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Abstract: Mitochondrial respiratory chain supercomplexes (RCS), particularly, the respirasome,
which contains complexes I, III, and IV, have been suggested to participate in facilitating electron
transport, reducing the production of reactive oxygen species (ROS), and maintaining the structural
integrity of individual electron transport chain (ETC) complexes. Disassembly of the RCS has been
observed in Barth syndrome, neurodegenerative and cardiovascular diseases, diabetes mellitus, and
aging. However, the physiological role of RCS in high energy-demanding tissues such as the heart
remains unknown. This study elucidates the relationship between RCS assembly and cardiac function.
Adult male Sprague Dawley rats underwent Langendorff retrograde perfusion in the presence and
absence of ethanol, isopropanol, or rotenone (an ETC complex I inhibitor). We found that ethanol
had no effects on cardiac function, whereas rotenone reduced heart contractility, which was not
recovered when rotenone was excluded from the perfusion medium. Blue native polyacrylamide gel
electrophoresis revealed significant reductions of respirasome levels in ethanol- or rotenone-treated
groups compared to the control group. In addition, rotenone significantly increased while ethanol
had no effect on mitochondrial ROS production. In isolated intact mitochondria in vitro, ethanol did
not affect respirasome assembly; however, acetaldehyde, a byproduct of ethanol metabolism, induced
dissociation of respirasome. Isopropanol, a secondary alcohol which was used as an alternative
compound, had effects similar to ethanol on heart function, respirasome levels, and ROS production.
In conclusion, ethanol and isopropanol reduced respirasome levels without any noticeable effect on
cardiac parameters, and cardiac function is not susceptible to moderate reductions of RCS.
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1. Introduction

Transport of electrons through the electron transport chain (ETC), coupled with oxidative
phosphorylation, generates the proton motive force in the inner mitochondrial membrane (IMM), and
thus drives ATP production by FOF1-ATP synthase. To date, at least three structural models known as
the fluidity (random collision) model, the solid model, and the plasticity model have been proposed
to explain the structural organization of ETC complexes in the IMM [1]. According to the fluidity
model, ETC complexes act as separate units to transport electrons by free diffusion using electron
carrier proteins such as cytochrome c and coenzyme Q [2]. However, studies since 2000 proposed a
solid model where individual ETC complexes can assemble into supramolecular structures known

Int. J. Mol. Sci. 2020, 21, 1555; doi:10.3390/ijms21051555 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0003-4426-537X
https://orcid.org/0000-0002-8639-8413
https://orcid.org/0000-0002-7024-5383
http://dx.doi.org/10.3390/ijms21051555
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/21/5/1555?type=check_update&version=2


Int. J. Mol. Sci. 2020, 21, 1555 2 of 14

as respiratory chain supercomplexes (RCS) [3]. In addition, the plasticity (hybrid) model developed
recently proposes that ETC complexes can function in both forms (individually and assembled in RCS)
simultaneously [4].

The main RCS, termed the “respirasome”, contains ETC complexes I, III, and IV in a different molar
ratio [5,6]. The respirasome has been suggested to maintain the structural integrity of individual ETC
complexes [7], improve the efficiency of electron channeling by preventing electron leakage [8], and
reduce mitochondrial ROS production [9]. Disassembly of RCS was observed in human diseases such
as Barth syndrome [10,11], neurodegenerative [12,13] and cardiovascular [14,15] diseases, diabetes [16],
and aging [17]. However, the physiological role of RCS in a high energy-demanding tissue such as
the heart has yet to be determined. Studies from our and other groups demonstrated that cardiac
ischemia–reperfusion and heart failure are associated with disruption of the respirasome structural
integrity [14,18,19]. Coronary microembolization-induced heart failure in dogs for 3 weeks reduced
respirasome levels and increased the levels of individual complexes I, III, and IV, suggesting a
possible cause–effect relationship between RCS dissociation and cardiac dysfunction observed in
these animals [14]. Early (5 min) reperfusion after global ischemia had no effect on respirasome, and
sustained reperfusion (60 min) induced only a ~5% decrease in respirasome levels despite severe
cardiac dysfunction [18]. Furthermore, 2- and 28-days post-infarction remodeling did not affect the
respirasome levels in female rats, despite significant reductions of ejection fraction which were 44%
and 48% less, respectively, than in sham-operated animals [19]. These studies raised the question of
whether RCS disassembly plays a causative role in the pathogenesis of mitochondria-mediated cardiac
dysfunction during coronary heart diseases.

In this study, we examined a cause-and-effect relationship between respirasome depletion and
cardiac function in rat intact hearts. Results demonstrated that the disassembly of respirasome by the
ETC complex I inhibitor, rotenone, was associated with diminished cardiac function. However, ethanol
and isopropanol induced respirasome disassembly without any noticeable effect on cardiac function.

2. Results

2.1. Cardiac Function

First, we examined the effect of ethanol, isopropanol, and rotenone on cardiac function. As shown
in Figure 1, ethanol and isopropanol had no significant effects on cardiac function as evidenced by
left ventricular developed pressure (LVDP), rate pressure product (RPP), and heart rate (HR) that
remained unchanged in the presence and absence of ethanol or isopropanol. The data for cardiac
function parameters in these groups were similar to those in the control (non-treated) group. In contrast,
rotenone significantly diminished cardiac function as evidenced by reduced LVDP (by 60%) and HR
(by 32%) at the end of 20-min perfusion with the inhibitor (rotenone group). Cardiac function was
not recovered when perfusion was continued with Krebs-Henseleit solution not containing rotenone
(rotenone-wash group), and LVDP and HR were 58% and 39% less (p < 0.01 for both) than in the
ethanol-wash group by the end of 40-min perfusion (Figure 1A,B). As a result, RPP, which reflects
cardiac work, was 76% and 75% (p < 0.05) less in the presence (rotenone group) and absence of
rotenone (rotenone-wash group), respectively (Figure 1C). In addition, the hearts treated with rotenone
developed irregular beating patterns (arrhythmias). Thus, ethanol and isopropanol do not impair
cardiac function, whereas rotenone induces a significant dysfunction of the heart.
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Figure 1. Cardiac function. (A) Left ventricular developed pressure (LVDP). (B) Heart rate (HR). (C) 

Rate pressure product (RPP). LVDP is the difference between left ventricular systolic pressure and 

left ventricular end-diastolic pressure. RPP was calculated as the product of LVDP and HR. Con, 

control; EtOH, ethanol; IPO, isopropanol; Rot, rotenone. * p < 0.05 vs. Con, n = 6–8. 

2.2. Mitochondrial Respiratory Function, Mitochondrial ROS Production, and PTP Opening 

Analysis of mitochondrial respiration rates in mitochondria isolated from ethanol, isopropanol, 

or rotenone-treated hearts showed that rotenone reduced by 80% (p < 0.001 vs. control), whereas 

ethanol and isopropanol had no effect on state 2 and state 3 respiration rates for complexes I and II 

(Figure 2A-D). State 3 for complex I remained reduced in rotenone-treated hearts even when 

perfusion continued with Krebs-Henseleit solution containing no rotenone (wash group, Figure 2C). 

Likewise, RCI for complex I in rotenone-treated hearts was 65% (p < 0.05, Figure 2E) lower than that 

in control hearts and remained unchanged when rotenone was removed from the perfusion media. 

Interestingly, removing ethanol (wash group) from the perfusion media reduced the RCI for complex 

I by 48% (p < 0.05, Figure 2E) in ethanol-treated hearts. State 3 respiration rate and RCI for complex 

II were not affected in mitochondria isolated from either ethanol, isopropanol, or rotenone-treated 

hearts (Figure 2B,D,F). 

Figure 1. Cardiac function. (A) Left ventricular developed pressure (LVDP). (B) Heart rate (HR). (C)
Rate pressure product (RPP). LVDP is the difference between left ventricular systolic pressure and left
ventricular end-diastolic pressure. RPP was calculated as the product of LVDP and HR. Con, control;
EtOH, ethanol; IPO, isopropanol; Rot, rotenone. * p < 0.05 vs. Con, n = 6–8.

2.2. Mitochondrial Respiratory Function, Mitochondrial ROS Production, and PTP Opening

Analysis of mitochondrial respiration rates in mitochondria isolated from ethanol, isopropanol,
or rotenone-treated hearts showed that rotenone reduced by 80% (p < 0.001 vs. control), whereas
ethanol and isopropanol had no effect on state 2 and state 3 respiration rates for complexes I and II
(Figure 2A-D). State 3 for complex I remained reduced in rotenone-treated hearts even when perfusion
continued with Krebs-Henseleit solution containing no rotenone (wash group, Figure 2C). Likewise,
RCI for complex I in rotenone-treated hearts was 65% (p < 0.05, Figure 2E) lower than that in control
hearts and remained unchanged when rotenone was removed from the perfusion media. Interestingly,
removing ethanol (wash group) from the perfusion media reduced the RCI for complex I by 48%
(p < 0.05, Figure 2E) in ethanol-treated hearts. State 3 respiration rate and RCI for complex II were
not affected in mitochondria isolated from either ethanol, isopropanol, or rotenone-treated hearts
(Figure 2B,D,F).
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Figure 2. Mitochondrial respiration rates for electron transport chain (ETC) complexes I and II. State 

2 (A,B), state 3 (C,D), and respiratory control index (RCI) (E,F) for complexes I and II. Mitochondrial 

respiration rates were measured in isolated mitochondria using substrates for complexes I (α-

ketoglutarate and L-malate) and II (succinate) in the absence (state 2) or presence of ADP (state 3). 

Oxygen consumption rates are presented in nmol oxygen/min per mg of mitochondrial protein. RCI 

by Lardy was calculated as the ratio of state 3 to state 2. Con, control; EtOH, ethanol; IPO, isopropanol; 

Rot, rotenone. * p < 0.05, *** p < 0.001 vs. Con, n = 6–8 per group. 

Next, we evaluated the effects of ethanol, isopropanol or rotenone on mitochondrial ROS 

production and mitochondrial swelling in the heart (Figure 3). Measurement of mitochondrial 

swelling as a marker of the PTP opening is used to determine the Ca2+ retention capacity of 

mitochondria. Analysis of mitochondria isolated from ethanol-, isopropanol- or rotenone-treated 

hearts demonstrated no difference in total mitochondrial swelling in the wash and non-wash groups 

(Figure 3C,D). Analysis of ROS with Amplex Red revealed that mitochondrial ROS production was 

approximately two times higher in the rotenone-treated hearts without subsequent perfusion, in 

comparison with the control group (Figure 3E, non-wash groups). No significant difference in 

mitochondrial ROS was found after removing rotenone from the perfusion medium, even though a 

higher trend was observed (Figure 3F, wash groups). Ethanol and isopropanol did not exert a 

significant effect on mitochondrial ROS production. 

Figure 2. Mitochondrial respiration rates for electron transport chain (ETC) complexes I and
II. State 2 (A,B), state 3 (C,D), and respiratory control index (RCI) (E,F) for complexes I and II.
Mitochondrial respiration rates were measured in isolated mitochondria using substrates for complexes
I (α-ketoglutarate and L-malate) and II (succinate) in the absence (state 2) or presence of ADP (state 3).
Oxygen consumption rates are presented in nmol oxygen/min per mg of mitochondrial protein. RCI by
Lardy was calculated as the ratio of state 3 to state 2. Con, control; EtOH, ethanol; IPO, isopropanol;
Rot, rotenone. * p < 0.05, *** p < 0.001 vs. Con, n = 6–8 per group.

Next, we evaluated the effects of ethanol, isopropanol or rotenone on mitochondrial ROS
production and mitochondrial swelling in the heart (Figure 3). Measurement of mitochondrial swelling
as a marker of the PTP opening is used to determine the Ca2+ retention capacity of mitochondria.
Analysis of mitochondria isolated from ethanol-, isopropanol- or rotenone-treated hearts demonstrated
no difference in total mitochondrial swelling in the wash and non-wash groups (Figure 3C,D). Analysis
of ROS with Amplex Red revealed that mitochondrial ROS production was approximately two times
higher in the rotenone-treated hearts without subsequent perfusion, in comparison with the control
group (Figure 3E, non-wash groups). No significant difference in mitochondrial ROS was found
after removing rotenone from the perfusion medium, even though a higher trend was observed
(Figure 3F, wash groups). Ethanol and isopropanol did not exert a significant effect on mitochondrial
ROS production.
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Figure 3. Mitochondrial swelling and reactive oxygen species (ROS) production rates. Representative 

curves (A,B) and quantitative data (C,D) of mitochondrial swelling, and the rates of mitochondrial 

ROS production rates (E,F). Mitochondrial swelling as a marker of permeability transition pore (PTP) 

opening was induced by addition of CaCl2, shown as the added and the final (cumulative) 

concentration in brackets, and measured by monitoring the decrease in light scattering at 525 nm. 

Quantitative data (C,D) are given for mitochondrial swelling rates induced by 200 µM Ca2+. Basal (no 

Ca2+) rates of mitochondrial ROS production (E,F) were measured for 25 min with 5-min intervals. 

Con, control; EtOH, ethanol; Iso, isopropanol; Rot, rotenone. * p < 0.05 Con vs. Rot, n = 6–8 per each 

group. 

2.3. Mitochondrial Respirasome Levels 

Analysis of RCS by blue-native polyacrylamide gel electrophoresis (BN-PAGE) in mitochondria 

isolated from ethanol-, isopropanol- or rotenone-treated hearts without subsequent perfusion (non-

wash groups) revealed, respectively, a 7% (p < 0.05), 17% (p < 0.01) and 10% (p < 0.05) reduction of 

respirasome, compared to the control group (Figure 4A–C). We revealed similar results (6%, 16%, 

and 15% reduction for ethanol-, isopropanol- or rotenone-treated hearts, respectively, p < 0.05 for all) 

in wash groups when the hearts were perfused with normal Krebs-Henseleit solution after treatment 

with ethanol, isopropanol, or rotenone (Figure 4D,E). The differences in respirasome levels were 

consistent in both group treatments. 

Figure 3. Mitochondrial swelling and reactive oxygen species (ROS) production rates. Representative
curves (A,B) and quantitative data (C,D) of mitochondrial swelling, and the rates of mitochondrial
ROS production rates (E,F). Mitochondrial swelling as a marker of permeability transition pore (PTP)
opening was induced by addition of CaCl2, shown as the added and the final (cumulative) concentration
in brackets, and measured by monitoring the decrease in light scattering at 525 nm. Quantitative data
(C,D) are given for mitochondrial swelling rates induced by 200 µM Ca2+. Basal (no Ca2+) rates of
mitochondrial ROS production (E,F) were measured for 25 min with 5-min intervals. Con, control;
EtOH, ethanol; Iso, isopropanol; Rot, rotenone. * p < 0.05 Con vs. Rot, n = 6–8 per each group.

2.3. Mitochondrial Respirasome Levels

Analysis of RCS by blue-native polyacrylamide gel electrophoresis (BN-PAGE) in mitochondria
isolated from ethanol-, isopropanol- or rotenone-treated hearts without subsequent perfusion (non-wash
groups) revealed, respectively, a 7% (p < 0.05), 17% (p < 0.01) and 10% (p < 0.05) reduction of respirasome,
compared to the control group (Figure 4A–C). We revealed similar results (6%, 16%, and 15% reduction
for ethanol-, isopropanol- or rotenone-treated hearts, respectively, p < 0.05 for all) in wash groups
when the hearts were perfused with normal Krebs-Henseleit solution after treatment with ethanol,
isopropanol, or rotenone (Figure 4D,E). The differences in respirasome levels were consistent in both
group treatments.



Int. J. Mol. Sci. 2020, 21, 1555 6 of 14
Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 15 

 
Int. J. Mol. Sci. 2020, 21, x; doi: FOR PEER REVIEW www.mdpi.com/journal/ijms 

 

Figure 4. Respirasome levels in mitochondria isolated from non-wash and wash groups by blue-

native polyacrylamide gel electrophoresis (BN-PAGE). (A) Representative two-dimensional BN-

PAGE (2D BN-PAGE) of RCS. Mitochondria were treated with digitonin and subjected to 2D BN-

PAGE. ETC complexes were visualized using antibodies against the subunits NDUFB8 (complex I), 
SDHB (complex II), UQCRC2 (complex III), MTCO1 (complex IV), and ATP5A (complex V). (B,D) 

Representative BN-PAGE images of RCS. (C,E) Quantitative data of RCS levels. The levels of 

respirasome were expressed as a percent change of control (Con). EtOH, ethanol; IPO, isopropanol; 

Rot, rotenone. * p < 0.05; ** p < 0.01 vs. Con, n = 3 per each group. 

We have previously shown that in vitro incubation of isolated mitochondria with rotenone 

induced disassembly of RCS and reduced the respirasome level by 13% [20]. To clarify whether 

ethanol can exert a similar direct effect in vitro on respirasome assembly, we incubated mitochondria 

isolated from the intact rat hearts with either ethanol or acetaldehyde. We assessed the effect of 

acetaldehyde based on the fact that (1) ethanol is converted into acetaldehyde by alcohol 

dehydrogenase in the cell (Figure 5A), and (2) acetaldehyde has detrimental effects on mitochondrial 

respiration [21]. Mitochondria resuspended in two different buffers (sucrose and respiration) were 

used in these in vitro experiments (see Materials and Methods).  The respiration buffer which contained 

α-ketoglutarate and L-malate was used to test whether in vitro changes in RCS assembly require an 

active ETC. Results showed that incubation of mitochondria in two buffers differently affects RCS 

assembly; incubation in the sucrose buffer stimulated RCS disassembly (17% reduction, p < 0.05) 

suggesting the importance of an active ETC for the structural integrity of respirasome (Figure 5B,C). 

Ethanol at either low (10 μM) or high (1 mM) concentration had no effect on RCS assembly in both 

buffers (Figure 5D,E). However, in the respiration buffer but not sucrose buffer, acetaldehyde was 

Figure 4. Respirasome levels in mitochondria isolated from non-wash and wash groups by blue-native
polyacrylamide gel electrophoresis (BN-PAGE). (A) Representative two-dimensional BN-PAGE (2D
BN-PAGE) of RCS. Mitochondria were treated with digitonin and subjected to 2D BN-PAGE. ETC
complexes were visualized using antibodies against the subunits NDUFB8 (complex I), SDHB (complex
II), UQCRC2 (complex III), MTCO1 (complex IV), and ATP5A (complex V). (B,D) Representative
BN-PAGE images of RCS. (C,E) Quantitative data of RCS levels. The levels of respirasome were
expressed as a percent change of control (Con). EtOH, ethanol; IPO, isopropanol; Rot, rotenone.
* p < 0.05; ** p < 0.01 vs. Con, n = 3 per each group.

We have previously shown that in vitro incubation of isolated mitochondria with rotenone induced
disassembly of RCS and reduced the respirasome level by 13% [20]. To clarify whether ethanol can exert
a similar direct effect in vitro on respirasome assembly, we incubated mitochondria isolated from the
intact rat hearts with either ethanol or acetaldehyde. We assessed the effect of acetaldehyde based on the
fact that (1) ethanol is converted into acetaldehyde by alcohol dehydrogenase in the cell (Figure 5A), and
(2) acetaldehyde has detrimental effects on mitochondrial respiration [21]. Mitochondria resuspended
in two different buffers (sucrose and respiration) were used in these in vitro experiments (see Materials
and Methods). The respiration buffer which contained α-ketoglutarate and L-malate was used to test
whether in vitro changes in RCS assembly require an active ETC. Results showed that incubation
of mitochondria in two buffers differently affects RCS assembly; incubation in the sucrose buffer
stimulated RCS disassembly (17% reduction, p < 0.05) suggesting the importance of an active ETC for
the structural integrity of respirasome (Figure 5B,C). Ethanol at either low (10 µM) or high (1 mM)
concentration had no effect on RCS assembly in both buffers (Figure 5D,E). However, in the respiration
buffer but not sucrose buffer, acetaldehyde was able to reduce RCS levels by 16% (p < 0.05 vs. control
for both) at either low or high concentration (Figure 5E). These data suggest that active ETC is required
for the maintenance of the structural organization of RCS assembly.
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Figure 5. The effects of acetaldehyde (AcAD) and ethanol (EtOH) on the respirasome assembly in 

mitochondria in vitro. Mitochondria isolated from healthy (non-treated) rat hearts were diluted in 

either sucrose or respiration buffer and incubated with AcAD or EtOH for 60 min at 37 °C. At the end 

of the incubation period, RCS were analyzed by BN-PAGE. (A) Diagram of EtOH metabolism in the 

cell. (B) Representative images of RCS in mitochondria diluted in either sucrose or respiration buffer. 

(C) Respirasome levels in mitochondria diluted in either sucrose or respiration buffer. (D,E) The 

effects of AcAD and EtOH at high (1 mM) and low (10 µM) concentrations on respirasome levels in 

mitochondria diluted in either sucrose (D) or respiration buffer (E). Respirasome levels were 

presented as the percentage of control (Con). * p < 0.05 vs. Con, n = 3 per each group. RB: Respiration 

buffer, SB: Sucrose buffer. 

3. Discussion 

In this study, for the first time, we provide evidence that the cardiac function of isolated 

Langendorff-perfused rat hearts is not susceptible to moderate disassembly of mitochondrial RCS. 

Particularly, we demonstrated that: (1) primary (ethanol) and secondary (isopropanol) alcohols 

decrease mitochondrial respirasome levels without any effect on cardiac function; (2) inhibition of 

complex I with rotenone stimulates disassembly of respirasome associated with diminished cardiac 

function; (3) ethanol and isopropanol had no effect on mitochondrial respiration (state 3) whereas 

rotenone markedly reduced it; and (4) ethanol had no direct effects on respirasome assembly, but its 

metabolite acetaldehyde stimulated dissociation of RCS in mitochondria in vitro with active ETC. 

A number of studies elucidated an associative link between RCS disassembly and cardiac 

dysfunction caused by ischemia–reperfusion injury [15,19], heart failure [14,22] and aging [23]. 

Furthermore, defective cardiolipin remodeling due to tafazzin deficiency in patients with Barth 

syndrome [10] and in early embryonal tafazzin knockdown mice [11] diminished heart function and 

Figure 5. The effects of acetaldehyde (AcAD) and ethanol (EtOH) on the respirasome assembly in
mitochondria in vitro. Mitochondria isolated from healthy (non-treated) rat hearts were diluted in
either sucrose or respiration buffer and incubated with AcAD or EtOH for 60 min at 37 ◦C. At the
end of the incubation period, RCS were analyzed by BN-PAGE. (A) Diagram of EtOH metabolism in
the cell. (B) Representative images of RCS in mitochondria diluted in either sucrose or respiration
buffer. (C) Respirasome levels in mitochondria diluted in either sucrose or respiration buffer. (D,E) The
effects of AcAD and EtOH at high (1 mM) and low (10 µM) concentrations on respirasome levels in
mitochondria diluted in either sucrose (D) or respiration buffer (E). Respirasome levels were presented
as the percentage of control (Con). * p < 0.05 vs. Con, n = 3 per each group. RB: Respiration buffer, SB:
Sucrose buffer.

3. Discussion

In this study, for the first time, we provide evidence that the cardiac function of isolated
Langendorff-perfused rat hearts is not susceptible to moderate disassembly of mitochondrial RCS.
Particularly, we demonstrated that: (1) primary (ethanol) and secondary (isopropanol) alcohols
decrease mitochondrial respirasome levels without any effect on cardiac function; (2) inhibition of
complex I with rotenone stimulates disassembly of respirasome associated with diminished cardiac
function; (3) ethanol and isopropanol had no effect on mitochondrial respiration (state 3) whereas
rotenone markedly reduced it; and (4) ethanol had no direct effects on respirasome assembly, but its
metabolite acetaldehyde stimulated dissociation of RCS in mitochondria in vitro with active ETC.

A number of studies elucidated an associative link between RCS disassembly and cardiac
dysfunction caused by ischemia–reperfusion injury [15,19], heart failure [14,22] and aging [23].
Furthermore, defective cardiolipin remodeling due to tafazzin deficiency in patients with Barth
syndrome [10] and in early embryonal tafazzin knockdown mice [11] diminished heart function
and caused respirasome disassembly associated with the reduced enzymatic activity of individual
ETC complexes. However, several studies challenged a causative role of RCS disassembly in
cardiac/mitochondrial dysfunction. We have previously shown that cardiac mitochondria isolated
from tafazzin knockdown mice demonstrated a 40% reduction of respirasome levels; however,
basal mitochondrial ROS levels were similar to wild-type counterparts [15]. Interestingly, ex-vivo
ischemia-reperfusion in rat hearts did not affect respirasome assembly at early (5 min) reperfusion,
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and induced only a ~5% reduction of respirasome levels after 60 min reperfusion despite severe
mitochondria alterations (high ROS production and PTP opening) and very low post-ischemic recovery
(23% of pre-ischemia) of the heart [15]. In addition, in vivo myocardial infarction with or without
subsequent reperfusion for either 2 or 28 days had no negative effect on the structural integrity of the
respirasome [19]. Tafazzin deficiency in mice initiated at an adult age did not affect mitochondrial
respiration and oxidative activity in the heart despite a 40% reduction of cardiolipin [24], a mitochondrial
signature phospholipid which has been shown to play an important role in the maintenance of the
structural integrity of ETC complexes [25] and RCS [26]. Furthermore, the hearts of tafazzin knockdown
mice exhibited similar sensitivity as wild-type mice to ex-vivo ischemia-reperfusion as evidenced by the
lack of differences in the infarction size and post-ischemic LVDP recovery [24]. In a recent study, liver
damage induced by a high cholesterol diet was associated with mitochondrial alterations and RCS
disassembly. However, treatment with glutathione ethyl ester significantly attenuated liver damage
and recovered mitochondrial respiration with no effects on RCS levels [27]. Interestingly, in vitro
studies demonstrated that respirasome does not enhance electron channeling as the electron carrier
molecules, quinone and quinol, diffuse freely across the RCS [28]. This conclusion was substantiated
by a recent study when CoQ trapping in the RCS I+III2 in vitro reduced complex I turnover [29],
suggesting that substrate channeling does not support or facilitate respiration. However, previous
experiments performed on mtDNA mutant cybrid cell lines demonstrated the threshold between
mitochondrial RCS disassembly and respiration defects [30]. These studies suggest that the extent of
RCS disassembly should reach a threshold level to provoke cardiac dysfunction. Hence, moderate
disintegration of RCS induced by ethanol and isopropanol might not be sufficient to alter mitochondrial
bioenergetics and thus, affect heart contractility. Indeed, mitochondrial respiration (state 3 and RCI)
was not markedly affected in alcohol-treated hearts (Figure 2).

We discovered the capacity of ethanol to stimulate disassembly of respirasome unexpectedly,
in experiments elucidating the effect of ethanol as a vehicle for rotenone on the respirasome
integrity. Indeed, an associative link exists between sustained ethanol consumption and heart
diseases [31], and ethanol has been shown to exert detrimental effects on mitochondria; it diminishes
mitochondrial respiration, increases mitochondrial ROS production [32,33], and induces mitochondrial
DNA damage [34]. Moreover, ethanol injected to mice significantly reduced the activity of ETC
complexes and increased mitochondrial ROS production in the brain cortex [35,36]; however, the effects
of ethanol on RCS assembly were not assessed previously. Interestingly, we observed similar effects for
isopropanol on RCS levels and heart function. The effect of alcohol (ethanol and isopropanol) to induce
RCS disassembly with unaltered cardiac function indicates that heart contractility is independent of the
supramolecular structural organization of ETC complexes. In addition, ethanol-induced disassembly of
RCS did not stimulate mitochondrial ROS production (Figure 3E,F). The results of our study provide an
in vivo argument against the possible role of RCS in electron channeling. This conclusion is consistent
with previous in vitro studies [28,29] that suggested a lack of electron channeling in respirasome. Our
findings suggest that RCS disassembly (at least up to 17%, as shown in the present study) does not
induce cardiac dysfunction, and RCS disassembly can occur as a consequence rather than a cause of
ischemia-reperfusion injury, diabetes, and other diseases. On the other hand, the complete disassembly
of RCS was not induced under these conditions, which could allow the majority of intact RCS to satisfy
energy demands through a compensatory mechanism of cardiac cells. The mechanisms underlying the
effect of ethanol on respirasome assembly are not clear and require further studies. Incubation with
ethanol did not affect respirasome assembly in isolated mitochondria in vitro (Figure 5D,E) suggesting
that the effect to induce RCS disassembly can be mediated through indirect mechanisms.

In the cytoplasm, alcohol dehydrogenase converts ethanol into acetaldehyde which is metabolized
in the mitochondria by aldehyde dehydrogenase [37]. Acetaldehyde accumulation and activation of
aldehyde dehydrogenase 2, a mitochondrial isozyme of aldehyde dehydrogenase, have been shown to
diminish mitochondrial respiration [38]. Our data demonstrated that acetaldehyde reduces respirasome
levels in mitochondria incubated in respiration buffer (Figure 5D,E), suggesting that active ETC is
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necessary for acetaldehyde to disrupt the respirasome. Furthermore, ethanol has been shown to alter
mitochondrial dynamics through activation of mitochondrial translocation of Drp1 and proteolytic
cleavage of L-OPA1 to S-OPA1 [33]. The fusion protein L-OPA1 is mostly localized in the IMM and
plays a key role in the maintenance of the cristae shape and RCS integrity [39].

The molecular role of the mitochondrial RCS, particularly respirasome, is still under question. As
mentioned above, respirasome is thought to reduce mitochondrial ROS generation [9], improve the
efficiency of electron transport [8], and maintain the structural integrity of individual ETC complexes
such as complex I [7]. Nevertheless, two recent studies have found that the respirasome is not kinetically
important for channeling electron across the ETC [28,40]. These studies suggest that RCS may be an
evolutionary adaptation to a heavily populated protein environment to avoid protein aggregation. On
the contrary, a study using flux control analysis found evidence that respirasome does provide a kinetic
advantage in electron channeling [41,42]. Interestingly, in this study, we found that only ethanol wash
groups had a lower RCI compared to control while the other groups remained unaffected, suggesting
that the respirasome may not alter electron channeling. Furthermore, cardiac function was unaffected
by ethanol, suggesting that ATP demands were satisfied.

Our study, similar to other studies, encompasses certain limitations: (1) we did not measure ATP
levels and evaluate the contribution of glycolysis to ATP production, which can compensate for ATP
demands during cardiac dysfunction [43]; (2) we assessed the effects of all three compounds during
a short period of perfusion (1 h max perfusion time); and (3) the hearts were only perfused with a
glucose-based solution. Other substrates (e.g. free fatty acids) in the perfusion media might differently
affect the respirasome assembly. It should be noted that inhibition of complex I by rotenone could
aggravate cardiac function due to blockage of electron transfer and high ROS production independent
of moderate respirasome disassembly. In addition, certain challenges associated with analysis of RCS
by the BN-PAGE technique should be taken into consideration [44]. Apparently, disadvantages of the
technique including, among others, solubilization of RCS and isolation of mitochondria can affect the
native structure of respirasome, and compromise understanding its role in mitochondrial bioenergetics
and undermine the contribution of RCS disassembly to cardiac function.

In conclusion, this study, for the first time, provides evidence that that cardiac function from
Langendorff-perfused rat hearts is not susceptible to moderate disassembly of mitochondrial RCS.
We observed that ethanol and isopropanol can stimulate disassembly of the respirasome without
significant effects on mitochondrial respiration. Likely, severe disassembly of the respirasome beyond
a critical threshold can diminish mitochondrial bioenergetics and cardiac function. Based on our
findings, we suggest that ETC complexes can exist either individually or organized into the respirasome,
described as a plasticity model [4]. Dynamic interconversion between these two states (fluidity and
solid) can prevent aggregation of IMM protein and maintain the structural organization of individual
ETC complexes.

4. Materials and Methods

4.1. Animals

Three-month-old adult Sprague Dawley male rats (275–325 g) were purchased from Taconic
(Hillside, NJ, USA). All experiments were performed according to protocols approved by the UPR
Medical Sciences Campus Institutional Animal Care and Use Committee (approval code: A762020117)
and conformed to the National Research Council Guide for the Care and Use of Laboratory Animals
published by the US National Institutes of Health (2011, eighth edition).

4.2. Langendorff-Mode Heart Perfusion

Hearts were isolated and perfused according to the Langendorff-mode technique as described
previously [15]. Briefly, rats were anesthetized with the anesthetic cocktail (in mg/kg body weight:
4.2 xylazine, 87.5 ketamine, and 87.5 acepromazine) administered intraperitoneally. The heart was
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rapidly excised, connected to the Langendorff-perfusion setup and perfused at a constant flow
(10–12 mL/min per gram heart weight) with Krebs-Henseleit solution containing (in mM): 1.2 KH2PO4,
1.2 MgSO4, 1.2 CaCl2, 4.8 KCl, 118 NaCl, 25 NaHCO3, and 11 glucose. The buffer was equilibrated at
95% O2 and 5% CO2, pH 7.4, at 37 ◦C. All hearts were perfused for 20 min to stabilize cardiac function
(equilibration period), and then randomly assigned to the following two sets (non-wash and wash)
with 4 groups in each (Figure 6). The first set (non-wash) included the (1) control (non-treated group),
40-min perfusion (n = 6), (2) ethanol group, 20-min perfusion with ethanol (n = 8), (3) isopropanol
group, 20 min perfusion with isopropanol (n = 6), and (4) rotenone group, 20-min perfusion with
rotenone (n = 8). The second set (wash) included (1) control (non-treated group), 60-min perfusion
(n = 6), (2) ethanol-wash group, 20-min perfusion with ethanol followed by a 20-min perfusion without
ethanol (n = 6), (3) isopropanol-wash group, 20-min perfusion with isopropanol followed by a 20-min
perfusion without isopropanol (n = 6), and (4) rotenone-wash group, 20-min perfusion with rotenone
followed by a 20-min perfusion without rotenone (n = 6). In the first set of experiments (non-wash), the
hearts were perfused with ethanol, isopropanol, or rotenone without subsequent perfusion, whereas
the hearts in the second set (wash) were perfused with normal Krebs-Henseleit solution for 20 min
after treatment with ethanol, isopropanol, or rotenone. The wash group was involved to verify if the
effect of RCS disassembly could be reversed in the alcohol groups, considering that rotenone binding
is irreversible. Ethanol and isopropanol were used at a final concentration of 1 mM. Rotenone (final
concentration 0.5 µM) was dissolved in ethanol (final concentration 1 mM). Isopropanol, a secondary
alcohol, was used as an alternative compound to reassess the effects of an alcohol functional group with
an alternative carbon chain in the heart and clarify the specificity of the effects observed. All chemicals
were handled with the appropriate personal protective equipment in accordance with the regulations
established by the Biosafety and Biosecurity Committee of the UPR Medical Sciences Campus.
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Figure 6. Scheme of experimental design. Rats were chosen randomly to participate in one of the
following eight experimental groups: (1) control (no-treated group), 40-min perfusion (n = 6), (2)
ethanol (EtOH) group, 20-min perfusion with EtOH (n = 8), (3) rotenone (Rot) group, 20-min perfusion
with Rot (n = 8), (4) isopropanol (IPO) group, 20-min infusion with IPO (n = 6), (5) control (no-treated
group), 60-min perfusion (n = 6), (6) EtOH-wash group, 20-min perfusion with EtOH followed by a
20-min perfusion without EtOH (n = 6), (7) Rot-wash group, 20-min perfusion with Rot followed by a
20-min perfusion without Rot (n = 6), and (8) IPO-wash group, 20-min perfusion with IPO followed by
a 20-min perfusion without IPO (n = 6). Details are given in Materials and Methods.
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To examine cardiac function, a water-filled balloon inserted to the left ventricle was connected
to a pressure transducer. Functional parameters including HR, the rate of contraction and relaxation
(± dP/dt), aortic pressure (AP), left ventricular systolic pressure (LVSP), and left ventricular end-diastolic
pressure (LVEDP) were continuously monitored using the Labscribe2 Data Acquisition Software (iWorx
308T, Dover, NH, USA). LVDP was calculated as the difference between LVSP and LVEDP (LVDP =

LVSP − LVEDP). RPP was calculated as the product of LVDP and HR (RPP = LVDP × HR) to estimate
cardiac work.

4.3. Isolation of Mitochondria

The isolation of mitochondria was adopted and modified from previous studies [18]. Briefly,
heart ventricles were cut and homogenized using a Polytron homogenizer in ice-cold sucrose buffer
containing in mM: 300 sucrose, 20 Tris-HCl, and 2 EGTA, pH 7.2, and supplemented with 0.05% BSA.
The heart homogenate was centrifuged at 2000× g for 3 min to remove cell debris. The supernatant was
centrifuged at 10,000× g for 6 min to precipitate mitochondria and then washed again under the same
conditions in sucrose buffer (BSA-free). The final pellet containing mitochondria was resuspended in
300 µL of sucrose buffer.

4.4. Mitochondrial Permeability Transition Pore (PTP) Opening

The swelling of mitochondria as an indicator of PTP opening in the presence or absence of Ca2+

was determined by monitoring the decrease in light scattering at 525 nm as previously described [18]
with minor modifications. The swelling buffer contained in mM: 125 KCl, 20 Tris base, 2 KH2PO4,
1 MgCl2, 1 EGTA, 5 α-ketoglutarate, 5 L-malate, pH 7.1. Mitochondrial swelling was measured via
spectrophotometry by exposing mitochondria to different concentrations of Ca2+ (100, 200, 300, and
800 µM) in 5-min intervals at 37 ◦C. Results were presented as absorbance value (A525) and the rate of
swelling at 200 µM of Ca2+ (∆A525·min–1

·mg−1).

4.5. Mitochondrial ROS Production

To measure mitochondrial ROS production, H2O2 levels were examined in isolated mitochondrial
suspension using Amplex Red (Molecular Probes, Eugene, OR, United States, final concentration
50 µM). The fluorescence intensity of Amplex Red was determined at an excitation of 560 nm and an
emission of 590 nm. Results were expressed as in H2O2 production rate (pmol·min−1

·mg−1)

4.6. Mitochondrial Respiration Rates

Measurement of mitochondrial respiration was performed at 37 ◦C using a YSI Oxygraph (Yellow
Springs, OH, USA) model 5300 equipped with a Clark-type oxygen electrode. Oxygen consumption
rates were recorded and analyzed using Chart5 (Powerlab, Colorado Springs, CO, USA). Mitochondria
were suspended in a buffer containing in mM: 125 KCl, 20 MOPS, 10 Tris base, 0.5 EGTA, and 2 KH2PO4,
pH 7.2, supplemented with either of the following substrates to measure complex I- and complex
II-mediated respiration rates, respectively: (1) 2.5 mM α-ketoglutarate and 1 mM L-malate or (2)
2.5 mM succinate and 1 µM rotenone. Respiration rates were measured in the absence (state 2) and
presence (state 3) of 1 mM ADP. At the end of each run, 0.5 µM antimycin A followed by 10 mM
ascorbate and 0.3 mM N, N, N′, N′-tetramethyl-p-phenylenediamine (TMPD) were added, and the
new rate of respiration was measured. The O2 Consumption was calculated in the absence (state 2) or
presence of ADP (state 3), and the respiratory control index (RCI) by Lardy was calculated as the ratio
of state 3 to state 2.

4.7. Mitochondrial RCS Levels

Mitochondrial RCS were analyzed by BN-PAGE as described previously [20]. Briefly, 40 µg of
mitochondrial protein were dissolved in 60 µL of solubilization buffer which included: 50 mM NaCl,



Int. J. Mol. Sci. 2020, 21, 1555 12 of 14

50 mM imidazole-HCl, 2 mM 6-aminohexanoic acid, 1 mM EDTA, 4 µL of 20% digitonin, 1 µL protease
and phosphatase inhibitor cocktails (Sigma-Aldrich, St. Louis, MO, USA), and 25 U of Benzonase®.
BN-PAGE samples were incubated on ice for 30 min and vortexed for 5 s every 5 min. Then, the
samples were centrifuged for 20 min at 20,000 × g and the supernatant was collected and mixed with
30 µL of sample buffer (50 mM NaCl, 10% glycerol, 0.001% Ponceau S, 50 mM Tris-HCl, pH 7.2). Gels
were stained by Coomassie Brilliant Blue G250 and then scanned with the Odyssey CLx Infrared
Imaging System (LI-COR Biosciences, Lincoln, NE, USA) at 0.5 mm focal depth and 300 ppi (pixels
per inch) resolution in high-quality mode. The resulting images were analyzed with LI-COR Image
Studios Lite version 5.2.5.

To examine direct effects of ethanol and acetaldehyde on mitochondria in vitro, mitochondria
isolated from the intact heart were incubated in sucrose buffer (in mM: 300 sucrose, 20 Tris-HCl, and
2 EGTA, pH 7.2) or respiration buffer (in mM: 125 KCl, 20 Tris base, 2 KH2PO4, 1 MgCl2, 1 EGTA,
5 α-ketoglutarate, 5 L-malate, pH 7.1). The mitochondria in each portion were incubated in the
following 5 groups: (1) control (no treatment), (2) 10 µM ethanol, (3) 1 mM ethanol, (4) 10 µM
acetaldehyde, and (5) 1 mM acetaldehyde.

4.8. Statistical Analysis

Data values are presented as mean ± SEM. Data were analyzed using one-way, two-way, and
repeated measures ANOVA on Graphpad prism. p < 0.05 was considered statistically significant.
In this study, the number of biological samples but not technical replicates was used as a sample size.
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