure 6, the
absence of the entire sequence of spacers from positions
1-34 is always observed for East Asian strains. Similarly,
absence of spacers 39-43 is observed with high probabil-
ity for strains of M. Bovis. Contiguous deletions may be
added as variables in the CBN to account for the obser-
vance of the absence of two or more adjacent spacers.
This may help solve the occasional problem of misclas-
sification of Euro-American strains as East-Asian as
observed earlier. Very rarely is a contiguous deletion
from spacers 1-34 observed in Euro-American strains,
while this is characteristic feature of East-Asian strains.
The number of repeats at each locus may be binned

differently rather than having 10 bins for each of the
numbers of repeats observed. E.g, East-Asian strains
have a large number of repeats present at locus QUB26,
in contrast to all other lineages. Using 2 bins, one for
low and another for a high number of repeats may pro-
vide improved performance.
The study of probability distributions of biomarkers

for sublineages may expose other such patterns. A
detailed feature selection and evaluation process is sug-
gested for future models that classify strains into
sublineages.

Discussion
The existence of a broad pattern within a lineage and
the significant difference in patterns across lineages
observed helps explain the success of the CBN model.
The structure of the hierarchical BN lends itself to
creating a flexible model that can exploit a variable
number of features depending upon availability. Domain
knowledge such as dependence on MIRU24 to make
predictions about whether a lineage is modern or ances-
tral, and the fact that spoligotypes are never regained
once lost, are easily incorporated into the model.

Thus, we created a simple and elegant model that
incorporates domain knowledge. Classification is accom-
plished without having to explicitly calculate distances
between genetic markers. Representing the evolutionary
distances quantitatively and combining distances
between different sets of biomarkers using appropriate
weights can pose a challenge. Traditional distance mea-
sures fail for spoligotypes, because of the asymmetry
introduced by the fact that spacers are lost but never
gained. The formulation of a model for classification by
alternate techniques involving distance or similarity
measures, such as support vector machines may not be
accomplished as effectively.
Nearest-neighbour approaches (NN) can work effec-

tively for strain classification and can be readily used in
a conformal manner. Indeed, the nearest neighbour

approach used in MIRU-VNTRplus [9] performs well
given various combinations of biomarkers. However,
this approach involves selecting a suitable distance mea-
sure and cut-off. Also, changing the distance cut-off
value yields varying results – a large value reduces the
effect of erroneous or irrelevant values of markers. But,
this results in multiple matches, possibly with different
labels. In contrast, the BN determines the probability of
the lineage of the strain without tuning or parameter
choices based on a model that requires computational
storage or time. NN algorithms require storage of the
complete database.
The signature heat maps allow users to understand

the decisions of the model much like prior rule-based
methods based on spoligotypes [6]. Decision trees pro-
duce understandable rules that are readily interpretable.
They have been used successfully for lineage classifica-
tion [18], but how to incorporate TB domain knowl-
edge, train using incomplete data, and predict using
different subsets of features are all open questions in
decision trees.

Conclusions
We have created a model using BN to accurately predict
the major lineages of strains of MTBC using available
PCR-based biological markers. Predictions can be made
using spoligotypes, 12-loci MIRU, or 24-loci MIRU used
individually or in conjunction with each other. The
structure of the CBN allows it to benefit from massive
historical databases which do not contain all of the bio-
markers in the current standard. It can be used to pre-
dict the lineage of previously unobserved strains, even
when some of the biomarkers are incomplete or
unavailable.
CBN is accurate, fast, simple to train, and easy to use.

It incorporates domain knowledge about spoligotypes
and MIRU such as their structure, position, and
mechanism of evolution. It was demonstrated that a
flexible model such as the CBN is advantageous as it
can exploit historical databases even though they may
be incomplete. The CBN is the first probabilistic model
to classify major MTBC lineages using spoligotype and
MIRU. Prior BN approaches were limited to spoligo-
types or MIRU alone. In this work, it was shown that, in
general, the performance of the classifier improves or
stays the same with an increase in the number of bio-
markers used. A web-based tool for classifying major
lineages based on spoligotypes and/or MIRU is available
at http://www.cs.rpi.edu/~bennek/tbinsight/tblineage
Future work will involve expanding the model to pre-

dict sublineages of MTBC. The MIRU-spoligotype signa-
tures in Figure 6 clearly show that sublineages exist
within the major lineages. The exact definition of these
sub-lineages is still an open question. An advantage of
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CBN is that can be readily used for unsupervised learn-
ing of sub-lineages based on MIRU and spoligotypes
such as was done previously using a BN with spoligo-
types [7]. Spoligotype signatures alone are not entirely
reliable to classify strains into lineages and having the
option of using additional biomarkers will help identify
and analyze the specific patterns in question. In addi-
tion, we plan to explore selection of the most informa-
tive biomarkers as features of the model for each lineage
while still retaining the conformal nature of the CBN
model. This may further improve performance.

Methods
Conformal Bayesian network for efficient MTBC
classification
Details of CBN are as follows. The MIRU loci are mod-
elled using the approach first reported in [15]. Each
MIRU locus is modelled as a multinomial distribution
with possible values 0, 1…8, and ≥ 9. Note all values
greater than 9 are binned together since they are very
rare. Since the proportions of different classes are not
equal and some loci values do not occur, we use a
Laplacian smoothing strategy with unequal priors. We
considered the minimum probability for each value and
locus pair, given the lineage, to be 0.0001. Based on this
a class smoothing variable m was introduced and used
in the following formula: For locus i, MIRU value k and
lineage L,

P M k L
n mp

n mi
M k L i k

L

i( | ) ( , , ) ,

( )

 



where pi,k represents the overall fraction of data in
lineage L where Mi has value k.

For spoligotypes we followed the SPOTCLUST [7]
model, which captures the fact that spacers are lost but
almost never gained, by introducing a variable for the
unobserved hidden parent (Hj) and for each spacer Sj,
both of which follow a binomial distribution. Given a
43-dimentional spoligotype S and its spacer position j,
let Sj = 1 spacer if spacer is present, Sj = 0 if spacer is
absent. The probability of the spacers given the lineage
is
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m10 = 10-7. The hidden parent spacers probabilities are
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and N is the number of observations available. Note
when pkj  1 , the correct maximum likelihood estimate
is pkj  1 . Similarly, when pkj  0 , the correct maxi-
mum likelihood estimate is pkj  0. When the CBN
model is trained, all available data are used for every
variable, so N would be adjusted accordingly. When the
TBN model is trained, only isolates with spoligotypes
and 24 loci of MIRU are used.
The CBN predicts using the subset of biomarkers

available. TBN prediction is just the special case of CBN
when all biomarkers are available. The probability of

lineage L for isolate ( , , )S M M  24 that contains the

subset of spoligotypes and subset of MIRU loci is:
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For the case when only spoligotypes are used and
MIRU24 is unknown, the lineage probability is as fol-
lows, with m referring to whether the strain is modern
or not:
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