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ADAR2 catalyses the deamination of adenosine to inosine

at the GluR2 Q/R site in the pre-mRNA encoding the

critical subunit of AMPA receptors. Among ADAR2 sub-

strates this is the vital one as editing at this position is

indispensable for normal brain function. However, the

regulation of ADAR2 post-translationally remains to be

elucidated. We demonstrate that the phosphorylation-de-

pendent prolyl-isomerase Pin1 interacts with ADAR2 and

is a positive regulator required for the nuclear localization

and stability of ADAR2. Pin1�/� mouse embryonic fibro-

blasts show mislocalization of ADAR2 in the cytoplasm

and reduced editing at the GluR2 Q/R and R/G sites. The

E3 ubiquitin ligase WWP2 plays a negative role by binding

to ADAR2 and catalysing its ubiquitination and subse-

quent degradation. Therefore, ADAR2 protein levels and

catalytic activity are coordinately regulated in a positive

manner by Pin1 and negatively by WWP2 and this may

have downstream effects on the function of GluR2. Pin1

and WWP2 also regulate the large subunit of RNA Pol II,

so these proteins may also coordinately regulate other key

cellular proteins.
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Introduction

The AMPA class of glutamate-gated ion channel receptors

(GluR) are impermeable to calcium if a GluR2 subunit is

present in the tetrameric receptor (Hollmann et al, 1991;

Verdoorn et al, 1991). This impermeability to calcium results

from RNA editing of the GluR2 transcript. The enzyme that

catalyses this RNA editing event is a member of the family of

adenosine deaminases that act on RNA (ADARs). ADAR2

specifically deaminates an adenosine residue in a glutamine

(Q) codon to an inosine that is read as guanosine by reverse

transcriptase and the translational machinery. ADAR2 con-

verts the glutamine (Q) codon to an arginine (R) codon with

100% efficiency at the GluR2 Q/R site changing a key residue

in the ion channel pore and rendering AMPA receptors

assembled with this subunit impermeable to calcium

(Sommer et al, 1991). The editing event also regulates

AMPA receptor assembly, slowing the passage of the GluR2

subunit through the ER thus ensuring correct receptor as-

sembly (Greger et al, 2003). Failure of RNA editing at this site

can lead to neuronal cell death due to the influx of calcium

(Higuchi et al, 2000). A decrease in editing at this site has

been reported in sporadic ALS motor neurons (Kawahara

et al, 2004) and in hippocampal neurons following transient

forebrain ischaemia in a rat model of stroke (Peng et al,

2006).

Mice that are null mutants for ADAR2 are seizure-prone

and die within 3 weeks after birth (Higuchi et al, 2000).

Lethality in these Adar2�/�mice can be rescued by knocking-

in the edited isoform of GluR2 (GluR2R). This experiment

suggests that despite ADAR2 having other transcripts that it

edits, the critical site is the Q/R site in GluR2 transcripts.

These rescued mice have a normal phenotype, suggesting

that the unedited GluR2 isoform does not have an essential

biological function.

For this deamination event to occur, ADAR2 must recog-

nize and bind to double-stranded (ds)RNA that is formed at

the editing site between the edited exon and the downstream

intron (Higuchi et al, 1993). Identified transcripts edited

specifically by ADAR2 are mostly expressed in the CNS

even though the protein is also expressed in other tissues.

RNA editing occurs before splicing and ADAR2 localizes to

the nucleus. In some cells, ADAR2 accumulates within the

nucleolus (Desterro et al, 2003; Sansam et al, 2003); however,

this localization is dynamic. When transcripts that can be

edited are overexpressed in these cells, ADAR2 relocalizes to

the nucleoplasm (Desterro et al, 2003).

Until now the only regulator found to influence ADAR2

expression is CREB, which can induce ADAR2 expression in

hippocampal CA1 neurons in rat brain (Peng et al, 2006). In

this study, we demonstrate that ADAR2 is dynamically regu-

lated post-translationally by the phosphorylation-dependent

peptidyl-prolyl cis/trans isomerase Pin1 (peptidyl-prolyl iso-

merase NIMA interacting protein 1). Pin1 binds to a phos-

phorylated serine or threonine residue preceding a proline

residue and catalyses the cis/trans isomerization of the

peptide bond (Lu et al, 1999). This conformational change

can have a range of consequences on the function of target

proteins, altering catalytic activity, stability or subcellular

localization (for review see Lu and Zhou, 2007). Pin1 binds

to the amino-terminus of ADAR2 in a phosphorylation-de-

pendent manner. In the absence of Pin1, ADAR2 protein is
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more labile and is mislocalized to the cytoplasm, where it is

unable to edit pre-mRNAs and there is a decrease in editing of

the Q/R and R/G sites in endogenous GluR2 transcripts. Pin1

is therefore a positive regulator of ADAR2 editing activity.

We also identify a negative regulator of ADAR2 activity,

which is WWP2; a HECT (homologous to the E6-AP C

terminus) E3 ubiquitin ligase (Pirozzi et al, 1997). WWP2

binds to a conserved PPxY motif in ADAR2 and this interac-

tion results in ubiquitination and subsequent degradation of

ADAR2. An increase in the expression of WWP2 results

in a decrease in ADAR2 protein level. This report of the

post-translational regulation of ADAR2 demonstrates how

RNA editing activity is controlled by coordinate action of

two regulators.

Results

Phosphorylation sites near the N-terminus of ADAR2

When human ADAR2 was purified to homogeneity from

HeLa cells, enzymatic activity was very labile (O0Connell

et al, 1997). However, recombinant human ADAR2 protein

purified after overexpression in the yeast Pichia pastoris is

active and stable. To determine if the protein is regulated by

post-translational modification, we performed mass spectro-

metry on recombinant ADAR2 purified from P. pastoris and

identified two phosphorylated serines near the amino-termi-

nus, serine (S) 26 and S31 (Supplementary Figure S1).

Phosphorylation at S26 has been independently verified

(Dephoure et al, 2008). The amino-terminal region of

ADAR2 is of interest since it has been shown to be important

for dimerization of the protein and autoinhibition of catalytic

activity (Gallo et al, 2003; Macbeth et al, 2004).

ADAR2 interacts with Pin1

The phosphorylated residues near the N-terminus of ADAR2

are within potential recognition motifs (Ser/Thr-Pro) for the

phosphorylation-dependent peptidyl-prolyl cis/trans isomer-

ase Pin1, a well-conserved and extremely efficient enzyme for

transducing post-translational modifications into conforma-

tional changes in key cellular proteins (Lu and Zhou, 2007).

To determine whether Pin1 interacts with ADAR2, HEK293T

cells were transiently transfected with a construct expressing

ADAR2 bearing a FLAG epitope tag at the N-terminus and

tetra-His tag at the C-terminus. After 24 h, the cells were

harvested, whole cell protein extracts were immunoprecipi-

tated with anti-FLAG monoclonal antibody and analysed by

immunoblot detection of the immunoprecipitate with mouse

anti-mitotic phosphoprotein monoclonal-2 (MPM-2) antibody

(Davis et al, 1983), that recognizes the phosphorylated Pin1

motif (Ser/Thr-Pro) in proteins. As shown in Figure 1A,

a-MPM-2 recognizes the FLAG-tagged ADAR2 protein. We

mutated T32, as this is the residue that precedes the proline

so it may be important for Pin1 binding. When the immuno-

precipitation was repeated with alanine (A) substitutions for

S26, S26/31 or T32 at the amino-terminus, the antibody

recognized ADAR2 less efficiently and loss of binding of the

MPM-2 antibody was particularly evident with the triple

mutant ADAR2S26A/S31A/T32A (Figure 1A), suggesting that

the amino-terminus of ADAR2 harbours phosphorylated S/

T-P sites at the amino-terminus that are likely to bind Pin1.

The ability of ADAR2 to bind to Pin1 was next evaluated by

in vitro binding assays with GST–Pin1 and recombinant

ADAR2 purified from P. pastoris. As shown in Figure 1B

(left panel), ADAR2 binds strongly to GST–Pin1 whereas

ADAR2 did not interact with the GST beads alone. To map

the interaction between Pin1 and ADAR2, ADAR2S26A,

ADAR2S26A/S31A/T32A or an N-terminal deletion of ADAR2

from amino acid to 4–72 (Wong et al, 2003) were purified

from P. pastoris (Figure 1B, right panel) and similarly tested

for interaction with GST–Pin1. The interaction of GST–Pin1

with ADARS26A was slightly weaker than with wild-type

ADAR2 and interaction was drastically decreased with the

triple mutant ADAR2S26A/S31A/T32A, and totally absent with

ADAR2D4–72 (Figure 1B, left panel). To determine if the

interaction with Pin1 depends on ADAR2 phosphorylation,

a transient transfection of ADAR2 into HEK293T cells was

performed and the lysate was treated with l phosphatase

followed by a pull-down assay with GST–Pin1 beads. The

interaction between ADAR2 and Pin1 was observed and this

was abolished with a longer l phosphatase treatment

(Figure 1C).

As these experiments were performed in vitro, we then

analysed the Pin1 ADAR2 interaction in HEK293T cells by

transiently cotransfecting with constructs expressing FLAG-

tagged ADAR2 and HA-tagged Pin1. The cells were harvested

after 24 h and an immunoprecipitation of the lysate was

performed with anti-FLAG monoclonal antibody and the

precipitate was detected on an immunoblot with an anti-HA

antibody (Figure 1D). Only the wild-type ADAR2 interacted

with HA-tagged Pin1. Neither the triple alanine mutant nor

ADAR2D4–72 interacted with Pin1. In addition, ADAR2 that

has mutations in both RNA-binding domains and cannot bind

to dsRNA (ADAR2RRM1–2) (Valente and Nishikura, 2007) does

not interact with Pin1. Therefore, ADAR2 has to bind to RNA

before it can interact with Pin1. In the in vitro binding assays

with GST–Pin1 and recombinant ADAR2 purified from

P. pastoris (Figure 1B), ADAR2 appears to interact with

GST–Pin1 in the absence of dsRNA. However in our experi-

ence, it is difficult to eliminate all the dsRNA present in the

purified protein fraction from yeast (Gallo et al, 2003) so

therefore we presume that this in vitro reaction is also

mediated by dsRNA. Similar results were obtained when

HEK293T cells were transiently transfected with FLAG–

ADAR2 followed by coimmunoprecipitation with endogenous

Pin1 (Figure 1E). These results demonstrate that Pin1 binds

to ADAR2 in a phosphorylation-dependent manner and that

this interaction occurs at the amino-terminal of ADAR2 after

it has bound to RNA.

Pin1 expression is required for optimal editing at the

GluR2 Q/R site

Since ADAR2 converts a glutamine (Q) codon to an arginine

(R) codon with 100% efficiency at the GluR2 Q/R site in

neurons, the important question is whether the interaction

between Pin1 and ADAR2 affects editing activity at the critical

GluR2 Q/R site. To address this point, we analysed editing of

the GluR2 Q/R site in HeLa cells. To increase the level of

editing at the Q/R site by ADAR2 in HeLa cells, we transiently

cotransfected a plasmid encoding ADAR2 with the GluR2 B13

minigene. The level of editing rose to 100%. We then co-

transfected an siRNA specific for Pin1 and editing fell to 53%

(Figure 2A).

We also analysed editing at the Q/R site in the GluR2 B13

minigene transcript (Higuchi et al, 1993) by endogenous
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ADAR2 and observed it was 60% efficient in this cell line;

however, when siRNA specific for Pin1 was cotransfected, the

level of editing fell to 46% (Figure 2B). Editing was restored

to 74% when Pin1 was overexpressed in HeLa cells.

We also examined the effect of reducing Pin1 expression

on editing of endogenously expressed GluR2 transcript in a

neuroblastoma cell line, SH-SY5Y (Figure 2C). In this cell

line, ADAR2 was cotransfected with either a Pin1-specific

siRNA or a control siRNA and editing of the endogenous

GluR2 transcript was analysed. Again the level of editing

dropped from 100% to B60% at the Q/R site when there was

a reduction in Pin1 expression. We also analysed editing at

the R/G site in the GluR2 transcript and found it was 69% but

dropped to 45% when siRNA specific for Pin1 was cotrans-

fected whereas editing was 73% when a control siRNA was

cotransfected. The reduction in Pin1 expression for this

experiment is shown in Supplementary Figure S2.

To examine the effect of complete Pin1 elimination, we

cotransfected constructs expressing the GluR2 B13 minigene

and ADAR2 into an immortalized mouse fibroblast cell line

derived from Pin1�/�mice (Figure 2D) (Fujimori et al, 1999).

The editing activity at the Q/R site was B50% and increased

to 100% when a construct expressing Pin1 was reintroduced

in these cells. All these experiments strongly suggest that

ADAR2 requires Pin1 for maximal editing of the critical

Q/Rand R/G sites in GluR2 transcripts.

Pin1 has a role in the nuclear localization of ADAR2

Pin1 has many diverse activities within the cell and it can

alter the cellular localization of its substrate, as occurs with

b-catenin (Ryo et al, 2001). Although ADAR2 has been

documented as nuclear, recent evidence demonstrated that

in human motor neurons in spinal cord sections, ADAR2

is both nuclear and cytoplasmic (Aizawa et al, 2010).

Interestingly, a deletion of the amino-terminal residues 4–72

renders ADAR2 cytoplasmic (Wong et al, 2003) and it has also

been demonstrated that this region is required for nuclear

localization as it contains a non-canonical NLS within the

Figure 1 The amino-terminus of ADAR2 harbours a Pin1-binding site. (A) The anti-MPM-2 antibody recognizes potential Pin1 sites in ADAR2
purified after overexpression in P. pastoris. Immunoblot analysis with anti-MPM-2 antibody of anti-FLAG immunoprecipitates from lysates of
HEK293T cells transfected with FLAG-tagged hADAR2, ADAR2S26A/S31A, ADAR2S26A/S31A/T32A, ADAR2S26A, ADAR2T32A or pcD3. The minor
band in the lane with pcD3 is contamination from the neighbouring lane. ADAR input visualized with anti-FLAG antibody, lower panel.
(B) Purified ADAR2 binds in vitro to Pin1 immobilized on beads. (Upper left panel) Immunoblot analysis with anti-FLAG antibody of the
binding of FLAG-tagged ADAR2, ADAR2S26A, ADAR2S26A/S31A/T32A, ADAR2D4–72 bound to GST–Pin1 or GST on glutathione beads. (Lower
panel) GST input visualized with anti-GST antibody. (Right panel) Purified ADAR proteins stained with Coomassie. (C) Binding of purified
ADAR2 to Pin1 depends on phosphorylation of Pin1 sites on ADAR2. l phosphatase treatment of lysate from HEK293T cells transfected with
ADAR2 for 0 (�), 2 h (þ ), 3 h (þ þ ) prior to incubation with GST–Pin1. Immunoblot analysis of ADAR2 with anti-FLAG antibody. Middle and
lower panels are input loading controls. (D) Pin1 binds to ADAR2 in HEK293T cells. Coimmunoprecipitation of ADAR2 and Pin1 performed
with anti-FLAG antibody on HEK293T cell lysate cotransfected with HA–Pin1 and either FLAG-tagged ADAR2, ADAR2D4–72, ADAR2RRM1–2,
ADAR2S26A/S31A/T32A or pcD3. HA–Pin1 was detected with anti-HA antibody. Asterisks represent IgG light chain. (Lower panel) Immunoblot of
input proteins with anti-FLAG antibody. (E) Endogenous Pin1 detected with anti-Pin1 antibody after immunoprecipitation with anti-FLAG
antibody from cell lysates of HEK293T cells transfected with FLAG-tagged ADAR2, ADAR2S26A/S31A/T32A, ADAR2D4–72, ADAR2RRM1–2 or pcD3.
(Lower panel) Immunoblot of input proteins detected with anti-FLAG antibody. Asterisks represent IgG light chain.
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first 64 amino acids (Desterro et al, 2003). As this deletion

removes the Pin1-binding site, we wondered if preventing

Pin1 binding also leads to mislocalization of ADAR2. To

elucidate this we transiently transfected GFP-tagged ADAR2

into Pin1þ /þ and Pin1�/� MEF cells and performed immu-

nofluorescence detection of ADAR2 (Figure 3A). In the ab-

sence of Pin1, wild-type ADAR2 is mislocalized in the

cytoplasm (Figure 3A, lower panel). Mislocalization of

ADAR2 is confirmed when nuclear and cytoplasmic fractio-

nation is performed on Pin1�/� MEF cells transiently trans-

fected with FLAG-tagged ADAR2 (Figure 3D). When Pin1 was

reintroduced into these cells, the level of ADAR2 in the

cytoplasm was significantly reduced (Figure 3B and D).

This effect of Pin1 on the localization of ADAR2 requires

Pin1 prolyl-isomerase enzymatic activity as a Pin1S67E mutant

that is catalytically inactive was unable to restore ADAR2

localization to the nucleus (Figure 3C). GFP–ADAR2 is loca-

lized to the nucleus when Pin1 is present; however, cyto-

plasmic localization of GFP–ADAR2 increases following

cotransfection with catalytically inactive Pin1. Increased

FLAG–ADAR2 is also observed in the cytoplasmic fraction

of Pin1�/� MEF cells transiently transfected with FLAG-

tagged ADAR2 (Figure 3D).

As Pin1 recognizes a phosphorylated serine or threonine

preceding a proline, we replaced the phosphorylated amino

acids as well as the prolines with alanine to determine if all

were required for nuclear localization. As expected, the triple

mutant FLAG–ADAR2S26/S31A/T32A was present in the cyto-

plasm (Supplementary Figure S3) and this appears slightly

different to ADAR2D4–72 that is more localized around the

nuclear periphery (Supplementary Figure S4). When the

proline mutants were generated; FLAG–ADAR2P27A and

FLAG–ADAR2P33A, were transiently transfected into HeLa

cells together with HA–Pin1 (Figure 4), FLAG–ADAR2P33A

was present in the cytoplasm as detected by immunofluores-

cence as well as by nuclear and cytoplasmic fractionation

(Figure 4B and C) whereas FLAG–ADAR2P27A is nuclear. This

implies that the second proline is the critical one, thus the

phosphorylation of T32 may be the critical site for Pin1

binding and P33 for isomerization. Notably, this is also the

most conserved Pin1 site in vertebrate ADAR2 sequences

(Supplementary Figure S1).

Pin1 stabilizes ADAR2

We wanted to elucidate if Pin1 had other effects on ADAR2.

As Pin1 has been shown to influence the stability of proteins

such as b-catenin (Ryo et al, 2001), NF-kB (Ryo et al, 2003)

and p53 (Zacchi et al, 2002; Zheng et al, 2002), we wondered

if Pin1 also influences the stability of ADAR2. The level of

Pin1 was reduced in HeLa cells by transfecting either pSuper

Figure 2 Pin1 is required for efficient editing at the GluR2 Q/R site. (A) DNA sequence chromatograph of the RT–PCR product of the region
encompassing the Q/R site (arrow) encoded by the GluR2 B13 minigene transiently cotransfected with ADAR2 (2mg) in HeLa cells, editing is
100% (left chromatograph). Editing of the Q/R site drops to 53% when an siRNA specific for Pin1 is cotransfected together with plasmids
encoding both ADAR2 and the GluR2 B13 minigene (middle chromatograph). Editing is 100% at the GluR2 Q/R site when a control siRNA is
cotransfected (right chromatograph). Immunoblot analysis of cell lysate from HeLa cells with either anti-Pin1 or anti-tubulin antibodies (right
panel). (B) (Left panel) Sequencing chromatogram of editing by endogenous ADAR2 at the Q/R site of RT–PCR product pools from the GluR2
B13 minigene transcript that has been transiently transfected into HeLa cells. Arrows indicate Q/R editing site in all panels. Immunoblot
analysis with anti-Pin1 antibody of HeLa cell extracts that have been cotransfected with GFP in the presence of either Pin1-specific siRNA, no
siRNA or HA–Pin1 construct (0.5mg). Proteins are detected with anti-Pin1 antibody and anti-GFP antibody as a loading control (right panel).
(C) Chromatograph of editing of endogenous GluR2 transcript at the Q/R site in neuroblastoma SH-SY5Y cells transfected with ADAR2 (2mg).
Editing is 100% at the Q/R site (left chromatograph). A decrease in editing is observed when an siRNA specific for Pin1 was cotransfected
(middle chromatograph). A control siRNA does not affect editing when transfected (right chromatograph). Arrows indicate the Q/R site. Cell
lysates of SH-SY5Y cells were analysed by immunoblot with either anti-Pin1 or anti-tubulin (right panel). (D) Chromatograph of editing at the
Q/R site of GluR2 B13 minigene transcript in Pin1�/� MEF cells transfected with ADAR2 (2mg). Editing increased to 100% when Pin1�/� MEF
cells were cotransfected with either 0.5 or 1 mg of a construct expressing Pin1. An arrow marks the Q/R editing site in all the chromatographs.
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Pin1 siRNA (Rustighi et al, 2009) or a control pSuper LacZ

siRNA so that the level of endogenous ADAR2 could be

analysed (Figure 5A). A similar experiment was performed

in the neuroblastoma cell line SH-SY5Y (Figure 5C). Twenty-

four hours after transfection, cycloheximide was added to

prevent further protein synthesis, a time course from 0 to 8 h

was performed to chase the decay of ADAR2 protein and the

samples were analysed by immunoblot analysis to determine

ADAR2 levels. In both cell lines, the protein level of ADAR2

decreased when cycloheximide was added; however, the

decrease was more dramatic when Pin1 expression was

reduced (Figure 5A–C). The stability of the triple mutant

ADAR2S26A/S31A/T32A was also analysed after cycloheximide

treatment (Figure 5D). As predicted this mutant protein was

unstable as it could no longer interact with Pin1. Therefore,

Pin1 affects the stability of ADAR2.

The E3 ubiquitin ligase WWP2 interacts with ADAR2

Mass spectrometry was performed on the original samples of

ADAR2 purified from large quantities of HeLa cell nuclear

fractions (O0Connell et al, 1997) and one of the proteins that

copurified with ADAR2 was WWP2, an E3 ubiquitin ligase

containing four WW domains as well as a HECT domain.

As ADAR2 was unstable in the absence of Pin1, we wondered

if this E3 ligase was involved. WWP2 can bind directly

to a PPxY motif within its substrate. Analysis of the

ADAR2 amino-acid sequence revealed that this motif

was present twice, at the amino-terminus and carboxyl-

terminus of ADAR2 and was highly conserved (Supple-

mentary Figure S5).

To demonstrate that ADAR2 and WWP2 interact, HEK293T

cells were transiently cotransfected with constructs expres-

sing FLAG–ADAR2 and WWP2 with a c-myc epitope tag at

its amino-terminus. An immunoprecipitation was performed

with anti-FLAG monoclonal antibody to precipitate FLAG–

ADAR2 and c-myc–WWP2 was present in this precipitate

(Figure 6A). To determine which motif in ADAR2 WWP2

binds to, transient transfections were performed in HEK293T

cells with constructs expressing full-length and truncated

forms of ADAR2 all with FLAG epitope at their amino-

terminus. Immunoprecipitation with anti-FLAG monoclonal

antibody followed by immunoblot detection with an

Figure 3 Pin1 is required for nuclear localization of ADAR2. (A) ADAR2 is mislocalized from the nucleus to the cytoplasm in Pin1�/� MEF
cells. GFP–ADAR2 immunofluorescence in Pin1þ /þ and Pin1�/� MEF cells cotransfected with GluR2 B13 minigene and GFP–ADAR2. DAPI
staining of nuclei (i, iv), GFP fluorescence of cell (ii, v) and merged (iii, vi). (B) Nuclear localization of ADAR2 is restored in Pin1�/�MEF cells
by transfection of HA–Pin1. GFP–ADAR2 (green) direct and HA–Pin1 (red) indirect immunofluorescence detection in Pin1�/� MEF cells
cotransfected with GluR2 B13 minigene and (ii) GFP–ADAR2 (green) and (iii) HA–Pin (red). (i) DAPI staining of nuclei. (iv) Merge of all three
images. (C) Nuclear localization of ADAR2 depends on catalytic activity of Pin1. GFP–ADAR2 (green) and HA–Pin1S67E (red) in Pin1�/� MEF
cells cotransfected with GluR2 B13 minigene and (ii) GFP–ADAR2 (green) and (iii) HA–Pin1S67E (red). (i) DAPI staining of nuclei. (iv) Merge of
all three images. All photographs were taken at the same exposure. Scale bar, 10 mm. (D) Nucleo-cytoplasmic fractionation. Immunoblot
analysis with anti-FLAG antibody of nuclear and cytoplasmic fractions of Pin1�/� MEF cells transfected with FLAG–ADAR2 (lanes 1 and 2).
Pin1 was cotransfected with FLAG–ADAR2 in Pin1�/� MEF cells (lanes 3 and 4). HA–Pin1S67E was cotransfected in Pin1�/� MEF cells
(lanes 5 and 6). (Lower panel) Immunoblot of fractionated Pin1�/� MEF cells with tubulin as a marker for cytoplasmic fraction and HP1a for
nuclear fraction.
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anti-WWP2 antibody showed that endogenous WWP2 inter-

acts best with full-length ADAR2 and with a truncated protein

containing the amino-terminus of ADAR2 (Figure 6B). The

interaction of WWP2 with ADAR2 appears to be weaker with

the site in the deaminase domain or when the amino-termi-

nus of ADAR2 was deleted. We repeated this immunopreci-

pitation with anti-FLAG with mutants of ADAR2 in which the

binding site for WWP2 in the amino-terminus, carboxyl-

terminus or a combination of both binding sites were mu-

tated (Figure 6C). The single mutants decrease the interaction

between ADAR2 and WWP2 whereas the interaction was

completely abolished with the double mutant.

When a cotransfection was performed in HeLa cells with

a constant amount of a plasmid encoding ADAR2 and an

increase in the plasmid expressing WWP2, a drastic

decrease in ADAR2 protein level was observed (Figure 6D).

However, when this experiment was repeated with the double

ADAR2–PPxY mutant then the level of the mutant protein did

not change as it is no longer a substrate for WWP2. These

experiments demonstrated that WWP2 can interact with

ADAR2 via the PPxY motif present in ADAR2. An increased

expression of WWP2 in HeLa cells resulted in a reciprocal

decrease in ADAR2 levels; however, the protein level of the

ADAR2–PPxY mutant unable to bind WWP2 remained stable,

demonstrating that WWP2 can cause a decrease in ADAR2

protein levels.

WWP2 poly-ubiquitinates ADAR2

To verify that ADAR2 is indeed poly-ubiquinated by WWP2,

we performed an ubiquitin assay with extract from HEK293T

cells. The cells were transiently cotransfected with ADAR2 or

a mutant where either single or both PPxY motifs in ADAR2

were mutated and a further construct expressing WWP2.

Poly-ubiquitination of ADAR2 was detected in extracts from

cells cotransfected with constructs expressing wild-type

ADAR2 and WWP2 proteins but there was a decrease in

poly-ubiquitination with both the ADAR2NH2–PPxY and

ADAR2COOH–PPxY single mutants. Only in the presence of

ADAR2–PPxY was there a complete loss of poly-ubiquitination

(Figure 7A). Poly-ubiquitination was also observed in the

absence of V5-UBQ as there was sufficient endogenous

ubiquitin in the cell extract (Figure 7A, lane 1).

To demonstrate that the proteosome affected the

stability of ADAR2, a time course was performed in the

presence of the proteosome inhibitor MG132 (Figure 7B).

An increase in the level of ADAR2 was observed; however,

there was not a reciprocal increase in the levels of the

ADAR2–PPxY mutant. This mutant could no longer bind

WWP2 so the protein level could no longer be regulated by

the proteasome, therefore, the proteosome inhibitor had no

effect on its stability.

To determine if an increase in stability of ADAR2 would

affect its localization, immunofluorescence was performed in

Pin1þ /þ and Pin1�/� MEF cells and were transiently trans-

fected with ADAR2–PPxY. A cytoplasmic accumulation of

ADAR2–PPxY was evident (Figure 7C). Previously it had

been difficult to observe an accumulation of ADAR2 within

the cytoplasm as the protein was being degraded by WWP2

(Figure 3A). However, as the binding of WWP2 is impaired in

the ADAR2–PPxY mutant, the cytoplasmic accumulation is

obvious. Nuclear and cytoplasmic fractionation was per-

formed with the ADAR2–PPxY mutant in MEF wild-type and

Figure 4 Proline 33 of ADAR2 is required for the Pin1 effect on
ADAR2 nuclear localization. (A) Normal localization of ADAR2 and
Pin1. Immunofluorescence of HeLa cells cotransfected with GluR2
B13 minigene, FLAG–ADAR2 and HA–Pin1 stained with (i) DAPI,
(ii) anti-HA–Pin1 (green), (iii) anti-FLAG–ADAR2 (red), (iv) Merge
of DAP1 and FLAG and (v) merge of all three images. (B) Nuclear
localization of ADAR2 depends on Proline 33. Immunofluorescence
of HeLa cells cotransfected with GluR2 B13 minigene, FLAG–
ADAR2P33A and HA–Pin1 stained with (i) DAPI, (ii) anti-HA–Pin1
(green), (iii) anti-FLAG–ADAR2P33A (red), (iv) Merge of DAP1 and
FLAG and (v) merge of all three images. All photographs were taken
at the same exposure. Scale bar, 10mm. (C) Nucleo-cytoplasmic
fractionation of wild-type and ADARP27A and ADAR2P33A mutants.
Immunoblot analysis with anti-FLAG antibody of nuclear and
cytoplasmic fractions of HeLa cells transfected with FLAG–ADAR2
(lanes 1 and 2), ADARP27A (lanes 3 and 4), ADAR2P33A (lanes 5 and
6). (Lower panels) Immunoblot of fractionated HeLa cells with
tubulin as a cytoplasmic marker and HP1a as a nuclear marker.
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Pin1�/� cells and the results were quantified (Figure 7D and

E). It is clear that in the absence of Pin1 and if WWP2 cannot

bind to ADAR2, there is a cytoplasmic accumulation of

ADAR2 that is not observed under normal conditions.

Discussion

These data illustrate the complex regulation of ADAR2 by two

proteins with opposing effects; Pin1 is a positive regulator of

ADAR2 whereas WWP2 can bind and cause degradation.

Pin1 and WWP2 regulate other protein such as the large

subunit of RNA pol II and this regulation is conserved from

yeast to mammals (Wu et al, 2001).

When ADAR2 is phosphorylated at the amino-terminus, it

becomes a substrate for the phosphorylation-dependent pro-

lyl-isomerase Pin1. The enzymatic activity of Pin1 is required

for the localization and stability of ADAR2 in the nucleus. In

the absence of Pin1, ADAR2 is unstable and is present in the

cytoplasm. It can then interact with WWP2, an E3 ligase that

results in its poly-ubiquitination and subsequent degradation

by the proteasome (Figure 8). One direct consequence

of this is a reduction in editing of the Q/R site and R/G

sites in GluR2 transcripts. The presence of unedited GluR2Q

subunit can have dramatic downstream effects as it can

increase the trafficking of GluR2 subunit to the synapse as

well as increasing the permeability of AMPA receptors to

calcium ions.

The function of Pin1 is to isomerize a specific proline from

the cis to trans conformation or vice versa (Ranganathan et al,

1997; Yaffe et al, 1997). Most biological processes require

proline to be in the trans conformation; however, when the

protein is translated the choice in conformation is dependent

on the surrounding amino acids. If there is a pool of ADAR2

that is not phosphorylated and therefore not a Pin1 substrate,

then this protein may not be fully active. This probably does

occur as ADAR2 is expressed in various mammalian cell lines

such as HeLa and SH-SY5Y but is not very active and for

efficient editing of transcripts, additional ADAR2 must be

transfected. There may be sufficient Pin1 present but the

kinase required for the phosphorylation of the Pin1-binding

site may be limited. This may explain the pool of inactive

ADAR2 that has been observed as it may require phosphor-

ylation and subsequent Pin1 activity. For example in the

undifferentiated NT2 cell line, ADAR2 is well expressed;

however, it requires differentiation of the NT2 to neuronal

cells for efficient editing of GluR2 Q/R; this occurs without

any major change in ADAR2 expression (Lai et al, 1997). The

authors of that study proposed that a post-translational

regulatory mechanism is involved.

In the absence of Pin1, ADAR2 mislocalizes to the cyto-

plasm. It is difficult to detect ADAR2 as it is poly-ubiquiti-

nated by WWP2 in the cytoplasm and degraded. Only when

WWP2 is unable to bind to ADAR2 is high level of cytoplas-

mic accumulation of ADAR2 observed (Figure 7). There are

two binding sites for WWP2 on the ADAR2 protein. The site

Figure 5 Pin1 contributes to stability of ADAR2 protein. (A) Knockdown of Pin1 in HeLa cells destabilizes ADAR2 in a cycloheximide time
course. HeLa cells were transfected with either pSuper LacZ or pSuper Pin1. Cycloheximide (50 mg/ml) was added to both and a time course
from 0 to 8 h was performed. Cell lysates were analysed by immunoblot and the antibodies used were anti-ADAR2 (top panel), anti-tubulin as a
loading control (middle panel) and Pin1 (bottom panel). (B) Quantification of (A). (C) Pin1 knockdown destabilization of FLAG–ADAR2 in SH-
SY5Y neuroblastoma cells. SH-SY5Y cells were cotransfected with FLAG-tagged ADAR2 and a control siRNA or Pin1-specific siRNA.
Cycloheximide (50mg/ml) was added to both and a time course from 0 to 8 h was performed. Cell lysates were analysed by immunoblot
and the antibodies used were anti-FLAG (top panel), anti-Pin1 (middle panel) and GFP as loading control (bottom panel). (D) ADAR2 mutant in
the Pin1-binding site is less stable. SH-SY5Y neuroblastoma cells were transfected with FLAG-tagged ADAR2S26A/S31A/T32A and cycloheximide
(50mg/ml) was added and a time course was performed from 0 to 8 h. Cell lysates were analysed by immunoblot and the antibodies used were
anti-FLAG (top panel), anti-Pin1 (middle panel) and GFP as loading control (bottom panel).
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in the amino-terminus of ADAR2 appears to be more impor-

tant for WWP2 interaction than the site in the deaminase

domain despite the deaminase site being more conserved.

The crystal structure for the deaminase domain of ADAR2

has been solved (Macbeth et al, 2005) and the PPLY amino

acids are on the outside of the protein opposite to the

region that has been proposed to interact with the RNA

(Supplementary Figure S6). Therefore, these amino acids

are easily accessible to WWP2.

The finding that ADAR2 is regulated by Pin1 and WWP2

opens up new avenues of research. Under normal conditions,

ADAR2 is present within the nucleolus (Desterro et al, 2003;

Sansam et al, 2003). However, once a substrate is transfected

into the cell, it relocates to the nucleus and editing can occur.

One key factor that is missing is the kinase that phosphor-

ylates ADAR2 and instigates this complex regulation. Also,

we would predict from our results both with the ADAR2 triple

mutant (Figure 1) and with ADAR2P33A (Figure 4) that Thr32

Figure 6 WWP2 interacts with ADAR2. (A) Coimmunoprecipitation of ADAR2 and WWP2 performed with anti-FLAG antibody in HEK293T
cell lysate cotransfected with FLAG–ADAR2 and c-myc–WWP2 or pcD3 empty vector. FLAG–ADAR2 was detected with FLAG antibody. WWP2
input visualized with anti-c-myc antibody (bottom panel). (B) Endogenous WWP2 detected with anti-WWP2 antibody after immunoprecipita-
tion with anti-FLAG antibody from lysates of HEK293T cells transfected with FLAG-tagged ADAR2, ADAR22–305, ADAR2298–701, ADAR2D4–72 or
pcD3. Immunoblot of input proteins detected with anti-FLAG antibody (bottom panel). (C) Immunoprecipitation of FLAG–ADAR2 and mutants
with mutations in the amino, carboxyl binding site for WWP2 or a combination of both was performed with anti-FLAG antibody in HEK293
cells. Endogenous WWP2 detected with anti-WWP2 antibody. (Lower panel) Immunoblot of input proteins detected with anti-FLAG antibody.
(D) Immunoblot analysis with anti-FLAG antibody of lysates from HeLa cells cotransfected with FLAG–ADAR2 and increasing amount of
FLAG–WWP2 (0.5, 1, 2.5mg) (upper panel) and this experiment was repeated with the mutant ADAR2PPxY that is unable to bind to WWP2
(lower panel). The efficiency of transfection was normalized to GFP expression. GFP input visualized with anti-GFP antibody is shown below
both panels.
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is phosphorylated and that this is a key phosphorylation

event. Pin1 interaction requires the binding of ADAR2 to

dsRNA; however, we do not know whether the kinase

phosphorylates ADAR2 in the bound or unbound state.

Also, we do not know what happens after RNA editing has

occurred. Is ADAR2 then a substrate for a phosphatase that

results in its relocation to the nucleolus or is it exported and

degraded? In the absence of Pin1, ADAR2 mislocalizes to the

cytoplasm where it is a substrate for WWP2; however,

the molecular mechanism underlying this mislocalization is

Figure 7 WWP2 is required for ADAR2 ubiquitination and subsequent degradation in the cytoplasm. (A) In vivo ubiquitination assays. FLAG–
ADAR2–His, FLAG–WWP2–His and V5-UBQ were transfected in HEK293T cells followed by purification of ubiquitination complexes from
lysates with Ni2þ -NTA. In lane 1, cotransfection was with FLAG–ADAR2–His, FLAG–WWP2–His. Lane 2, cotransfection was with FLAG–
ADAR2–His, FLAG–WWP2–His and V5-UBQ. Lane 3, cotransfection of FLAG–ADAR2 NH2

–PPxY–His, FLAG–WWP2–His and V5-UBQ. Lane 4,
cotransfection of FLAG–ADAR2 COOH–PPxY–His, FLAG–WWP2–His and V5-UBQ. Lane 5, cotransfection of FLAG–ADAR2–PPxY–His (double
mutant), FLAG–WWP2–His and V5-UBQ. Lane 6 is the same as lane 5 without the addition of V5-UBQ and is the negative control. (Middle
panel) Immunoblot of input proteins detected with anti-FLAG antibody. (Lower panel) Immunoblot of V5-UBQ present in the purified complex
detected with anti-V5 antibody. (B) Immunoblot at 24 h following transfection of FLAG–ADAR2 and FLAG–ADAR2–PPxY with 20 mM MG132 to
inhibit protein degradation. The proteasomal inhibitor MG132 was added to both and a time course from 0 to 4.5 h was performed in HeLa
cells. Cell lysates were normalized to GFP levels (lower panel). (C) Immunofluorescence of Pin1þ /þand Pin1�/� MEF cells cotransfected with
GluR2 and FLAG–ADAR2–PPxY (double mutant). (i) DAPI staining of nuclei. (ii) Anti-FLAG–ADAR2–PPxY (red). (iii) Merge of DAP1 and FLAG.
Scale bar, 10mm. All photographs were taken at the same exposure. (D) Nuclear and cytoplasmic fractionation of FLAG–ADAR2–PPxY in Pin1þ /

þand Pin1�/� MEF cells. (Lower panels) Immunoblot of fractionated MEF cells with tubulin as a cytoplasmic marker and HP1a as a nuclear
marker. (E) Quantification of (D).
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unknown. It is important to elucidate how these various

factors regulate the activity of ADAR2 as this will subse-

quently impinge on the properties of the AMPA receptor.

This report of post-translational regulation of ADAR2

reveals how ADAR2 is highly coordinated and regulated

within the cell as this ultimately controls the calcium perme-

ability and assembly of AMPA receptors. This opposing

regulation by Pin1 and WWP2 is very analogous to that of

the large subunit of yeast RNA polymerase (pol) II where the

yeast orthologue of Pin1; ESS1 binds to the C-terminal

domain and positively regulates RNA pol II transcription

whereas RSP5; a HECT-type E3 ligase similar to WWP2

mediates its ubiquitination and degradation (Wu et al,

2001). This regulation of RNA pol II large subunit by Pin1

and WWP2 is also conserved in mammals (Li et al, 2007; Xu

and Manley, 2007). Therefore, we propose that these two

proteins with opposing effects can act coordinately in the

regulation and stability of other key cellular proteins.

The interaction of ADAR2 with Pin1 may explain why the

Q/R site is edited to 100% in neurons. Pin1 is a key regulator

of many proteins and processes within the cell; however, it is

itself regulated by phosphorylation, which inhibits its activity

(Lu et al, 2002; Lee et al, 2011). We hypothesize that as Pin1 is

the hub of a regulatory network and that transient ischaemia

or other insults lead to reduction in Pin1 activity. A decrease

in ADAR2 activity would then ensue with a subsequent

reduction in editing at the Q/R site in GluR2 transcripts.

This would result in increased calcium permeability of

AMPA receptors that could have major effects depending on

the region of the brain and the presence of calcium-binding

proteins or calcium pumps within the particular neuron. If

calcium-binding proteins are low as in the CA1 pyramidal

neurons, then this could lead to neuronal cell death (Liu and

Zukin, 2007). Therefore, we propose 100% editing of Q/R in

the GluR2 transcript is a ‘quality control’ measure that reflects

a healthy neuron. Data from mice support this hypothesis as

when the edited GluR2R isoform has been knocked-in, the

mice have no apparent phenotype despite a lack of the

unedited isoform (Kask et al, 1998). An explanation why

rats expressing GluR2R are resistant to forebrain ischaemia in

the vulnerable CA1 pyramidal neurons could be that the

regulatory network from Pin1 to ADAR2 editing the GluR2

Q/R site has been disrupted (Liu et al, 2004). Other experi-

ments are required to rigorously test this hypothesis; how-

ever, if it is correct it will facilitate devising treatments to limit

the neuronal damage associated with forebrain ischaemia.

Materials and methods

A more detailed Materials and methods section is provided in
Supplementary Data.

Mass spectrometry of ADAR2
A measure of 1 mg of ADAR2 with FLAG and tetra-histidine epitope
tags was purified after overexpression in P. pastoris as previously
described (Ring et al, 2004). The purified protein was denatured in
Novex LDS sample buffer plus 10 mM DTT at 651C for 30 min and
alkylated with 50 mM 4-vinylpyridine for 15 min at room tempera-
ture. The protein was separated by SDS–PAGE on a 4–12% MOPS
NUPAGE gel, stained with colloidal Coomasie and digested with
trypsin (5mg/ml) in 50 mM ammonium bicarbonate. The phospho-
peptides were enriched with PHOS-select resin (Sigma) and
analysed on a 4700 TOF–TOF mass spectrometer as described
previously (Beullens et al, 2005).

ADAR2 mutagenesis
The pcD3 construct expressing FLAG–ADAR2 has been previously
described (Heale et al, 2009). All mutations were generated with the
QuickChange mutagenesis strategy (Stratagene, La Jolla, CA) and
were sequenced to verify the intended mutations.

Figure 8 Schematic representation of the regulation of ADAR2 by Pin1 and WWP2. ADAR2 can exist as a monomer in the nucleus and has
sequences at its amino-terminus that inhibit enzymatic activity (Macbeth et al, 2004). However, ADAR2 can be phosphorylated by an unknown
kinase either when it is free or bound to dsRNA. ADAR2 is a substrate for Pin1 once it is bound to dsRNA and the active form of ADAR2 is a
dimer (Gallo et al, 2003; Poulsen et al, 2006; Valente and Nishikura, 2007). The mechanism of dimer formation is still unclear. After RNA
editing has occurred, we do not know the fate of ADAR2. However, in the absence of Pin1, ADAR2 mislocalizes to the cytoplasm where it is
poly-ubiquitinated by WWP2 and is degraded by the proteasome.
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S26 to A: 50-ctggacaacgtggcccccaaggatggc-30

T32 to A: 50-tcccccaaggatggcagcgcacctgggcctgg-30

S26/31 to A: 50-gtcccccaaggatggcgccacacctgggcctggcga-30

S26/31/T32 to A: 50-ggacaacgtggctcccaaggatggcgccgcacctgggcctg-30

P27 to A: 50-ctggacaacgtgtccgccaaggatggcagcaca-30

P33 to A: 50-cccaaggatggcagcacagctgggcctggcgagggctct-30

ADAR2 was subcloned into pEGFP-C3 with the oligonucleotides:
EcoRI-ADAR2 50-ccggaattctgatggatatagaagatgaagaaaacatgagt-30

ADAR2-SalI (antisense) 50-ccggtcgacctcagggcgtgagtgagaactggtc
ctgctc-30.

WWP2 cloning and mutagenesis
WWP2 was cloned by PCR amplification of cDNA clone IMAGE
100008816 (Gene Service) in the expression vector pENTR221 with
the oligonucleotides 50-GGGGACAAGTTTGTACAAAAAAGCAGGCT
CAATGGACTACAAGGACGACGATGACAAAGCATCTGCCAGCTCTAG
CCGGGCA-30 and antisense 50-GGGGACCACTTTGTACAAGAAAGCT
GGGTCCTAATGGTGATGGTGATGGTGCTCCTGTCCAAAGCCTTCGG
TCTC-30 for subsequent gateway cloning (Invitrogen). Similarly,
N- and C-terminal truncations of hADAR2 were constructed by PCR
amplification of hADAR2 cDNA into the pGEM T-Easy vector with
the oligonucleotides. 50-GGGGACAAGTTTGTACAAAAAAGCAGGC
TATGGACTACAAGGACGACGATGACAAAGATATAGAAGATGAAGAA
AAC-30 and antisense 50-GGGGACCACTTTGTACAAGAAAGCTG
GGTCTAATGGTGATGGTGATGGTGTGGCGTCTGATCCAAGTCCAA-30

primers were used to produce a construct encoding only the
N-terminal portion of hADAR2.

To produce a construct encoding the C-terminal portion of
hADAR2 with the oligonucleotides 50-GGGGACAAGTTTGTA
CAAAAAAGCAGGCTATGGACTACAAGGACGACGATGACAAATTGC
ACTTGGATCAGACGCCA-30 and antisense 50-GGGGACCACTTTGTAC
AAGAAAGCTGGGTCTAATGGTGATGGTGATGGTGGGGCGTGAGTGA
GAACTGGTC-30 were used. All primers were designed to incorpo-
rate 50 FLAG (bold) and 30 HIS epitope tags (underlined) at either
end of the respective ORF, as well as the att recombination sites
required for gateway cloning (italics). The purified PCR products
were cloned by site-specific recombination into the donor vector
pDONR221 to generate an entry clone. The entry clone was used in
a second site-specific recombination reaction with the modified
destination vector pcD3 (origin pcDNA3) to generate the expression
clone (following the standard protocol, as described by Invitrogen).

To generate FLAG–ADAR2 NH2
–PPxY (PPFY to AAFA) and FLAG–

ADAR2 COOH2
–PPxY (PPLY to AALA) the following oligonucleotides

were used:
FLAG–ADAR2NH2–PPxY 50-gacaaggcggcagcatttgccgtgggctcc-30 and

for FLAG–ADAR2COOH–PPxY 50-gaggacctggcagctctcgccaccctcaac-30

Immunoblot analysis, immunoprecipitation and GST pull
down
Expression and purification of the GST-tagged proteins were
performed as described (Buratti and Baralle, 2001). Immunopreci-
pitation was performed as described (Rustighi et al, 2009).
Immunoblot analysis was performed with primary antibodies:
mouse a-FLAG 1:3000 (Sigma), mouse a-HA 1:1000 (Sigma), mouse
a-MPM-2 1:1000 (Upstate Cell Signaling) (Davis et al, 1983) mouse
a-Pin1 1:500 (G-8) (Santa Cruz Biotechnology, Santa Cruz, CA)
rabbit a-ADAR2 1:1000 (Sigma), mouse a-GST 1:5000 dilution
(Amersham Pharmacia), overnight at 41C, followed by an 1-h
incubation with the appropriate secondary antibody (Dako).

Ubiquitination assay and proteasome-mediated degradation
analysis
Cells were cotransfected with the indicated constructs at the
following ratios: FLAG–ADAR2 and FLAG–ADAR2–PPxY 1mg,
FLAG–WWP2 and FLAG–WWP2 (C/A) 4 mg, V5-UBA 1mg. After
24 h, cells were harvested and lysed under denaturing conditions,
and ubiquitinated proteins were purified with Ni2þ -NTA agarose
beads (QIAGEN) as described previously (Rodriguez et al, 1999).

The cells in Figure 7A were incubated for 4.5 h with 20mM MG132
(Calbiochem), 20mM MG5 (Sigma) prior to lysis.

Cell lines, transfection conditions and RNA extraction
MEF cells were cultured in a Hypoxic incubator, 10% CO2, 3% O2

(Thermo Scientific HeraCell 150i) (Parrinello et al, 2003). Total RNA
was extracted from cells with Trizol reagent (Invitrogen) and treated
with Turbo DNA-free DNAseI beads (Ambion). cDNA synthesis was
performed with random-hexamer primers. PCR of the GluR2 B13
minigene was performed with primer, 50-atggaagagaaacacaaagt-30

that anneals to exon 11 and antisense primer 50-gaatgataggaacct
tctgc-30 that anneals to intron 11 (Higuchi et al, 1993). PCRs
conditions were 941C for 3 min, followed by 28 cycles of: 941C for
30 s, 541C for 30 s, 721C for 45 s and 721C for 7 min. For endogenous
GluR2 transcript, 1mg of DNAse-treated total RNA was used for
cDNA synthesis and RT–PCR was performed with SuperscriptTMIII
One step RT–PCR System (Invitrogen), was performed with primer,
50-atggaagagaaacacaaagt-30 and the antisense primer 50-ttccctttggac
ttccgcac-30 that anneals to exon 13.

RNAi knockdown
siRNA or pSUPER transfections were performed in HeLa and SH-
SY5S cells with Lipofectamine 2000 reagent (Invitrogen). Both siRNA
against GAPDH and smart Pool of siRNAs against Pin1 (LPIN1,
Dharmacon Thermo Scientific) were added to a final concentration of
100 nM. The pSUPERPin1 and pSUPERLacZ were used as siRNA
controls as previously described (Rustighi et al, 2009).

Indirect immunofluorescence
Cells were plated on sterile cover-slips in six-well plates at
2.5�105 cells/well and grown overnight before transient transfec-
tion of expression constructs with Fugene 6 transfection reagent
(Roche). Indirect immunofluorescence was performed as previously
(Ayala et al, 2008).

Preparation of cytoplasmic and nuclear extracts
Cytoplasmic and nuclear fractionation was performed with Pro-
teoExtract Subcellular Proteome Extraction Kit (Merck) according to
the manufacturer’s instructions. Quantification of cytoplasmic and
nuclear fractionation was performed with the IMAGEQUANT/TL
(GE Heathcare Life Science).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).

Acknowledgements

We thank W Keller for his support over many years, A Leroy for
constructs, M Lusic and L Manganaro for scientific discussion, S
Thore and C Nicol for figures. M Ditzl, K Nishikura and D Lazinski
for reagents. This work was funded by the MRC U.1275.01.005.
00001.01 to MO’C, Telethon Foundation Grant GGP07185 and
AIRC to GDS.

Author contributions: RM conceived, designed and performed the
majority of experiments. JB generated many of the ADAR2 reagents. SP
performed some experiments with Pin1. AC performed some experi-
ments with WWP2. SH performed some experiments with WWP2. NM
performed mass spectrometry. AB generated some of the Pin1 reagents.
LPK was involved in experimental design and contributed to writing
the manuscript. GDS was involved in experimental design, provided
reagents and contributed to writing the manuscript. MAO’C was
involved in experimental design and wrote the manuscript

Conflict of interest

The authors declare that they have no conflict of interest.

References

Aizawa H, Sawada J, Hideyama T, Yamashita T, Katayama T, Hasebe
N, Kimura T, Yahara O, Kwak S (2010) TDP-43 pathology in
sporadic ALS occurs in motor neurons lacking the RNA editing
enzyme ADAR2. Acta Neuropathol 120: 75–84

Ayala YM, Misteli T, Baralle FE (2008) TDP-43 regulates retinoblas-
toma protein phosphorylation through the repression of cyclin-
dependent kinase 6 expression. Proc Natl Acad Sci USA 105:
3785–3789

Pin1 and WWP2 regulate ADAR2
R Marcucci et al

&2011 European Molecular Biology Organization The EMBO Journal VOL 30 | NO 20 | 2011 4221

http://www.embojournal.org


Beullens M, Vancauwenbergh S, Morrice N, Derua R, Ceulemans H,
Waelkens E, Bollen M (2005) Substrate specificity and activity
regulation of protein kinase MELK. J Biol Chem 280: 40003–40011

Buratti E, Baralle FE (2001) Characterization and functional implications
of the RNA binding properties of nuclear factor TDP-43, a novel
splicing regulator of CFTR exon 9. J Biol Chem 276: 36337–36343

Davis FM, Tsao TY, Fowler SK, Rao PN (1983) Monoclonal anti-
bodies to mitotic cells. Proc Natl Acad Sci USA 80: 2926–2930

Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge
SJ, Gygi SP (2008) A quantitative atlas of mitotic phosphoryla-
tion. Proc Natl Acad Sci USA 105: 10762–10767

Desterro JM, Keegan LP, Lafarga M, Berciano MT, O’Connell M,
Carmo-Fonseca M (2003) Dynamic association of RNA-editing
enzymes with the nucleolus. J Cell Sci 116: 1805–1818

Fujimori F, Takahashi K, Uchida C, Uchida T (1999) Mice lacking
Pin1 develop normally, but are defective in entering cell cycle
from G(0) arrest. Biochem Biophys Res Commun 265: 658–663

Gallo A, Keegan LP, Ring GM, O’Connell MA (2003) An ADAR that
edits transcripts encoding ion channel subunits functions as a
dimer. EMBO J 22: 3421–3430

Greger IH, Khatri L, Kong X, Ziff EB (2003) AMPA receptor tetra-
merization is mediated by q/r editing. Neuron 40: 763–774

Heale BS, Keegan LP, McGurk L, Michlewski G, Brindle J, Stanton
CM, Caceres JF, O’Connell MA (2009) Editing independent effects
of ADARs on the miRNA/siRNA pathways. EMBO J 28: 3145–3156

Higuchi M, Maas S, Single FN, Hartner J, Rozov A, Burnashev N,
Feldmeyer D, Sprengel R, Seeburg PH (2000) Point mutation in an
AMPA receptor gene rescues lethality in mice deficient in the
RNA-editing enzyme ADAR2. Nature 406: 78–81

Higuchi M, Single FN, Kohler M, Sommer B, Sprengel R, Seeburg PH
(1993) RNA editing of AMPA receptor subunit GluR-B: a base-
paired intron-exon structure determines position and efficiency.
Cell 75: 1361–1370

Hollmann M, Hartley M, Heinemann S (1991) Ca2+ permeability of
KA-AMPA—gated glutamate receptor channels depends on sub-
unit composition. Science 252: 851–853

Kask K, Zamanillo D, Rozov A, Burnashev N, Sprengel R, Seeburg
PH (1998) The AMPA receptor subunit GluR-B in its Q/R site-
unedited form is not essential for brain development and func-
tion. Proc Natl Acad Sci USA 95: 13777–13782

Kawahara Y, Ito K, Sun H, Aizawa H, Kanazawa I, Kwak S (2004)
Glutamate receptors: RNA editing and death of motor neurons.
Nature 427: 801

Lai F, Chen CX, Lee VM, Nishikura K (1997) Dramatic increase of
the RNA editing for glutamate receptor subunits during terminal
differentiation of clonal human neurons. J Neurochem 69: 43–52

Lee TH, Chen CH, Suizu F, Huang P, Schiene-Fischer C, Daum S,
Zhang YJ, Goate A, Chen RH, Zhou XZ, Lu KP (2011) Death-
associated protein kinase 1 phosphorylates Pin1 and inhibits its
prolyl isomerase activity and cellular function. Mol Cell 42: 147–159

Li H, Zhang Z, Wang B, Zhang J, Zhao Y, Jin Y (2007) Wwp2-mediated
ubiquitination of the RNA polymerase II large subunit in mouse
embryonic pluripotent stem cells. Mol Cell Biol 27: 5296–5305

Liu S, Lau L, Wei J, Zhu D, Zou S, Sun HS, Fu Y, Liu F, Lu Y (2004)
Expression of Ca(2+)-permeable AMPA receptor channels primes
cell death in transient forebrain ischemia. Neuron 43: 43–55

Liu SJ, Zukin RS (2007) Ca2+-permeable AMPA receptors in synaptic
plasticity and neuronal death. Trends Neurosci 30: 126–134

Lu KP, Zhou XZ (2007) The prolyl isomerase PIN1: a pivotal new
twist in phosphorylation signalling and disease. Nat Rev Mol Cell
Biol 8: 904–916

Lu PJ, Zhou XZ, Liou YC, Noel JP, Lu KP (2002) Critical role of WW
domain phosphorylation in regulating phosphoserine binding
activity and Pin1 function. J Biol Chem 277: 2381–2384

Lu PJ, Zhou XZ, Shen M, Lu KP (1999) Function of WW domains as
phosphoserine- or phosphothreonine-binding modules. Science
283: 1325–1328

Macbeth MR, Lingam AT, Bass BL (2004) Evidence for auto-inhibi-
tion by the N terminus of hADAR2 and activation by dsRNA
binding. RNA 10: 1563–1571

Macbeth MR, Schubert HL, Vandemark AP, Lingam AT, Hill CP, Bass
BL (2005) Inositol hexakisphosphate is bound in the ADAR2 core
and required for RNA editing. Science 309: 1534–1539

O’Connell MA, Gerber A, Keller W (1997) Purification of human
double-stranded RNA-specific editase 1 (hRED1) involved in
editing of brain glutamate receptor B pre-mRNA. J Biol Chem
272: 473–478

Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J
(2003) Oxygen sensitivity severely limits the replicative lifespan
of murine fibroblasts. Nat Cell Biol 5: 741–747

Peng PL, Zhong X, Tu W, Soundarapandian MM, Molner P, Zhu D,
Lau L, Liu S, Liu F, Lu Y (2006) ADAR2-dependent RNA editing of
AMPA receptor subunit GluR2 determines vulnerability of neu-
rons in forebrain ischemia. Neuron 49: 719–733

Pirozzi G, McConnell SJ, Uveges AJ, Carter JM, Sparks AB, Kay BK,
Fowlkes DM (1997) Identification of novel human WW domain-
containing proteins by cloning of ligand targets. J Biol Chem 272:
14611–14616

Poulsen H, Jorgensen R, Heding A, Nielsen FC, Bonven B, Egebjerg
J (2006) Dimerization of ADAR2 is mediated by the double-
stranded RNA binding domain. RNA 12: 1350–1360

Ranganathan R, Lu KP, Hunter T, Noel JP (1997) Structural and
functional analysis of the mitotic rotamase Pin1 suggests sub-
strate recognition is phosphorylation dependent. Cell 89: 875–886

Ring GM, O’Connell MA, Keegan LP (2004) Purification and
assay of recombinant ADAR proteins expressed in the yeast
Pichia pastoris or in Escherichia coli. Methods Mol Biol 265:
219–238

Rodriguez MS, Desterro JM, Lain S, Midgley CA, Lane DP, Hay RT
(1999) SUMO-1 modification activates the transcriptional re-
sponse of p53. EMBO J 18: 6455–6461

Rustighi A, Tiberi L, Soldano A, Napoli M, Nuciforo P, Rosato A,
Kaplan F, Capobianco A, Pece S, Di Fiore PP, Del Sal G (2009) The
prolyl-isomerase Pin1 is a Notch1 target that enhances Notch1
activation in cancer. Nat Cell Biol 11: 133–142

Ryo A, Nakamura M, Wulf G, Liou YC, Lu KP (2001) Pin1 regulates
turnover and subcellular localization of beta-catenin by inhibiting
its interaction with APC. Nat Cell Biol 3: 793–801

Ryo A, Suizu F, Yoshida Y, Perrem K, Liou YC, Wulf G, Rottapel R,
Yamaoka S, Lu KP (2003) Regulation of NF-kappaB signaling by
Pin1-dependent prolyl isomerization and ubiquitin-mediated pro-
teolysis of p65/RelA. Mol Cell 12: 1413–1426

Sansam CL, Wells KS, Emeson RB (2003) Modulation of RNA
editing by functional nucleolar sequestration of ADAR2. Proc
Natl Acad Sci USA 100: 14018–14023

Sommer B, Kohler M, Sprengel R, Seeburg PH (1991) RNA editing in
brain controls a determinant of ion flow in glutamate-gated
channels. Cell 67: 11–19

Valente L, Nishikura K (2007) RNA binding-independent dimeriza-
tion of adenosine deaminases acting on RNA and dominant
negative effects of nonfunctional subunits on dimer functions. J
Biol Chem 282: 16054–16061

Verdoorn TA, Burnashev N, Monyer H, Seeburg PH, Sakmann B
(1991) Structural determinants of ion flow through recombinant
glutamate receptor channels. Science 252: 1715–1718

Wong SK, Sato S, Lazinski DW (2003) Elevated activity of the large
form of ADAR1 in vivo: very efficient RNA editing occurs in the
cytoplasm. RNA 9: 586–598

Wu X, Chang A, Sudol M, Hanes SD (2001) Genetic interactions
between the ESS1 prolyl-isomerase and the RSP5 ubiquitin ligase
reveal opposing effects on RNA polymerase II function. Curr
Genet 40: 234–242

Xu YX, Manley JL (2007) Pin1 modulates RNA polymerase II
activity during the transcription cycle. Genes Dev 21: 2950–2962

Yaffe MB, Schutkowski M, Shen M, Zhou XZ, Stukenberg PT,
Rahfeld JU, Xu J, Kuang J, Kirschner MW, Fischer G, Cantley
LC, Lu KP (1997) Sequence-specific and phosphorylation-depen-
dent proline isomerization: a potential mitotic regulatory me-
chanism. Science 278: 1957–1960

Zacchi P, Gostissa M, Uchida T, Salvagno C, Avolio F, Volinia S,
Ronai Z, Blandino G, Schneider C, Del Sal G (2002) The prolyl
isomerase Pin1 reveals a mechanism to control p53 functions
after genotoxic insults. Nature 419: 853–857

Zheng H, You H, Zhou XZ, Murray SA, Uchida T, Wulf G, Gu L, Tang
X, Lu KP, Xiao ZX (2002) The prolyl isomerase Pin1 is a regulator
of p53 in genotoxic response. Nature 419: 849–853

The EMBO Journal is published by Nature
Publishing Group on behalf of European

Molecular Biology Organization. This work is licensed
under a Creative Commons Attribution-Noncommercial-
No Derivative Works 3.0 Unported License. [http://creative
commons.org/licenses/by-nc-nd/3.0]

Pin1 and WWP2 regulate ADAR2
R Marcucci et al

The EMBO Journal VOL 30 | NO 20 | 2011 &2011 European Molecular Biology Organization4222


	Pin1 and WWP2 regulate GluR2 QsolR site RNA editing by ADAR2 with opposing effects
	Introduction
	Results
	Phosphorylation sites near the N-terminus of ADAR2
	ADAR2 interacts with Pin1
	Pin1 expression is required for optimal editing at the GluR2 QsolR site
	Pin1 has a role in the nuclear localization of ADAR2

	Figure 1 The amino-terminus of ADAR2 harbours a Pin1-binding site.
	Pin1 stabilizes ADAR2

	Figure 2 Pin1 is required for efficient editing at the GluR2 QsolR site.
	The E3 ubiquitin ligase WWP2 interacts with ADAR2

	Figure 3 Pin1 is required for nuclear localization of ADAR2.
	WWP2 poly-ubiquitinates ADAR2

	Figure 4 Proline 33 of ADAR2 is required for the Pin1 effect on ADAR2 nuclear localization.
	Discussion
	Figure 5 Pin1 contributes to stability of ADAR2 protein.
	Figure 6 WWP2 interacts with ADAR2.
	Figure 7 WWP2 is required for ADAR2 ubiquitination and subsequent degradation in the cytoplasm.
	Materials and methods
	Mass spectrometry of ADAR2
	ADAR2 mutagenesis

	Figure 8 Schematic representation of the regulation of ADAR2 by Pin1 and WWP2.
	WWP2 cloning and mutagenesis
	Immunoblot analysis, immunoprecipitation and GST pull down
	Ubiquitination assay and proteasome-mediated degradation analysis
	Cell lines, transfection conditions and RNA extraction
	RNAi knockdown
	Indirect immunofluorescence
	Preparation of cytoplasmic and nuclear extracts
	Supplementary data

	Acknowledgements
	References




