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Abstract

The growth rates of COVID-19 across different geographical regions (e.g., states in a nation,
countries in a continent) follow different shapes and patterns. The overall summaries at coarser
spatial scales that are obtained by simply averaging individual curves (across regions) obscure
nuanced variability and blurs the spatial heterogeneity at finer spatial scales. We employ statis-
tical methods to analyze shapes of local COVID-19 growth rate curves and statistically group
them into distinct clusters, according to their shapes. Using this information, we derive the
so-called elastic averages of curves within these clusters, which correspond to the dominant in-
cidence patterns. We apply this methodology to the analysis of the daily incidence trajectory
of the COVID-pandemic at two spatial scales: A state-level analysis within the USA and a
country-level analysis within Europe during mid-February to mid-May, 2020. Our analyses re-
veal a few dominant incidence trajectories that characterize transmission dynamics across states
in the USA and across countries in Europe. This approach results in broad classifications of
spatial areas into different trajectories and adds to the methodological toolkit for guiding public
health decision making at different spatial scales.

Keywords: Covid-19 growth rates, statistical shape analysis, region clustering, pandemic
trends, flattening curves.
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Highlights

e Coarsely summarizing epidemic data collected at finer spatial scales can result in a loss of
heterogenous spatial patterns that exist at finer scales. For instance, the average curves may
give the impression that the epidemic’s trajectory is declining when, in fact, the trajectory of
the epidemic is increasing in certain areas.

e Shape analysis of COVID-19 growth rate curves discovers significant heterogeneity in epidemic
spread patterns across spatial areas which can be statistically clustered into distinct groups.

e At a higher level, clustering spatial patterns into distinct groups helps discern broad trends,
such as rapid growth, leveling off, and slow decline in epidemic growth curves resulting from
local transmission dynamics. At a finer level, it helps identify temporal patterns of multiple
waves that characterize rate curves for different clusters.

e Quantitative methods for characterizing the spatial-temporal dynamics of evolving epidemic
emergencies provide an objective framework to understand transmission dynamics for public
health decision making.
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1 Introduction

The ongoing pandemic of novel coronavirus disease (COVID-19) that erupted in China in December
2019 has already generated substantial morbidity and mortality impact around the world during
the first few months of transmission [10]. As the novel coronavirus continues its march around
the world, the daily trajectory of the epidemic in terms of new cases or deaths represents a key
tool for epidemiologist and public health scientists to quantify the reproduction number, assess the
evolution of the doubling time, and evaluate the impact of social distancing strategies in different
parts of the word [11, 1]. However, overall epidemic curves, obtained by accumulating or averaging
curves over large regions, can hide substantial differences in transmission dynamics that exist at
finer spatial scales [6]. These nuanced patterns associated with individual regions may be critical
to inform the type and intensity of interventions to bring the epidemics under control [11].

There is a need to better understand the spatial variability in the trajectory of the COVID-19
pandemic in different geographic areas around the world [10]. Indeed, the epidemic curves across
different continents or countries may display completely different dynamics at a given time. At a
higher level, such dynamics include increasing trends, a leveling off, stationary incidence patterns,
and decreasing trends. At a finer level, the growth may be characterized by multiple modes depicting
multiple waves of the epidemic [2]. Similarly, the epidemic curves at the subnational level within
a country display different dynamics over time. Because the type and intensity of public health
interventions are expected to vary across space, classifying and summarizing the spatial-temporal
dynamics of the novel coronavirus is key for real-time public health decision making.

Quantitative methods for shape analysis of functional data (see e.g., [12]) help investigate the
diversity of the spatial-temporal dynamics of transmission of the COVID-19. They provide an
objective framework to characterize the spatial-temporal dynamics of the epidemic in different ge-
ographic areas within the same country. This methodology is an important tool in a branch of
statistics called Functional Data Analysis. It has been used to steady stock markets in finance,
weather patterns in meteorology, growth rates in biology, and speech data in signal processing.
In the context of the COVID-19 pandemic, clustering of curves has been used to analyze travel
patterns of migrants in China [3]. We demonstrate how this methodology can be used to generate
representative epidemic curves at broader spatial scales (national level) to avoid losing informa-
tion that results from aggregating local epidemic curves at coarser spatial scales. We apply this
methodology to the analysis of the daily incidence trajectory of the COVID-pandemic at two spatial
scales: A state-level analysis within the USA and a country-level analysis within Europe during
mid-February to mid-May, 2020. Our analyses reveal characteristic trajectories of the pandemic at
the state level in the USA and at the country level in Europe, which provide information that may
help guide public health decision making at different spatial scales.

2 Data

We analyzed daily series of reported COVID-19 cases at two different levels of spatial aggregation:
States within the USA and countries in Europe.

e For the USA analysis, we retrieved daily cumulative case count data from the COVID Tracking
Project, a volunteer organization dedicated to collecting and publishing data on the spread
of COVID-19 in the United States [14]. Data from multiple sources, such as state or district
health departments and trusted news reports, are compiled and assessed for data quality to
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Figure 1: Concept of shapes of curves: All the curves in the left panel are deemed to have the same
shape, as they differ only in their heights and horizontal shifts. The curves in the right panel have
different shapes.

report the best available data for each state. Here we use reported daily state - and national-
level cumulative case counts from February 27th, 2020 to May 21st, 2020.

e For the country-level analysis in Europe, we retrieved the data from World Health Organiza-
tion: Coronavirus disease (COVID-2019) situation reports on May 23, 2020 [9].

3 Methodology

We apply quantitative methods to characterize shapes of the epidemic rate curves. The rate curves
represent the daily count of new cases of reported COVID-19 cases characterizing the trajectory
of the epidemic. While epidemic curves have been analyzed statistically in the past [5], focus on
their shapes is a relatively new concept. Why is it interesting to study shapes of these curves? By
focusing on shapes, one is more interested in the numbers and relative heights of peaks and valleys
in a curve, rather than their precise locations. For instance, bell-shape curves will be deemed similar
even if their peaks are located with small shifts and some height differences, and these bell curves
will be considered different from curves that are mostly increasing. (This is different from past work,
for example [7], where all epidemic curves are bell shaped and are classified into different classes
according to their means and spreads.) Similarly, curves with different up and down patterns will
also be considered different irrespective of the locations of their crossover points. Fig. 1 illustrates
this idea pictorially. In the left panel we see a number of curves that differ only in heights and
horizontal shifts. We consider all these curves to have the exact same shape. In the right panel we
see curves with different numbers, locations, and relative heights of the modes. These curves are
deemed to have different shapes and one can quantify the shape differences using tools from shape
analysis. By comparing the shapes of epidemic curves, representing the transmission dynamics in
different geographic areas within the same population, we can classify rate curves into groups or
clusters that exhibit a similar growth-decay pattern. There are multiple benefits of this approach.
This way we can compute national averages that are better reflective of the actual growth patterns
of the states. Secondly, and more importantly, it helps label each state in terms of the state of the
pandemic. It can also help us discover predominant patterns in epidemic growth, using data across
different locations, times, and scales.
4
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Figure 2: Preprocessing COVID-19 data into growth rate functions. From left to right: Original
positive test data; Curves of daily new cases; Smoothed and scaled rate curves; Average of rate
curves. Top panels show the state-level data for the USA while the bottom panels display the
country-level data for Europe.

The next question is: How does one quantify and statistically analyze shapes of rate curves?
Mathematically, shape is a property that remains unchanged if we rescale axes or translate the
curves along axes. In fact, one even allows nonlinear time warping of the time axis, resulting in
uneven horizontal shifts of the peaks and valleys, to be a shape-preserving transformation. The
invariance of shape to such transformations makes shape analysis a difficult problem. In order to
compare and analyze shapes of multiple curves, one has to standardize their domains by scaling
axes, normalizing heights, and aligning their peaks and valleys using time warping functions. The
resulting curves can then be analyzed for shapes. We employ well-established methodology for
shape analysis of functional data described in ref. [12]). This framework provides comprehensive
tools for generating statistical summaries and modeling of curves while focusing only on their
shapes. Here we apply these tools to trajectory data of the COVID-19 pandemic with the goal of
providing sound a framework for sound public health decision making at different spatial scales.

The following sections describe the methodology to analyze and cluster growth rate curves of
COVID-19 reported cases. We first pre-process the data to form smooth rate curves for each local
unit (a state or a country) over the observation interval. Then, we analyze shapes of these rate
curves to compare, cluster and summarize growth rates.

3.1 Pre-Processing Steps

We start by listing the pre-processing steps applied to COVID-19 daily count data from each unit
individually.

e Time-Differencing: Since the data includes cumulative counts (or total growth) of posi-
tive test counts for different states, we first calculate time differences (approximating time
derivatives) of the data to reach growth mt568. If f;(t) denotes the given cumulative positive
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counts for state i at time ¢, then the per-day growth-rate for that state at time t is given by

gi(t) = fi(t) — fit = 1).

e Re-Scaling: The scales of growth rates for some states are very different from other states,
due to different population counts, densities, and other variables. In order to separate shape
of a curve from its scale, we rescale each curve as follows. We compute the total positive tests
for a state, i.e. r; =), gi(t), and then we define h;(t) = gi(t)/r:. -

e Smoothing: Next, we smooth these normalized growth rate curves using the smooth function
in Matlab. With a slight abuse of notation, we shall call the resulting function h;(t) also.
These are the smoothed and normalized growth rate curves, or simply rate curves henceforth.

Figure 2 shows an illustration of this processing. The leftmost panel shows the original cumulative
positive counts {f;(¢)}, the next panel shows daily new positives {h;(t)} before smoothing, and
the third panel shows rate functions after smoothing and scaling. The rightmost panel shows a
coarse overall average of daily positives across states. The top row shows data for US states and
the bottom row shows the corresponding data for European countries.

3.2 Clustering of States

The resulting smoothed and normalized rate curves are then used in statistical analyses. There
are several possibilities for this analysis, including modeling, testing, prediction [4, 7] and classifi-
cation [8]. A raw averaging of data across all states is bound to smooth over interesting patterns
and lose interesting smaller structures. The right panels of Fig. 2 show averaging of the daily
counts of states for each dataset. Looking at these average curves, one gets the impression that the
growth rate is declining universally. However, this conclusion overlooks the variability in dynamics
of growth in different states. It is difficult to justify the use of overall averages as representatives
of growth patterns. Since our main goal is to extract predominant patterns of growth rates across
different states, we start by clustering them into smaller, homogeneous groups. This clustering
is important in that it helps recognize spatial heterogeneity of growth rates across geographical
regions.

For the purpose of clustering, we use a simple metric to compare any two curves. For any two
rate curves, h; and h;, we compute the norm |h; — h;||, where the double bars denote the L? norm
of the difference function, i.e. ||h; — hj|| = />, (hi(t) — h;(t))2. To perform clustering of 51 curves
into smaller groups, we apply the dendrogram function in Matlab using the ”ward” linkage. The
number of clusters is decided empirically based on the display of overall clustering results. We
elaborate on this further later on in data analysis.

3.3 Alignment and Averaging of Growth Curves

Once we have clustered states into different groups, we seek to derive an appropriate average or a
representative curve for each cluster of states. However, a simple arithmetic averaging of curves is
not always the best option. In particular, the curves are not perfectly aligned (in terms of their
peaks and valleys) and it is well known that direct statistical summaries of misaligned curves often
loose structure due to matching of peaks with valleys and vice versa. The solution is to first align
peaks and valleys across all curves, using a time-warping algorithm, and then perform averaging.
The problem of alignment of curves using time warping is also called phase-amplitude separation. In
this paper we use the specific alignment algorithm introduced in ref. [13] and described in Chapter
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8 of Srivastava and Klassen [12]. For additional details, we refer the reader to the R code package
fda_srvf [15].

4 Results

The following sections describe the results of our analyses using state-level data for the USA and
country-level data for Europe.

4.1 State-level analysis for the USA

The normalized rate curves for the period — 2/27/2020 to 05/21/2020 — are shown in the top-right
panel of Fig. 2. The results for clustering these 51 curves are shown in Fig. 3. The left side of the
figure shows a dendrogram plot — a hierarchical clustering of states. It shows that there are four
predominant clusters, which we consider for further analyses. We could also choose five clusters
instead, but the results do not change significantly. The resulting four groups are shown in different
colors in the dendrogram plot. The right side of the figure shows a color coding of the states — each
color represents a different cluster. The listing of states according to this clustering is as follows.

e Cluster 1: Towa, Kansas, Minnesota, Nebraska

e Cluster 2: Alabama, Arizona, Arkansas, California, Colorado, Delaware, District of Columbia,
Illinois, Indiana, Kentucky, Maryland, Mississippi, New Hampshire, New Mexico, North Car-
olina, North Dakota, Ohio, Rhode Island, South Dakota, Tennessee, Texas, Utah, Virginia,
Wisconsin, Wyoming.

e Cluster 3: Connecticut, Florida, Georgia, Maine, Massachusetts, Michigan, Missouri, Nevada,
New Jersey, New York, Oklahoma, Oregon, Pennsylvania, South Carolina, Washington, West
Virginia.

e Cluster 4: Alaska, Hawaii, Idaho, Louisiana, Montana, Vermont

The rate curves for these clustered states are shown in Fig. 4, both before (top) and after
(bottom) normalization. Since curves for different states have quite different scales, it is not easy
to discern overall shape patterns, even within the same cluster in the top row. After rescaling
the curves to the same scale, the general trends in the growth rates become clearer. For example,
for states in Cluster 4, the rate first goes up sharply and then comes down sharply. For states in
Cluster 3, on the other hand, the rate increases sharply at first but has not come down yet, at least
not completely.

Although the shapes of curves within a cluster are quite similar, the averaging of these curves
still can lose structure. As mentioned earlier, one needs to align the peaks and valleys of curves
before averaging. To further extract typical trends, we use an alignment technique from [12, 15]
and align rate curves within each cluster. Fig. 5 shows these aligned rate curves in each cluster;
the top row shows the unscaled curves while the bottom row shows the scaled curves.

Once the curves are aligned it is easier to visualize the common peaks and valleys (highs and
lows) in each group. Figure 6 shows the average rate curves for each cluster. We obtain these
curves by aligning and averaging rate curves in each cluster individually. This figure also plots a
one standard-deviation band around the mean curve, in order to display the variability in the data.
The pandemic growth patterns are very distinct7in the four categories. For Cluster 1: the rate
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Figure 3: Clustering of US states according to their normalized growth rate curves for the COVID-
19 pandemic
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Figure 4: Growth rate curves for 51 US states clustered in four groups. Top row shows the curves
at their original scales while the bottom row shows the normalized curves.
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Figure 5: Aligned growth rate curves for 51 US states clustered in four groups. Top row shows the
curves at their original scales while the bottom row shows the normalized curves.

climbs rapidly and has come down only slightly; for Cluster 2, the rate climbs rapidly and then
the growth slows down; for Cluster 3, the rate climbs rapidly and starts coming down slowly; and,
for Cluster 4 the rate climbs rapidly and comes down all the way. The rightmost panel of this
figure shows all the cluster averages in the same plot, to help visualize their differences.

4.2 Country-level analysis in Europe

Now we present clustering and shape analysis of rate curves for 60 European countries. In this
case we omit some intermediate results from clustering and alignment steps, and present the final
clustering results. A dendrogram-based hierarchical clustering of countries is presented on the left
side of Fig. 7. We choose to divide these countries into four clusters, as shown in the figure. The
right side of the figure shows a color coding of the countries according to their cluster memberships.
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Figure 6: Average shapes of the growth rate curves, along with a one standard-deviation band
around the mean, in each of the four clusters for the state-level USA analysis. The last panel shows

all cluster averages together with the overall mean.
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Figure 7: Clustering of European countries according to their normalized growth rate curves. Note
that the color palette and the ordering of clusters here is different from that of USA.

The cluster membership of 60 countries is enumerated below:

e Cluster 1: Liechtenstein, Faroe Islands, Greenland

e Cluster 2: Italy, France, Germany, Spain, Switzerland, Norway, Austria, Croatia, Israel,
Czechia, Greece, Iceland, Andorra, Estonia, Holy See, Latvia, Luxembourg, Lithuania, Slove-
nia, Gibraltar, Guernesy, Cyprus, Jersey, Montenegro, Isle of Man.

e Cluster 3: The United Kingdom, Netherlands, Denmark, Georgia, Romania, Finland, Por-
tugal, Belgium, Bosnia and Herzegovina, Hungary, Ireland, North Macedonia, San Marino,
Serbia, Slovakia, Malta, Albania, Turkey, Uzbekistan, Kosovo.

e Cluster 4: Sweden, Azerbaijan, Russian Federation, Belarus, Armenia, Poland, Ukraine,
Republic of Moldova, Kazakhstan, Kyrgyzstan, Tajikistan.

Once the curves are aligned within their clusters, it is easier to visualize the common peaks and
valleys (highs and lows) in each group. Figure 8 shows the average normalized growth curves for
each cluster. We obtain these curves by aligning and averaging normalized curves in each cluster
individually. The growth patterns are very distinct in the four categories. For cluster 1, the rate
climbs rapidly and comes down all the way to the normal levels. For cluster 2, the rate climbs
rapidly and starts coming down slowly, while in cluster 3, the rate has only started to come down
slowly. In case of cluster 4, the growth rate is still climbing rapidly. The rightmost panel shows
all the cluster averages in the same plot.

5 Discussion

In this paper we employ well-established methods for classifying and synthesizing shapes of growth
rate curves underlying the spatial heterogeneity 116hat exists at finer spatial scales. Specifically, we
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Figure 8: Average shapes of the growth rate curves in each of the four clusters in Europe. The last
panel shows all averages together with the overall mean.

have applied this methodology to characterize the spatial-temporal dynamics of the pandemic at
two different scales of spatial aggregation: Across states within the USA and across nations within
Furope. Our analyses reveal a few dominant incidence trajectories that characterize transmission
dynamics at the state level in the USA and at the country level in Europe. Overall, our approach
reveals broad classifications of spatial areas into different trajectories and adds to the methodological
toolkit for guiding public health decision making during epidemic emergencies at different spatial
scales.
The main findings are:

e The shapes of rates curves (or incidence curves) are different across the spatial units, but
they cluster into a few groups with characteristic patterns.

e The resulting broad classifications of the shapes (e.g., rapidly rising, slowly rising, slowly
decreasing, and declining and reaching low incidence levels) are clearly visible and very mean-
ingful.

e Computing average growth rates within the clusters is more appropriate than taking raw
averages across all spatial areas comprising the population, particularly when the epidemic is
comprised by asynchronous outbreaks.

Our state-level analysis indicate that Alaska, Hawaii, Idaho, Louisiana, Montana, and Vermont
are the only states that appear to be bringing the COVID-19 epidemic under control (Cluster
4). The other three characteristic patterns that emerge from our analysis paint a grim picture of
the COVID-19 epidemic in the USA at a time when most of the states have begun to reopen their
economies at least in some way. In comparison, our country-level analysis of the epidemic in Europe
reveal that Liechtenstein, Faroe Islands, and Greenland appear to have brought their epidemics
under control while countries in Cluster 2 are characterized by a downward trend and appear to
be in process of controlling their epidemics. In contrast, the epidemic is following an alarming
increasing trend in Sweden, Azerbaijan, Russian Federation, Belarus, Armenia, Poland, Ukraine,
Republic of Moldova, Kazakhstan, Kyrgyzstan, and Tajikistan while several other countries (Cluster
3) appear to be reaching an endemic level of the disease.

It is worth noting that the methodology employed here requires little human intervention. The
only quantity that may be specified manually is the number of clusters, and that is left as a choice
for the end user. Hence, the clusters of spatial units that emerge from the analysis provides an
objective classification system of epidemic patterns, which can be used to guide the implementation
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Figure 9: Top: Average rate curves for four clusters resulting from the data collected up to April
25th. Bottom: The corresponding clustering of 50 US states.

or relaxation of public health measures as the epidemic emergency evolves over time. For instance,
the resulting configuration of clusters for the state-level analysis in the US states using a truncated
dataset for an earlier period 02/27/20 - 04/25/20 is presented in Fig. 9 where the average rate
curves of the four clusters are displayed. In the bottom panel we show the clustering labels for 50
states. Comparing this map with that obtained from the analysis using the entire dataset (Fig. 3),
we see that a number of states have changed cluster memberships while many others remain in the
same cluster. States along the northeastern, western, and southeastern borders have shifted to the
next worst cluster in terms of the higher growth rates.

While we have focused our analysis on the time series of confirmed cases across spatial areas,
our analysis could be extended to consider the trajectory of the epidemic in terms of the number
of reported COVID-19 deaths. Moreover, a limitation of our analysis stems from the fact that
testing rates have generally improved across spatial areas during the course of the pandemic, which
could have influenced the shapes of the epidemic curves particularly during the early transmission
phase. In particular, the process of ramping up testing rates took several weeks in the USA, and
accumulating evidence suggests that the epidemic in the USA and Europe likely started much
earlier than initially thought.
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