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Abstract: The mitochondrial antiviral signaling (MAVS) protein, a critical adapter, links the upstream
recognition of viral RNA to downstream antiviral signal transduction. However, the interaction
mechanism between avian metapneumovirus subgroup C (aMPV/C) infection and MAVS remains
unclear. Here, we confirmed that aMPV/C infection induced a reduction in MAVS expression in
Vero cells in a dose-dependent manner, and active aMPV/C replication was required for MAVS
decrease. We also found that the reduction in MAVS occurred at the post-translational level rather
than at the transcriptional level. Different inhibitors were used to examine the effect of proteasome
or autophagy on the regulation of MAVS. Treatment with a proteasome inhibitor MG132 effectively
blocked MAVS degradation. Moreover, we demonstrated that MAVS mainly underwent K48-linked
ubiquitination in the presence of MG132 in aMPV/C-infected cells, with amino acids 363, 462, and
501 of MAVS being pivotal sites in the formation of polyubiquitin chains. Finally, E3 ubiquitin ligases
for MAVS degradation were screened and identified and RNF5 targeting MAVS at Lysine 363 and 462
was shown to involve in MAVS degradation in aMPV/C-infected Vero cells. Overall, these results
reveal the molecular mechanism underlying aMPV/C infection-induced MAVS degradation by the
ubiquitin-proteasome pathway.

Keywords: MAVS; aMPV/C; ubiquitination; degradation; E3 ubiquitin ligase

1. Introduction

Avian metapneumovirus (aMPV), previously known as avian pneumovirus (APV), is
considered an important pathogen to both turkeys and chickens as it causes respiratory
tract disease responsible for economic losses to the poultry industry globally [1,2]. aMPV,
a member of the family Paramyxoviridae, has a single-stranded, nonsegmented, negative-
sense RNA genome [3]. Based on the diverse genetic and antigenic properties among the
aMPV strains, four subgroups (A, B, C, and D) were isolated from different countries [4].
aMPV subgroup C (aMPV/C) infection in turkeys was first reported in the United States in
1999 and subsequently identified in other states of the USA and in France [5–7]. This virus
has also been reported and isolated in pheasants in South Korea and in meat-type chickens
in China [8,9]. Interestingly, aMPV/C has closer genetics and antigenicity to human
metapneumovirus (hMPV) than it does to the aMPV subgroups A, B, and D [10–12].

MAVS, a crucial host adapter protein localized on the mitochondrial outer membrane,
includes an N-terminal caspase recruitment domain (CARD), a middle proline-rich region
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(PRR), and a C-terminal transmembrane (TM) domain [13], which is essential for mediating
antiviral activity and producing proinflammatory cytokines during viral infection [14,15].
Viral infection induces upstream signal molecules to interact with MAVS, which leads to
activation of interferon regulatory factors 3 and 7 (IRF3/7) and nuclear transcription factor-
κB (NF-κB) and ultimately induces production of antiviral molecules and proinflammatory
factors, which inhibits viral proliferation [16,17].

MAVS is an upstream signal molecule in antiviral innate immunity, which is directly
or indirectly regulated by some factors at the transcriptional and post-translational levels
instead of interferon (IFN) [18]. At the transcriptional level, reactive oxygen species (ROS)
play an important role in the regulation of MAVS mRNA [19]. At the post-translational
level, many viruses have various strategies to regulate MAVS function to evade host antivi-
ral mechanisms. Among them, direct cleavage of the MAVS protein is an important aspect.
For example, small RNA viruses (Coxsackievirus B3, Seneca Valley virus, and human
rhinovirus C) encode a 3C cysteine protease, which cleaves MAVS protein at a specific
site and reduces downstream signaling [20–22], while the 2A protein of Enterovirus 71
cleaves MAVS at multiple amino acid (aa) residues [23]. In addition, hepatitis C virus and
porcine reproductive and respiratory syndrome virus infections inhibit MAVS antiviral sig-
naling by NS3/4A serine protease and 3C-like serine protease, respectively, and ultimately
facilitate viral replication [24,25]. In addition to MAVS cleavage, some viral infections
mediate proteasome degradation of MAVS. Hepatitis B virus protein X was reported to
interact with MAVS and promote ubiquitin (Ub)-proteasome degradation [26]. Moreover,
Rotavirus protein VP3 and NSP1 protein catalyze the ubiquitination and proteasome degra-
dation of MAVS by different mechanisms [27,28]. Interestingly, Newcastle disease virus, a
member of the Paramyxoviridae family, targets MAVS for ubiquitin-mediated degradation
through E3 ubiquitin ligase RING-finger protein 5 (RNF5) [29]. These findings promoted
us to investigate the molecular mechanism that exists between aMPV/C infection and
MAVS expression.

In this study, our data reveal a post-translational mechanism that negatively regu-
lates MAVS during aMPV/C infection, occurring via a ubiquitin-dependent, proteasome-
mediated degradation mechanism in Vero cells. Furthermore, our results show that the
formation of ubiquitin chains occurs at amino acids 363, 462, and 501 of MAVS and RNF5
targeting MAVS at Lysine 363 and 462 is involved in MAVS degradation in the aMPV/C-
infected Vero cells.

2. Materials and Methods
2.1. Cell and Viral Culture

Vero cells were originally purchased from the American Type Culture Collection
(ATCC) and grown in Dulbecco’s modified Eagle’s medium (DMEM; Gibco, NY, USA) sup-
plemented with 2–10% heat-inactivated fetal bovine serum (FBS) (Gibco, Life Technologies,
USA), 100 mg/mL streptomycin, and 100 units/mL penicillin at 37 ◦C and 5% CO2.

aMPV/C strain JC was isolated from meat-type chickens with respiratory syndrome
as described previously [9]. The virus strain was propagated and titrated by serial dilutions
in Vero cells and used at 104.5 of the 50% tissue culture infectious dose (TCID50) per 0.1
mL. aMPV/C was inactivated with ultraviolet (UV) at 75 mWs/cm2 using a low-pressure
mercury vapor discharge lamp and then inoculated onto cultured cells to detect the ability
of virus replication [30].

2.2. Antibodies and Reagents

The following antibodies were obtained from Sigma-Aldrich: mouse anti-β-actin
(A1978), mouse anti-Flag (F1804), horseradish peroxidase (HRP)-conjugated goat anti-
mouse (A9044), and HRP-conjugated goat antirabbit (A0545). Rabbit polyclonal antibodies
against MAVS (A5764) and RNF5 (A8351) were purchased from ABclonal Technology.
Rabbit polyclonal antibodies against MARCH5 (ab185054) and HA (3724s) were obtained
from Abcam and Cell Signal Technology, respectively. Rabbit anti-N polyclonal antibody
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and mouse anti-N monoclonal antibody were prepared in our laboratory. The proteasome
inhibitor MG-132 (S2619, Sellek), the autophagy inhibitor wortmannin (S2758, Sellek),
and Chloroquine (CQ) (C6628, Sigma) were used in the experiments. The Enhanced Cell
Counting Kit-8 (C0042) and DAPI (C1002) were purchased from Beyotime.

2.3. Plasmids Construction

The monkey MAVS gene was amplified from Vero cells with gene-specific primers
based on MAVS sequences available in the GenBank database (accession no. NM_001042666,
Table 1) and subcloned into p3×FLAG-CMV (Sigma, E7658) to generate the following
expression plasmid: pFLAG-MAVS. The following recombinant plasmids of the trun-
cated MAVS gene were constructed: p3×FLAG-CMV-MAVS1, MAVS2, and MAVS3 (aa
1–201, aa 202–359, and aa 360–541, Table 1). FLAG-MAVS3 mutants were generated by
site-directed mutagenesis (Rui Biotech Co., Ltd.): FLAG-MAVS3mt1, FLAG-MAVS3mt2,
FLAG-MAVS3mt3, FLAG-MAVS3mt4, FLAG-MAVS3mt5 (K363A, K372A, K421A, K462A,
and K501A, respectively) and FLAG-MAVS3mt-sim (K363A, K462A, and K501A, simulta-
neously). All of the above plasmids were confirmed to be correct by sequencing. pRK5-HA-
ubiquitin (17608), pRK5-HA-ubiquitin-K48 (17605), and pRK5-HA-ubiquitin-K63 (17606)
were purchased from Addgene.

Table 1. Primers and corresponding sequences.

Primers Sequence (5′–3′)

MAVSF CAGAATTCGATGCCGTTTGCTGAAGACAAG
MAVSR TAGGTACCATCTAGTGCAGGCGCCGCCGGTACATCGC
MAVS1F CAGAATTCGATGCCGTTTGCTGAAGACAAG
MAVS1R TAGGTACCTATCATTCTGTGTCCTGCTCCTGATG
MAVS2F ATGAATTCAATGCTGGGCAGTACCCACACAGC
MAVS2R AAGGTACCTATCACACCATGCCAGCACGGGTTGAGTTGA
MAVS3F CTGAATTCTATGCCATCCAAAGTGCCTGCTA
MAVS3R TAGGTACCATCTAGTGCAGGCGCCGCCGGTACATCGC
qMAVSF CTATAAGTATATCTGCCGCAATT
qMAVSR AGTCGATCCTGGTCTCTT

qGAPDHF CAACGGATTTGGTCGTATTGG
qGAPDHR CGCTCCTGGAAGATGGTG

2.4. aMPV/C Infection and Virus Titration

Vero cells were incubated with aMPV/C at a multiplicity of infection (MOI) of 0.5 or
0.1, or mock-infected with DMEM. Following a 1.5 h absorption time, unattached viruses
were removed and the cells were washed with phosphate-buffered saline (PBS) and then
cultured in DMEM supplemented with 2% FBS at 37 ◦C for the indicated time points in
different experiments.

The virus titer was assayed on aMPV/C-infected Vero cells monolayers. Following
1.5 h incubation on Vero cells with serially diluted cell supernatant, fresh medium was
added and incubated for five days, cytopathic effects (CPEs) were observed under a
microscope and virus titer was calculated as TCID50 per 0.1 mL.

2.5. Indirect Immunofluorescence Assay

Vero cells with 90% confluence were infected with aMPV/C (MOI = 0.5) in 24-well cul-
ture plates. The cells were fixed with precooled and permeabilized using 4% paraformalde-
hyde (Sigma-Aldrich, 16005), 0.1% Triton X-100 (Sigma-Aldrich, T8787) and in 2% BSA
(Beyotime, ST023) in PBS at different indicated time points, and anti-N monoclonal anti-
body and anti-MAVS rabbit polyclonal antibody were co-incubated with the cells for 2 h
at 37 ◦C. After 3 washes with PBS-Tween-20 (PBST containing 0.05% Tween-20 [Sigma,
P1379]), the cells were co-incubated with secondary fluorescein isothiocyanate (FITC)-
conjugated antirabbit and Tetramethylrhodamine-6-isothiocyanate (TRITC)-conjugated
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antimouse antibodies for 2 h at 37 ◦C. Finally, the cells were washed with PBST and directly
observed under an Olympus IX73 immunofluorescence microscope.

2.6. RNA Preparation, Reverse Transcription-Polymerase Chain Reaction, and Quantitative
Real-Time RT-PCR (qRT-PCR)

Total RNA from aMPV/C-infected or mock-infected Vero cells was isolated with an
RNeasy Mini Kit (Qiagen, 74104) according to the manufacturer’s protocol. The cDNA
was synthesized with 2 µg of total RNA using the FastKing RT Kit (TIANGEN, KR116-
02) as the template, followed by real-time PCR (MAVS and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH)) with the gene-specific primers listed in Table 1. Primers for the
MAVS gene and GAPDH gene were designed based on sequences available in the GenBank
database (accession no. NM_001042666 and NM_001195426, respectively).

2.7. Silencing MARCH5 or RNF5 Gene with Small Interfering RNA (siRNA)

Vero cells were transfected with 40 pmol siRNA using Lipofectamine RNAiMAX Trans-
fection Reagent (Invitrogen, 13778150) according to the manufacturer′s protocol. Forty-
eight hours after transfection, the cells were lysed for analyzing the silencing efficiency of
MARCH5 and RNF5 by Western blotting or were infected aMPV/C for Western blot analy-
sis. The siRNA targeting MARCH5 and RNF5 were designed by GenePharma Company
(Suzhou, China): MARCH5-siRNA (sense, 5′-GGGUGGAAUUGCUUUUGUUTT-3′; anti-
sense, 5′-AACAAAAGCAAUUCCACCCTT-3′), RNF5-siRNA (sense, 5′-GUGUCCAGUAU-
GUAAAGCUTT-3′; antisense, 5′-AGCUUUACAUACUGGACACTT-3′). The Scrambled
siRNA (Scra) was as follows: sense, 5′-UUCUCCGAACGUGUCACGUTT-3′; antisense,
5′-ACGUGACACGUUCGGAGAATT-3′.

2.8. Cell Transfection, Immunoprecipitation, SDS-PAGE, and Western Blotting

Vero cells were plated on a 6-well culture plate (Thermo Scientific, 3516, Waltham,
MA, USA) and transfected with the indicated plasmids for 6 h using Lipofectamine 3000
(Invitrogen, L3000150, Waltham, MA, USA) according to the manufacturer’s protocol, and
then infected with aMPV/C for 24, 48, or 72 h.

For immunoprecipitation (IP), cell lysates were prepared in IP buffer (Beyotime, P0013),
followed by centrifugation at 12,000× g for 20 min. The supernatants were precipitated
with 20 µL anti-Flag Magnetic Agarose (Thermo Scientific, Waltham, MA, USA, A36797)
and then gently rocked overnight at 4 ◦C. The beads were washed five times with IP
buffer, followed by boiling with sodium dodecyl sulphate (SDS) loading buffer for 10 min.
Proteins eluted from the beads were subjected to SDS-polyacrylamide gel electrophoresis
(PAGE) and Western blotting.

Immunoblot analysis was performed as described previously (Hou et al., 2017). Briefly,
proteins were separated by SDS-PAGE and transferred to nitrocellulose membranes (PALL,
66485). The membranes were blocked with skimmed milk and incubated with appropriate
primary antibodies and horseradish peroxidase (HRP)-conjugated goat antimouse or goat-
antirabbit IgG, followed by detection with a SuperSignal West Femto Substrate Trial Kit
(Thermo Scientific, 34096) and exposure to an enhanced chemiluminescence apparatus
(ProteinSimple, Santa Clara, CA, USA).

2.9. MTT Assay

Cell viability was assessed using an Enhanced Cell Counting Kit-8 according to the
manufacturer’s instructions (Beyotime C0042). Approximately 4 × 104 Vero cells per well
were seeded in a 96-well cell culture plate and cultured overnight at 37 ◦C under 5% CO2.
The fresh medium containing MG132, CQ or wortmannin was added, and the cells were
incubated for indicated time points. 10 µL of MTT solution were added and incubated for
1–4 h at 37 ◦C. The optical density was measured at 450 nm using a microplate reader.
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2.10. Statistical Analysis

The data are presented as mean ± standard deviation (SD). The significance of the
variability between different treatment groups was determined by Two-way ANOVA tests of
variance using the GraphPad Prism software. p < 0.05 was considered statistically significant.

3. Results
3.1. aMPV/C Infection Induces MAVS Reduction in Vero Cells

To determine whether MAVS is affected in aMPV/C-infected Vero cells, we used
Western blotting to examine the change in MAVS expression, which is a critical hallmark
of the antiviral response. Expression of MAVS gradually decreased over the 120 h after
aMPV/C infection (Figure 1A), whereas the amount of MAVS mildly increased in mock-
infected Vero cells (Figure 1B). In addition, the increase in viral N protein was used to
track the progression of aMPV/C infection (Figure 1A). As illustrated in Figure 1C, the
densitometry ratios of MAVS to β-actin bands decreased after 24 h in the virus-infected
cells, it was much lower than that in the mock-infected cells from 48 h post-infection (hpi)
onward (p < 0.01), indicating that aMPV/C infection induced the reduction in MAVS.
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Figure 1. aMPV/C infection induces MAVS reduction in Vero cells. (A,B) Proteins were extracted from aMPV/C-infected
or mock-infected Vero cells at 0, 24, 48, 72, 96, and 120 hpi, and were analyzed by SDS-PAGE and Western blotting with
anti-MAVS and antiviral N antibodies. β-actin was used as a protein loading control. (C) The relative band densities of
MAVS: β-actin normalized to the control conditions. (D) aMPV/C-infected or mock-infected Vero cells were subjected
to indirect immunofluorescence analysis at 0, 24, 48, 72, 96, and 120 hpi. The MAVS expression signal (green) and viral
N protein staining (red) are shown. (E) The growth kinetics of aMPV/C in Vero cells was assayed using TCID50 (n = 3).
(F) Vero cells infected with aMPV/C at an MOI of 0.1 or 0.5 were harvested at 48 hpi and analyzed by Western blotting with
anti-MAVS, antiviral N, and anti-β-actin antibodies. (G) Vero cells were infected with aMPV/C or UV- aMPV/C (MOI = 0.5)
for 48 h. Subsequently, proteins were extracted and analyzed as described in A and B.
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To further confirm that the decrease in MAVS is related to aMPV/C infection, the
infected cells at each of the indicated time points was analyzed by IFA. The data from
our IFA analysis suggested that, with the extension of virus infection time, the number
of cells expressing aMPV/C N protein showed an increasing trend, while expression of
MAVS decreased gradually (Figure 1D). Moreover, the growth kinetics of virus in Vero
cells showed that the viral titers increased from 24 h to 120 h after aMPV/C infection (1E),
and the representative photomicrographs of the CPE at indicated time points are displayed
in the supplemental figure (Figure S1).

To study whether the decrease in MAVS is associated with the inoculation dose of the
virus, we detected changes in MAVS at different inoculation doses. The results showed that
the cells infected with aMPV/C at an MOI of 0.5 showed more reduction in MAVS than
that at an MOI of 0.1 (Figure 1F), indicating that aMPV/C infection caused the decrease in
MAVS protein expression in a dose-dependent manner. These results suggest that MAVS
reduction is induced in Vero cells during aMPV/C infection.

UV-inactivated viruses are thought to lose viral infectivity in cultured cells. Thus, to
further investigate whether active aMPV/C replication is required for the induction of
MAVS reduction, Western blotting was used to detect the change of MAVS in Vero cells
infected with UV-inactivated aMPV/C. The complete loss of viral infectivity following
UV inactivation was confirmed by assaying the virus titer (data not shown). As shown
in Figure 1G, no obvious change occurred in MAVS expression in cells infected with UV-
inactivated aMPV/C and in mock-infected cells during virus infection. Meanwhile, no
N protein was detected in either condition, indicating that active aMPV/C replication is
indispensable for MAVS reduction.

3.2. MAVS Degradation Is Recovered in aMPV/C-Infected Vero Cells Treated with MG132

The change of protein expression is mainly attributed to two aspects of regulation:
transcriptional levels and post-translational levels. Since it was initially found that the
decrease in MAVS expression occurred at 48 h after infection (Figure 1A), we analyzed
which regulation of transcription or translation played a major role in the decrease in
MAVS. To determine whether the reduction in MAVS occurs at the transcriptional level
in aMPV/C-infected Vero cells, the levels of MAVS mRNA were measured by qRT-PCR.
As shown in Figure 2A, no significant differences in MAVS levels were observed between
aMPV/C-infected cells and mock-infected cells at 48 h after virus infection. Moreover, a
similar result was found at different inoculation doses in virus-infected Vero cells (Figure
2A). These results indicate that the mRNA level of MAVS was not affected by aMPV/C
infection at 48 h. In other words, the reduction in MAVS induced by aMPV/C infection did
not occur at the transcriptional level at 48 h after virus infection.

Negative post-translational regulation of MAVS in virus-infected cells involves two
processes (proteasomal degradation and autophagy) [31]. MG132, a proteasome inhibitor,
was initially added to aMPV/C-infected cells to evaluate whether the proteasome path-
way participated in MAVS degradation. The results showed that MAVS degradation
by aMPV/C was effectively blocked in the presence of MG132 (Figure 2B,C). Decreased
MAVS expression was observed in the aMPV/C-infected cells following CQ (lysosome
inhibitor) or wortmannin (autophagy inhibitor) treatment, whereas viral N protein expres-
sion was mildly reduced in the presence of CQ or wortmannin (Figure 2D,E). Additionally,
the MTT results showed that the viability of cultured cells was not affected by phar-
maceutical reagents (MG132, CQ, and wortmannin) (Figure 2F). Taken together, these
results demonstrate that addition of MG132 largely inhibited MAVS degradation in the
aMPV/C-infected Vero cells, suggesting that MAVS degradation by aMPV/C is related to
the proteasome pathway.
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in a graph representing the percentage of relative cell viability. Error bars, mean ± SD of three independent experiments. ns
(not significant) p > 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001, compared with the control group.

3.3. aMPV/C Infection Induces MAVS Degradation through Ubiquitination

To determine whether aMPV/C infection can catalyze polyubiquitin chain formation
on MAVS, we conducted ubiquitination assays in Vero cells. The cells were co-transfected
with Flag-MAVS and hemagglutinin (HA)-Ub plasmids, followed by aMPV/C infection
and an immunoprecipitation assay at 48 h. As shown in Figure 3A, aMPV/C infection
induced polyubiquitin chains formation and MAVS polyubiquitination. In addition, MAVS
polyubiquitination was analyzed at 24, 48, and 72 hpi. The immunoprecipitation results
showed that addition of MG132 blocked MAVS degradation and increased MAVS polyubiq-
uitination at different time points in aMPV/C-infected Vero cells (Figure 3B). Collectively,
these results indicate that aMPV/C infection promotes the formation of polyubiquitin
chains and final degradation of MAVS.
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Figure 3. MAVS polyubiquitination is analyzed in aMPV/C-infected or Mock-infected Vero cells. (A) Vero cells were
co-transfected with Flag-MAVS and HA-Ub. After 6 h transfection, the cells were infected with aMPV/C (MOI = 0.5) for
48 h in the presence of MG132, and analyzed by IP with anti-Flag antibody or Western blot with anti-HA antibody. In
addition, Flag, HA and β-actin in aMPV/C-infected cells detected by immunoblotting were used as an input control and
an internal loading control, respectively. aMPV/C infection was verified with antiviral N antibody. (B) Vero cells were
co-transfected with Flag-MAVS and HA-Ub. After 6 h transfection, the cells were infected with aMPV/C (MOI = 0.5) for 24,
48, or 72 h in the presence of MG132, and analyzed as described in A.

3.4. MAVS Is Degraded by K48-Linked Ubiquitination

To determine the pattern of MAVS ubiquitination in aMPV/C-infected Vero cells,
we co-transfected Vero cells with plasmids encoding Flag-MAVS or Flag and HA-Ub-K48
or HA-Ub-K63, followed by aMPV/C infection and an immunoprecipitation assay. The
data showed that aMPV/C-induced K48-linked ubiquitination of MAVS was stronger
than K63-linked ubiquitination (Figure 4). This indicates that MAVS mainly undergoes
K48-linked ubiquitination in the presence of MG132 in aMPV/C-infected Vero cells.

3.5. Amino Acids 363, 462, and 501 Are Sites of MAVS Ubiquitination

Proteins containing lysine (K) are often ubiquitinated at lysine residues. To identify
the lysine residues of MAVS to which ubiquitin was connected, we first determined the
critical domain of MAVS responsible for MAVS ubiquitination. Three plasmids of truncated
MAVS containing complete lysine sites were constructed. Vero cells were co-transfected
with HA-Ub and Flag-truncated MAVS1 (aa 1–201), MAVS2 (aa 202–359), and MAVS3 (aa
360–541), followed by aMPV/C infection and immunoprecipitation. The results showed
that MAVS3 can undergo polyubiquitination in the presence of MG132 (Figure 5A).
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Flag-MAVS and HA-Ub (K48) or HA-Ub (K63). After 6 h transfection, the cells were infected with
aMPV/C (MOI = 0.5) for 48 h in the presence of MG132, and analyzed using IP with anti-Flag
antibody or Western blot with anti-HA antibody. In addition, Flag, HA and β-actin in aMPV/C-
infected cells detected by immunoblotting were used as an input control and an internal loading
control, respectively. aMPV/C infection was verified with antiviral N antibody.

Sequence analysis revealed only five lysine sites (K363, K372, K421, K462, and K501)
in MAVS3. To determine which lysine sites are linked by polyubiquitin chains, we mutated
one-by-one with each lysine residue mutated to alanine (K363A, K372A, K421A, K462A,
and K501A) and generated five individual mutants of MAVS3 (MAVS3mt1, MAVS3mt2,
MAVS3mt3, MAVS3mt4, and MAVS3mt5), which investigated the effect of aMPV/C in-
fection on the ubiquitination of these mutants in Vero cells. As shown in Figure 5B, in
the presence of MG132, the MAVS3 mutants K363A, K462A, and K501A partially blocked
aMPV/C-induced ployubiquitination, whereas no obvious changes were observed in Vero
cells transfected with MAVS3 mutants K372A or K421A. This suggests that residues K363,
K462, and K501 in MAVS are sites of aMPV/C-mediated ubiquitination. To confirm these
critical ubiquitination sites, we simultaneously mutated the lysine residues 363, 462, and
501 to alanine in MAVS3 and examined the effect on ubiquitination. The data showed
that the simultaneous mutant of MAVS3 completely lost its capacity to be ubiquitinated
(Figure 5C). Taken together, these results demonstrate that the amino acids 363, 462, and
501 in MAVS are critical sites for forming polyubiquitin chains and are involved in MAVS
degradation in aMPV/C-infected Vero cells.
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Figure 5. The critical sites for MAVS polyubiquitination are identified. (A) Vero cells were co-transfected with Flag-MAVS1,
Flag-MAVS2, Flag-MAVS3, or Flag-MAVS and HA-Ub. After 6 h transfection, the cells were infected with aMPV/C
(MOI = 0.5) for 48 h in the presence of MG132, and analyzed by IP with anti-Flag antibody or Western blot with anti-HA
antibody. In addition, Flag, HA and β-actin in aMPV/C-infected cells detected by immunoblotting were used as an input
control and an internal loading control, respectively. aMPV/C infection was verified with antiviral N antibody. (B) Vero
cells were co-transfected with Flag-MAVS3mt1, Flag-MAVS3mt2, Flag-MAVS3mt3, Flag-MAVS3mt4, Flag-MAVS3mt5 or
Flag-MAVS3 and HA-Ub. The cells were infected with aMPV/C and analyzed as described in (A). (C) Vero cells were
co-transfected with Flag, Flag-MAVS3 or Flag-MAVS3mt-sim and HA-Ub. The cells were infected with aMPV/C and
analyzed as described in A.

3.6. RNF5 Is Involved in MAVS Degradation in aMPV/C-Infected Vero Cells

Our study found that aMPV/C degraded MAVS by forming polyubiquitin chains at
lysine 363, 462, and 501. Moreover, a recent report showed that E3 ligase RNF5 or MARCH5
targets MAVS at lysine 363 and 462 or lysine 7 and 501 for K48-linked ubiquitination and
degradation [31]. These data prompted us to explore whether RNF5 or MARCH5 play an
important role in MAVS degradation. The effect of silencing RNF5 or MARCH5 with siRNA
on MAVS expression in aMPV/C-infected Vero cells was assessed. The results showed that
Vero cells transfected with 40 pmol siRNA targeting RNF5 or MARCH5 showed an obvious
reduction in protein expression (Figure 6A) and the dose of 40 pmol siRNA was used for
subsequent experiments. As shown in Figure 6B,C, compared to the siScra-transfected
cells, MAVS degradation was restored in aMPV/C-infected Vero cells transfected with
RNF5-siRNA and the knockdown of MARCH5 expression had no obvious effect on MAVS
degradation, which was different from the mechanism of NDV-induced MAVS degrada-
tion [29]. To further explore the effect of RNF5 on K48-linked ubiquitination of MAVS or
MAVS3, the effect of silencing RNF5 with siRNA on MAVS or MAVS3 ubiquitination in
aMPV/C-infected Vero cells was assessed. The results showed that the K48-linked ubiqui-
tination of MAVS or MAVS3 was significantly reduced in aMPV/C-infected Vero cells with
siRNF5 (Figure 6C). Taken together, these results demonstrate that RNF5 targeting MAVS
at lysine 363 and 462 is involved in MAVS degradation in aMPV/C-infected Vero cells.
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Figure 6. E3 ubiquitin ligases for MAVS degradation are screened and identified in aMPV/C-infected Vero cells. (A) Vero
cells were transfected with 40 pmol MARCH5-siRNA (MARCH5), RNF5-siRNA (RNF5), and scrambled-siRNA (Scra) and
were detected at 48 h by Western blotting with anti-MARCH5, -RNF5, or β-actin antibody. (B) Vero cells were transfected
with 40 pmol MARCH5-siRNA (MARCH5), RNF5-siRNA (RNF5), or scrambled-siRNA (Scra) and then were infected with
aMPV/C for 48 h. Cells were harvested and analyzed using Western blotting with anti-MAVS, anti-N, or anti-β-actin
antibody. (C) Representative results are displayed with graphs corresponding to the ratios of MAVS: β-actin normalized
to the control conditions. (D) 40 pmol RNF5-siRNA (RNF5), or scrambled-siRNA (Scra) transfected Vero cells were co-
transfected with Flag, Flag-MAVS3, or Flag-MAVS and HA-Ub. The cells were infected with aMPV/C and analyzed as
described in A. Error bars represent mean ± SD of three independent experiments. ns (not significant) p > 0.05; *** p < 0.001,
compared with the Scra group.

4. Discussion

MAVS transmits the upstream activation signal of retinoic acid inducible gene I
or melanoma differentiation-associated protein-5 to downstream intracellular pathways
signals in type I interferon production, and is part of the antiviral immune response [32].
Increasing research data have shown that MAVS plays a critical role in antiviral immunity.
Many reports have focused on the interaction and regulated mechanisms between virus
infection and MAVS function [29,33,34]. However, to date, no study has investigated
whether MAVS expression is regulated by aMPV/C infection and if so, how it is regulated
during viral infection. In this study, we demonstrated that aMPV/C infection induced
MAVS degradation via the proteasome pathway in the cultured cells, and this degradation
was largely blocked in the presence of MG132. Further analysis revealed that the amino
acids 363, 462, and 501 in MAVS were critical sites for forming polyubiquitin chains and
RNF5 is involved in MAVS degradation in aMPV/C-infected Vero cells.

Vero cells, an epithelioid cell derived from the kidney of African green monkeys, yield
high viral titer and are preferred for the propagation of aMPV [9,35,36]. They are model
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cells for studying the change in MAVS during aMPV/C infection. Although Vero cells
have a genetic defect in interferon production, this defect does not affect the transcription,
expression, and function of MAVS in cells [37]. Thus, we focused on the mechanism of
aMPV/C-induced change in MAVS in this study.

First, our Western blotting analysis demonstrated that MAVS was significantly de-
creased in the aMPV/C-infected Vero cells compared to in mock-infected Vero cells
(Figure 1A–C). Importantly, from 48 hpi onwards, an obvious reduction in MAVS was
observed. Since autophagy and apoptosis are significantly induced in the late stage of viral
infection and participate in viral replication [36], it may indirectly affect the degradation of
MAVS induced by aMPV/C infection. Therefore, in most experiments, this time point (48
hpi) was mainly chosen to further analyze the mechanism of aMPV/C-mediated MAVS
reduction in Vero cells. Notably, a high dose of aMPV/C (MOI = 0.5) induced more MAVS
degradation than a low dose (MOI = 0.1) (Figure 1F), indicating that the decrease in MAVS
is related to the virus inoculation dose. In addition, the decrease in MAVS was accompa-
nied by an increase in viral N protein expression and no change in MAVS was observed
in the UV-aMPV/C-infected cells or mock-infected cells (Figure 1G) indicating that active
aMPV/C replication is indispensable for MAVS reduction in Vero cells. In the further study,
we used indirect immunofluorescence and virus titer assay to confirm that the reduction in
MAVS was related to virus infection in Vero cells. The decrease in MAVS expression was
not caused by a low percentage of infected cells or virus-induced massive cell death, but
mainly due to the increase in the number of virus-infected cells (Figure 1D). In addition,
the increasing trend of virus proliferation curve from 24 to 120 h after aMPV/C infection
also indirectly indicates that virus infection induces the decrease in MAVS (Figure 1E).
Importantly, we have used defective cells of IFN-I production, Vero cells, for this study,
which excludes the possibility that interferon induced the reduction in MAVS expression
reported in the literature [38,39].

MAVS expression and function are tightly regulated at both the transcriptional and
translational levels. To determine if the reduction in MAVS occurred at the transcriptional
or translational level, we quantified MAVS mRNA by qRT-PCR and analyzed protein
expression in the cultured cells treated with different pharmaceutical reagents by Western
blotting. Our results showed that the level of MAVS mRNA did not change in the aMPV/C-
infected cells or mock-infected cells, regardless of the viral inoculation dose (Figure 2A).
This indicates that the reduction in MAVS by aMPV/C is not mediated at the transcriptional
level. These data are consistent with studies of MAVS reduction during NDV infection [29].
The decrease in protein levels was mainly achieved by protein cleavage and protein
degradation. In this study, we observed no cleaved bands of MAVS by Western blotting;
therefore, we focused on the mechanism of MAVS degradation in further experiments.

Importantly, the proteasome pathway plays a pivotal role in protein degradation [31].
MG132, a proteasome inhibitor, was added to Vero cells to analyze the change in MAVS
expression. Our results demonstrated that MAVS degradation was effectively restored in
the aMPV/C-infected Vero cells (Figure 2B,C), suggesting that the proteasome pathway
was mainly responsible for MAVS degradation. This is consistent with MAVS regulation
by many other viruses [26–29]. Previous studies showed that autophagy and lysosome
are also important pathways for MAVS degradation [40,41] and that aMPV/C infection
induced autophagy begins at 48 hpi in Vero cells [36], prompting us to evaluate whether
MAVS degradation is related to autophagy and the lysosome in the aMPV/C-infected Vero
cells. Our results showed that MAVS was degraded by aMPV/C infection in the presence
of wortmannin (autophagy inhibitor) or CQ (lysosome inhibitor) (Figure 2D,E), suggesting
that MAVS degradation by aMPV/C was not influenced by autophagy and lysosome
pathway. Interestingly, N protein expression was decreased in the aMPV/C-infected Vero
cells treated with wortmannin or CQ compared to in the aMPV/C-infected Vero cells,
indicating that the inhibition of autophagy decreased viral production. This result is
similar to those of studies of aMPV/C-induced autophagy [36]. Importantly, the addition
of wortmannin or CQ did not fully restore MAVS content and only slightly decreased
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the degradation of MAVS, which was not similar to the results after MG132 treatment.
These results showed that wortmannin or CQ treatment is not the main factor to degrade
MAVS, which further indicated that proteasome pathway played a critical role in MAVS
degradation (Figure 2D,E). Taken together, our findings illustrate that MAVS degradation
mainly occurred at the translational level rather than at the transcriptional level.

The formation of polyubiquitin chains represents activation of the ubiquitin-proteasome
pathway, which has been reported to regulate MAVS expression [42]. The immunoprecipita-
tion results showed that aMPV/C infection promoted the formation of MAVS polyubiquitin
chains (Figure 3A,B) and K48-linked ubiquitination (Figure 4) in the aMPV/C-infected Vero
cells treated with MG132. Lysine is a critical residue connected to ubiquitin molecules for
protein ubiquitination. Through segmented expression and site-directed mutagenesis, we
determined that residues 363, 462, and 501 in MAVS are involved in the formation of polyu-
biquitin chains and MAVS degradation in the aMPV/C-infected Vero cells (Figure 5A–C). This
differs from MAVS ubiquitination mediated by infection with NDV, which is another mem-
ber of the Paramyxoviridae family [29]. This presents a unique event of aMPV/C-induced
MAVS degradation.

Interestingly, many E3 ligases have been identified to modulate MAVS expression
by K48-linked ubiquitination, such as SMAD ubiquitin regulatory factor 1 or 2 (Smurf1
or Smurf2), atrophin 1-interacting protein 4, MARCH5, and RNF5 [43–47]. In these E3
ligases, MARCH5 and RNF5 catalyze MAVS ubiquitination at lysine 7 and 501 and at lysine
363 and 462 for proteasomal degradation, respectively [31,44,47]. Moreover, aMPV/C
induced MAVS ubiquitination at lysine 363, 462, and 501 in our study (Figure 5), which
suggested that MARCH5 and RNF5 may be involved in aMPV/C-induced MAVS degra-
dation. Further experiments’ results showed that RNF5, instead of MARCH5, is involved
in degradation of MAVS in aMPV/C-infected Vero cells (Figure 6). Although MARCH5
catalyze MAVS ubiquitination at lysine 7 and 501 for proteasomal degradation [31,47] and
lysine 501 in MAVS is a critical site in aMPV/C-induced ubiquitination of MAVS in cells,
the results showed that MARCH5 has no effect on the degradation of MAVS, indicating
that there may be an unknown E3 ubiquitin ligase targeting MAVS at lysine 501 degraded
MAVS in aMPV/C-infected Vero cells (Figure 6), which was different from the mechanism
of NDV-induced MAVS degradation [29]. In that study, NDV degraded MAVS by RNF5
(lysine 363 and 462), MARCH5 (lysine 7 and 501), and Smurf1 in Hela cells. It is well known
that aMPV/C and NDV belong to the members of the family Paramyxoviridae, but their
composition and growth characteristics are completely different. For example, V proteins,
an accessory protein of NDV, play a pivotal role in NDV-inhibited IFN production [29],
while aMPV/C does not have a similar protein. Interestingly, although RNF5 is involved in
the degradation of MAVS during aMPV/C or NDV infection, it is important that NDV uses
viral V proteins to complete this process [29], while aMPV/C does not, which indicated
that aMPV/C had significantly different pathogenesis compared with other members of the
family Paramyxoviridae in infected cells. Moreover, this characteristic is destined to have a
unique molecular pathogenesis of aMPV in infected cells. This further confirmed a new
mechanism of aMPV/C-induced MAVS degradation, and the screening and identification
of the unknown E3 ubiquitin ligase or new degradation mechanism need to be further
studied. In addition, sequence alignment showed that the amino acid homology of MAVS
protein from chicken and monkeys was very low. Thus, analysis of whether chicken MAVS
can be degraded by ubiquitination and clarification of the degradation mechanism are also
future directions for research, which is helpful to understand the relationship between
MAVS and IFN production. Although the effect of IFN on virus replication after MAVS
degradation cannot be studied in aMPV/C-infected Vero cells, the study of aMPV/C
infection degrading MAVS through ubiquitination enriches the interaction between virus
and host cells.

In conclusion, our study demonstrated for the first time that aMPV/C infection
mediated MAVS degradation in Vero cells. Our results further showed that polyubiquitin
chains formed at lysine 363, 462, and 501 in MAVS and RNF5 participated in aMPV/C-
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induced MAVS degradation. Therefore, these data provide an important foundation to
further study pathogenic mechanism of aMPV/C.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/v13101990/s1, Figure S1: aMPV/C infection in Vero cells.
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