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Abstract: The thermal energy transport in semiconductors is mostly determined by phonon transport.
However in polar semiconductors like GaN electronic contribution to the thermal transport is
non-negligible. In this paper, we use an electron–phonon Monte Carlo (MC) method to study
temperature distribution and thermal properties in a two-dimensional GaN computational domain
with a localized, steady and continuous electron heat source at one end. Overall, the domain mimics
the two-dimensional electron gas (2DEG) channel of a typical GaN high electron mobility transistor
(HEMT). High energy electrons entering the domain from the source interact with the phonons, and
drift under the influence of an external electric field. Cases of the electric field being uniform and non-
uniform are investigated separately. A two step/temperature analytical model is proposed to describe
the electron as well as phonon temperature profiles and solved using the finite difference method
(FDM). The FDM results are compared with the MC results and found to be in good agreement.

Keywords: electron–phonon interaction; electron–phonon Monte Carlo; two temperature model;
Boltzmann transport equation

1. Introduction

Electrons and phonons are the thermal energy carriers in solids in general [1]. While
electrons have a dominant contribution to the thermal conductivity in metals, phonons
play the major role in semiconductors and insulators. Over the past few decades, rapid
advancements in first-principle simulation and thermal metrology have led to an elaborate
understanding of the thermal transport properties of electrons and phonons. However,
electrons’ significance in thermal transport in semiconductors started to be appreciated only
recently [2]. Initially, the efforts were merely focused on the influence of electron–phonon
interaction (EPI) on the properties of electrons in metals and semiconductors, including
the explanations for the temperature dependence of electrical conductivity and electronic
thermal conductivity. Very much less attention was given to the lattice thermal conduc-
tivity, or the thermal conductivity governed by phonons, since in metals, it is generally
believed that phonon contribution to thermal conductivity is negligible compared to the
electronic counterpart. On the contrary, thermal conduction is dominated by phonons
in semiconductors; the impact of EPI on phonon transport receives less attention due to
relatively low carrier concentrations which limits the scattering of phonons by electrons
much less important than the phonon–phonon scattering. The first study in this regard
was done by Sommerfeld and Bethe [3]; they calculated the relaxation time of phonons
incorporating EPI in metals. Based on that, Makinson [4] proposed an expression for lattice
thermal conductivity of metals as a function of temperature, where he concluded that the
electrons interact equally with longitudinal and transverse phonons, different from Bloch’s
coupling scheme [5] that restricts the electrons so that they only interact with longitudinal
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phonon modes. A work by Jia-Yue Yang et al. studied the Frolich EPI contribution to the
thermal conductivity of GaN. They found that the lattice thermal conductivity of GaN is
decreased by 24–34% [6] after incorporating EPI.

Among the analytical and numerical methods available to solve the Boltzmann trans-
port equation (BTE), Monte Carlo methods are found to be dominant in terms of flexibility,
efficiency and accuracy. The phonon tracing and tracking strategy used in this work are
found in literature like the MC study on phonon diffusive-ballistic heat conduction in sili-
con nanofilms by Y. C. Hua, B. Y. Cao [7] and many more. MC simulations in general can
be slow and computationally expensive depending on the amount of physics involved.
However, they are found to be very successful in predicting the thermal conductivities
of nano-structures. Having said that, there is still a plenty of room for improvements in
the algorithm such as electron–phonon coupling and its impacts on thermal transport,
ballistic and Fourier regime studies on the external/internal heat source driven thermal
transport, etc.

The present work involves an MC study on a two dimensional GaN channel similar to
that found in GaN-based HEMTs. The presence of a non-zero gate voltage is responsible for
the nominal device operation and volumetric heat generation (hot spot) at the drain side
edge of the gate due to accumulated charge distribution. Electron source induced thermal
transport and development of an analytic model to describe it effectively are the main scope
of this work. Some recent works on the electrothermal properties simulation and modeling
on GaN HEMTs are the following: Mei wu et al. [8] proposed an electric method for the
estimation of temperature in the AlGaN/GaN HEMT channel and also they built a 2D
electrothermal model to describe the findings; Bikramjith chatterjee et al. [9] examined the
self heating effects on HEMTs using UV thermoreflectance imaging; Luoyun Yang et al. [10]
studied the electrothermal mechanism of GaN HEMT and proposed a two-dimensional
analytic model for the device; Yu-Chao Hua et al. [11] investigated ballistic-diffusive regime
thermal spreading resistance in GaN HEMTs; and Qing Hao et al. [12] used a coupled
electron–phonon MC to investigate temperature distribution in GaN HEMT more accurately.
Drawing motivation from the past studies on electrothermal properties of HEMT channel
like nano-structures, we introduce an electron–phonon Monte Carlo study on a GaN
computational domain with a localized, steady electron heat source. High energy electrons
entering continuously from source terminal to the channel drift under the influence of
the electric field. The external electric field (~F) acts as a volumetric, indirect internal heat
source by pumping energy to the electrons. As they travel across, electrons interact with
lattice vibrations/phonons, thereby exchanging energy and momentum with them. This
exchange of energy and momentum is the essence of electron–phonon MC simulation.
The electron–phonon interactions (EPIs) are incorporated by accounting for various modes
of electron–phonon scattering mechanisms such as acoustic phonon scattering (LA), optical
phonon scattering (LO), polar optical phonon scattering (POP), and inter-valley scattering
(IV). The EPI is dominated by the emission of a large number of energetic phonons into the
computational domain by the electrons. They are tracked along with the electrons to get an
ensemble of trajectories that can give an elaborate picture of the electrothermal properties
of the material.

The two temperature models (TTM) are generally formulated within the space–time
continuum using differential calculus. In the past few decades, there has been significant
development in discrete approaches where, on the contrary, it is assumed that space and
time are discrete variables. In those models both space and time are discretized. At the
same time the dynamic variables are permitted to take a continuum of values. The discrete
model provides heat and mass transport differential equations in discrete form, so it can
be in particular suitable for numerical methods like FEM and FDM of cellular systems.
We have derived a two step model from a conventional parabolic two step/temperature
model that has been used for a while to deal with ultra-fast heating phenomena such as
pulsed laser, electron beam induced heating, etc. There have been a number of works
based on the two temperature model in the past few decades [13–16], particularly with
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rapid advancement in the ultra-fast laser technologies. Niu and W. Dai [17] developed
an implicit finite difference scheme on a grid based on the two temperature hyperbolic
model (TTHM) for thermal deformation in a two-dimensional double layered thin film
irradiated by ultrashort laser pulses. Their study accounted for the coupling effect between
strain rate and lattice temperature, as well as for the hot electron blast effect in momentum
transfer. Roth et al. [18] coupled the molecular dynamic method with the TTHM. They
demonstrated that, for copper, a difference between predictions of the local equilibrium
TTM and the TTHM of about 1000 K in the maximum electron temperature and about 80
K in the final lattice temperature has been observed. Our MC simulation is in fact aimed
to verify the accuracy of the newly developed parabolic two step model for dealing with
localized electron source driven thermal transport under the external electric field.

2. Electron–Phonon Monte Carlo Method

In the MC simulation technique, point particles (such as electrons, phonons, holes,
etc.) are drawn, distributed in the computational domain and let evolve in time. Individual
trajectories of the particles are tracked by imposing various scattering mechanisms.

2.1. Phonon Monte Carlo

The phonon tracing MC algorithm [7] is used in this work where phonon BTE is
solved under the relaxation time approximation, thereby computational particles describe
only deviation from the equilibrium distribution. The phonon tracing MC cuts down
the computational time significantly in comparison with the phonon ensemble MC [19].
In this study, phonon dispersion relations are calculated using the “Brillouin zone boundary
condition” (BZBC) model proposed by Chung et al.[20]. The relaxation time formulations
by Holland [21] are also used. The energy of each phonon bundle is directly related to
the frequency by E(ω) ∝ h̄ω. Hence, initializing the frequency would, by default, set the
energy too. The polarization and frequency of the phonon bundles are assigned using the
schemes provided in references [22,23], respectively. The role of optical phonons in the
heat transport is negligible as their group velocities are very low compared to longitudinal
acoustic (LA) and transverse acoustic (TA) modes. However, they play a very active and
dominant role in interacting with electrons, thereby causing an indirect impact on the
temperature distribution and other thermophysical properties. We know that longitudinal
optical (LO) phonons in wurtzite GaN eventually decay into a large wave vector transverse
optical (TO) and LA/TA phonon branches [24,25] i.e., LO−→ TO + LA or LO−→ TO + TA;
the resulting LA/TA phonons are then tracked successfully. The typical lifetime of LO
phonons in GaN is about 3–4 ps at room temperature [24].

Some aspects of a modified phonon MC scheme in Ref. [26] are used in this work.
The key feature of the scheme is that a “reference temperature” (Tre f ) is defined to cut down
the computational expenses and statistical noises significantly. The “reference temperature”
is usually fixed to be minimum temperature in the domain (in our case, 300 K, the room
temperature). Phonon bundles emitted by the electron bundles are tracked by taking all
scattering events into account. The phonons are moved from one position to the another
ballistically in the time interval 4tp; either 3-phonon or Umpklapp or impurity scatter-
ing are chosen probabilistically. Those phonons encountered with constant temperature
boundaries are absorbed and with adiabatic boundaries are reflected either specularly or
diffusively. Local temperature is calculated at the end of each drift. In order to calculate
the local/pseudo temperature, it is necessarily assumed that the total energy carried by
the phonon bundles in the local spacial element is equal to the energy calculated using
the Bose–Einstein distribution for the same element. Therefore, the pseudo-temperature is
given by

∑
p

Nb

∑
i=1

h̄ωi[N(ωi, Tpseudo)− N(ωi, Tre f )]Di(ωi, p)4ωi =
E(x, y, z)
4x4y4z

, (1)
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where E(x, y, z) is the net energy carried by the phonon bundle and N is the Bose–Einstein
function. The effective phonon relaxation time τp is written as

1
τp

=
1
τI

+
1

τU
+

1
τN

. (2)

The probability of a phonon undergoing scattering between time t and t +4t is
given by,

Rscat = 1− exp
(
−4t

τp

)
. (3)

Deciding which scattering is to be undergone is done as follows: First, the probability
of impurity scattering (β) is calculated using [23],

β =
τ−1

I

τ−1
I + τ−1

3ph

. (4)

Next a random number r is drawn and compared with β. If r < β, there is impurity
scattering; otherwise three phonon scattering occurs. Impurity scattering is implemented
by assigning a new random direction to the incident phonon, assuming isotropic impurity
distribution. Otherwise, for three phonon scattering, the phonon is absorbed, the track of
its path is terminated and a new phonon drawn from the equilibrium distribution at Tpseudo
is emitted and tracked.

2.2. Electron Monte Carlo

This is a semi-classical MC approach of simulating carrier transport in semiconduc-
tors [27]. Assuming the carrier motion comprised of free flights encountered by various
scattering mechanisms, a computer may be often used to simulate the trajectories of par-
ticles (electrons, holes, etc.), as they move across the device under the influence of an
external electric field, applying classical mechanics. The scattering events and the duration
of particle drift are obtained using random numbers. The method is equivalent to solving
BTE for electrons and takes the form,

∂ f
∂t

+
1
h̄
5k E(k)5r f +

eF(r)
h̄
5k f =

[
∂ f
∂t

]
coll

, (5)

where f is the electron distribution, E is the energy, e is the electron charge and F(r) is the
external field. Parabolic energy bands are assumed for this work. In the case of GaN, E(k)
takes the form,

E(k) =
h̄2

2

[
k2

l
m∗l

+
2k∗t
m2

t

]
, (6)

where m∗l and m∗t are longitudinal and transverse effective masses, respectively (for GaN
ml = 0.2m0, mt = 0.2m0).

Scattering Mechanisms

A computationally efficient approach to including scattering in MC is to store and
use individual scattering rates obtained using Born approximation. The Fermi golden rule
gives the first order transition probability per unit time for a scattering from a state |k〉 to
a state |k′〉 and can be found in Ref. [27]. In order to get a complete understanding of the
scattering processes, one has to consider all such scattering rates λ1, λ2, λ3, . . . , λn, then
calculate the total scattering rate given by,

λtot =
n

∑
i=1

λi. (7)
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The calculation of the phonon scattering rate for LA using the Fermi golden rule and
rigorous algebra takes the form [27],

λLA =

√
2

π

Z2
A

√
m∗l m∗2t kbT

ρh̄4v2
s

√
E. (8)

Similarly, for optical phonon deformation potential interaction, the longitudinal optical
phonon scattering (LO) rate is derived as [27],

λLO =
D2
√

m∗l m∗2t√
2πh̄3ρωo

[
Nq
√

E + h̄ω0 + (Nq + 1)
√

E− h̄ωo

]
. (9)

In order to calculate adsorption and emission probabilities, we define λLO = 1
τ

opd
LO

. It is

crucial to break Equation (9) into two parts: Absorption and emission rates,

λaLO =
D2
√

m∗l m∗2t√
2πh̄3ρωo

[
Nq
√

E + h̄ω0

]
. (10)

λeLO =
D2
√

m∗l m∗2t√
2πh̄3ρωo

[
(Nq + 1)

√
E− h̄ωo

]
. (11)

Now, the probabilities that an electron will undergo absorption and emission are
given by,

Pa =
λaLO

(λaLO + λeLO)
, (12)

and
Pe =

λeLO
(λaLO + λeLO)

, (13)

respectively. It is noted that Pa + Pe = 1. A random number r is drawn from [0 1]. If r < Pa,
there is absorption; otherwise, emission occurs.

Electrons can also be scattered by polar optical phonons. This mechanism is dominant
in GaN and it is also called polaron scattering. Polar optical phonon scattering (POP) arises
from the polarities of the two different atoms in the compound. The total POP scattering
rate derived using the Fermi golden rule is given in a straight forward manner by [28],

λPOP =
e2ωo

( K0
K∞
− 1
)

2πK0ε0h̄
√

2 E
m∗

[
Nq sinh−1

√
E

h̄ωo
+ (Nq + 1) sinh−1

√
E

h̄ωo
− 1
]

, (14)

where K0 is the static dielectric constant, K∞ is the high frequency dielectric constant, ε0 is
the permittivity of free space, Nq is the Bose–Einstein function, h̄ is Planck’s constant, E is
the electron energy. Absorption and emission rates are obtained separately as,

λaPOP =
e2ωo

( K0
K∞
− 1
)

2πK0ε0h̄
√

2 E
m∗

[
Nq sinh−1

√
E

h̄ωo

]
, (15)

λePOP =
e2ωo

( K0
K∞
− 1
)

2πK0ε0h̄
√

2 E
m∗

[
(Nq + 1) sinh−1

√
E

h̄ωo
− 1
]

, (16)

respectively.
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Probabilities of emission and absorption are given by,

Pa =
λaPOP

(λaPOP + λePOP)
, (17)

Pe =
λePOP

(λaPOP + λePOP)
. (18)

Intervalley scattering (IV) takes place when electrons are scattered between different
valleys. Generally speaking, there is a significant wave vector change for electrons to transit
between valleys, and therefore an optical phonon is often needed to support the scattering
process. Intervalley optical phonon scattering is very significant for high-energy electrons
like those are found in GaN under strong electric fields. Concerning Dij, the intervalley
deformation potential is used for calculating the scattering rate of an electron from its initial
ith valley into the final jth valley. The corresponding absorption and emission rates are
given by,

λaIV =
D2

ijZij

√
m∗l m∗2t√

2πh̄3ρωo

[
Nq

√
E + h̄ω0 −4Eij

]
, (19)

λeIV =
D2

ijZij

√
m∗l m∗2t√

2πh̄3ρωo

[
(Nq + 1)

√
E− h̄ωo −4Eij

]
, (20)

where Zij is the number of equivalent intervalley branches and is equal to the product
of the numbers of equivalent valleys for the ith and jth valleys. 4Eij is the difference in
energy between the bottoms of the jth and ith valleys. The total intervalley scattering is
obtained by

λIV = λaIV + λeIV . (21)

Ionic impurity (IM) scattering is another form of scattering encountered by the elec-
trons which becomes extremely elastic in nature. For an ionized impurity, the scattering
source can be characterized by screened Coulomb potential. Typically, the ionic impurity
density varies between 1015 and 1017 (cm−3). Time dependent perturbation analysis yields
a net scattering rate of [28],

λI =
NIe4

16
√

2m∗πK2
0ε2

0

[
ln(1 + γ2)− γ2

1 + γ2

]
E−3/2, (22)

where NI is the impurity density.

γ =
8m∗EL2

D

h̄2 , (23)

where LD is the Debye length, given by,

LD =

√
K0ε0kbT

e2ne
, (24)

where ne is the electron number density, 1
τeI

= λI . The effective relaxation time can be
calculated using Mathissen’s rule as,

1
τe

=
1

τeI
+

1
τPOP

+
1

τLO
+

1
τLA

+
1

τIV
. (25)

The mean free path of electrons is calculated using,

le = vthτe, (26)
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where vth is the average thermal speed of electrons which is of the order 105 (m/s). Based on
the relaxation time approximation, the traveling distance of electrons can be obtained by,

~re = ~re0 +4te~ve, (27)

where ~ve, ~re and ~re0 are the instantaneous electron velocity and initial and final position
vectors, respectively.

Scattering rates for 3D GaN material are used for 2D channel for simplicity. It has
been seen that 3D material treatment for polar optical phonon scattering is justifiable
for 2DEG as well [12]. Since the electron energies are high, the only dominant players
of scattering are polar optical phonon and intervalley; both in 3D are used for the 2D
domain also [12]. We state that approximating 3D bulk scattering for simulating electron
transport in the 2D channel is a clear limitation of our approach which might have caused
compromises concerning the accuracy of the electron part of the MC simulation. The
mobility model in M. Shur et al. [29] is used in this work where they have derived electron
mobility models induced by various scattering modes addressed separately for 2DEG and
bulk scenarios. Some other relevant works dealing with various scattering and associated
electron mobilities of 2DEG in GaN based HEMTs can be found in I. Berdalovic et al. [30,31],
Bag et al. [32], Y. J. Chai et al. [33] and T Fang et al [34]. Another notable work worth
mentioning in this context is J. Zhang et al. [35] on the mobility of 2DEG in AlGaN/GaN
heterostructures with varying Al content.

3. Numerical Scheme

In order to explore electron–phonon coupled transport at nano-scales, we implement
electron–phonon MC within a two dimensional rectangular geometry of size Ly × Lz as
seen in Figure 1. The electron source and sink are located at the rear and front ends. Front
and rear boundaries are set to be isothermal at room temperature where high energy
electrons enter and the leave the domain, respectively. The whole system is discretized
into a number of rectangular control elements each of size4y×4z; these are shown in
Figure 1 using dotted lines. Lateral boundaries are adiabatic and therefore, specularly
or diffusively reflective. The time steps 4tp and 4te are crucial in deciding the overall
thermal and electron transports.

Figure 1. Front/source and rear/sink boundaries are set to be isothermal at room temperature.
Lateral boundaries are shown to be adiabatic.

If 4tp is too large the scattering probability will be always 1, providing unrealistic
results, the same is true with 4te also. At the same time, time steps should be carefully
selected such that the ballistic distance of the fastest phonon/electron does not exceed the
smallest space step (i.e.,4y and4z). The parameters of GaN used in the computation are
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acoustic deformation potential ZA = 8.3 eV, the number of equivalent intervalley routes
Zi f = 3, intervalley deformation potential Di f = 1.0× 1011 eV/m, optical deformation
potential Zo = 4.5 eV, and LO phonon frequency ωo = 20 THz [6,36,37].

A detailed step by step algorithm of the phonon–electron MC that describes the entire
process is given by:

1. First, Ne the total number of electron bundles per unit time, np the phonon count and
ne the electron count are initialized. Then ne is incremented as the the first electron
bundle leaves the source. For each electron bundle, an initial energy, random~k vector,
random position and direction are assigned.

2. Once an electron bundle is emitted from the source, its count, ne, is incremented
by one. At the end of each drift, the~k vector, energy, velocity and the position of

the electron bundle are updated as follows: ~k f = ~ki − e~F4te
h̄ , E =

h̄2k2
f

2m∗ , ~ve =
h̄~k f
m∗ ,

~r f = ~ri + ~ve4te.
3. Electron scattering is chosen probabilistically among LA, LO, IM, IV and POP. In the

case of LA scattering, the LA phonon count is updated in the corresponding spacial
bin. POP, IV and LO counts are updated by subtracting or adding phonons, depending
on whether absorption or emission takes place (at the same time the electron energy
is further modified as E f = Ei ± h̄ω). IV is found to be negligible except for higher
energies. In the case of emission, the emitted phonon is tracked until it gets absorbed
by either of the isothermal boundaries and the control is then returned back to the
electron that had emitted the phonon and continues with its tracking. The energy of
the electron is then reduced by that of the emitted phonon and the same is added to
the corresponding spacial bin, thereby accounting for the energy conservation. If the
emitted phonon is of the LO branch whose group velocity is marginal, control waits for
it to decay into LA/TA phonons whose group velocities are higher enough and thus
successfully tracked. In the case of absorption, electron energy is incremented by that
of the absorbed phonon and the phonon energy is deducted from the corresponding
spacial bin where the absorption had taken placed . The electron alone is then tracked.

4. Once the electron bundle driven by the external electric field ~F reaches the source
terminal, it gets absorbed and the control returns back to step 1. The entire process
repeats again by emitting the next electron bundle.

4. Results and Discussion

An electron–phonon MC method is employed to investigate the heat transport in a 2D
GaN domain carrying an electron heat source. Both electron as well as phonon temperature
in the domain are studied and simulated. Electron temperature in the computational
domain is obtained using the relation in Ref. [38]:

3
2

kBTei = f (
1
2

m∗ < v >2
i −

1
2

m∗v2
d), (28)

where f , m∗, < v >2
i and vd refer to the electron fraction, effective mass, mean-square

velocity, and drift velocity, respectively. Here Tei is the electron temperature for the ith
bin. A plot of Te along with lattice temperature is shown in Figure 2a–d. As we can see,
the temperature of electrons entering from the source is decayed as they drift towards the
sink/drain under the electric field ~F. The electrons interact with phonons by significantly
transferring their energy to them; at the same time, the electric field pumps energy to
the electrons. Electron temperature at the source is set to be very high while the lattice
temperature is kept at room temperature at both the source and the sink. We remark that the
electron temperature defined here is not equal to the true or thermodynamic temperature of
the electron ensemble. For electron concentrations in the degenerate range, the temperature
defined above exceeds the true temperature of the electron ensemble because the Pauli
exclusion principle put limits on the number of particles in the low-energy states, inevitably
raising the average energy of the ensemble.
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Figure 2. Electron and phonon temperatures (Te and Tph) along the y direction using MC and the two
step model (FDM) for electric fields (a) ~F = 0, (b) ~F = −1.6× 105 Vm−1ŷ, (c) ~F = −2.6× 105 Vm−1ŷ
and (d) ~F = −4.6× 105 Vm−1ŷ.

A two temperature model to describe the temperature distribution is proposed. The model
is derived from a conventional theory for modeling ultra-fast heating phenomena such as
femto/pico second pulsed laser or electron beam induced heating. The most commonly found
theory for modeling the ultra-fast heating phenomena is a two step/temperature model that
consists of a set of two parabolic heat diffusion equation for electrons and phonons given
by [26],

ρeCe
∂Te

∂t
= κe∇2Te − G(Te − Tph) + S, (29)

ρlCl
∂Tph

∂t
= κl∇2Tph + G(Te − Tph), (30)

where ρ is the electron/phonon density , C is the electron/phonon heat capacity, G is the
electron–phonon coupling constant, κ is the electron/lattice thermal conductivity, S is the
volumetric heat source term. Through initial intensive heating by a pulsed laser or electron
beam, electron temperature rises while lattice temperature remains the same. As time
passes, electrons interact with lattice vibrations/phonons, efficiently passing the energy
to them. This heats up the lattice and the lattice temperature rises at the cost of decrease
in the electron temperature. For S = 0, the scenario without a heat source, eventually
the lattice temperature catches up to the electron temperature. In many cases the term
κl∇2Tph � G(Te − Tph); therefore, the above set of equations becomes,

ρeCe
∂Te

∂t
= κe∇2Te − G(Te − Tph) + S, (31)

ρlCl
∂Tph

∂t
= G(Te − Tph). (32)

The pulsed laser or electron beam mentioned here is localized in time and the parabolic
set equations above are valid for the pulse duration, tpulse greater than the relaxation time of
electrons. What we have in the present study is not a pulsed source that is localized in time
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but a continuous, steady, energetic, electron heat source which is localized in space as we can
see in Figure 1. Since the source is not localized in time but in space, Equations (31) and (32)
can be modified to get a new model that can take care of the present situation. This is
done by exchanging the time and space components and introducing some arbitrary fitting
parameters to take care of the dimensionality of the equations. Electrons with high energy
and therefore high electron temperature are continuously entering the domain channel
from the source terminal. These electrons act as a spatially localized heat source for a given
electric field. The two step model formulated to deal with the electron temperature (Te)
and phonon/lattice temperature (Tph) in the channel is given by,

Hke∇Te = Aceρe
∂2Te

∂t2 − BG(Te − Tph) + S, (33)

kl D∇Tph = G(Te − Tph), (34)

where H A, B, D are arbitrary fitting parameters. ke, kl , ce, G, ρe and S are electron ther-
mal conductivity, lattice thermal conductivity, electron specific heat, the electron–phonon
coupling constant, the electron density and the internal heat source term, respectively.
Since the electron heat source stretches all the way along the z direction having length Lz
and thickness4Ly, two step model in 1D along the y direction is sufficient to address the
problem. Hence, the above set of equations in 3D can be reduced into 1D as,

Hke
∂Te

∂y
= Aceρe

∂2Te

∂t2 − BG(Te − Tph) + S, (35)

kl D
∂Tph

∂y
= G(Te − Tph). (36)

The above equations in one dimension can be easily solved using the finite difference
method (FDM). First, a 2D mesh consisting of space (y) and time (t) discrete variables is
constructed. Second, the set of differential equations are converted to an iterative form
where i and j stand for time and space indices, respectively, see Equations (37) and (38).

Tij
ph = Tij−1

ph +4yG′(Tij−1
e − Tij−1

ph ), (37)

Tij
e = Tij−1

e + A′4y
(Ti+1j−1

e − 2Tij−1
e + Ti−1j−1

e )

4t2 − B′4y(Tij−1
e − Tij−1

ph ) + C′4ySj, (38)

where G′, A′, B′ and C′ absorb all other constants into them. An iterative form of the model
is solved after imposing suitable boundary conditions. FDM Equations (37) and (38) solved
and plotted along with MC results can be found in Figure 2a–d. When the electrons drift
away from the source towards the sink/drain under the influence of the electric field, more
and more energy is transferred to the lattice by means of electron–phonon coupling. The
stronger the coupling constant G, the faster the energy exchange between the electrons
and phonons.

The categories of EPI scattering that have been studied are electron longitudinal
acoustic (LA), electron longitudinal optical (LO), intervalley (IV) and electron polar op-
tical phonon (POP) to characterize the electronic influence of heat transport in GaN.
Among them, POP and IV are found to be the dominant players. Moreover, the phonon
emission probabilities are much stronger than their absorption counterparts because elec-
tron energies are much higher when compared to those of phonons. Therefore, high energy
electrons are more likely to lose energy by emitting phonons than to gain energy by ab-
sorbing phonons. The electric field serves as a driving force that causes the electrons to
drift across the domain from the source to the drain and also pumps energy to the electrons
by accelerating them during the flight between two collisions. The energized electrons
dissipate energy to the lattice by vigorously interacting with phonons. Hence, the electric
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field acts as an indirect internal heat source existing throughout the domain. The term “S”
in Equation (35) represents the volumetric heat source in the two step model. High energy
electrons entering the domain cause a very high Te at the source boundary as they travel
ahead and interact with the phonons by transferring the energy to them, raising the phonon
temperature. The majority of the phonons emitted by the electrons which are of the LO
mode eventually decay into acoustic modes. As the distance from the source increases, Te
decays rapidly and Tph increases, slowly trying to catch up with Te, see Figure 3a,b. In the
absence of the internal heat source/electric filed, Tph is found to readily catch up with Te,
as seen in Figure 2a; in contrast, for non-zero fields, there always exists a gap between Te
and Tph, i.e., Tph is never able to catch up with Te, as seen in Figure 2b–d. With the strength
of the electric field increasing, the gap between Te and Tph also widens. Overall, the MC
data is found to be in a good agreement with the model.

Figure 3. Phonon temperature (Tph) along the y direction using the MC and two step model (FDM)
for uniform electric fields (a) ~F = −2.6× 105 Vm−1ŷ and (b) ~F = −4.6× 105 Vm−1ŷ.

Next we examined the case of the non-uniform electric field impact on the electron–
phonon coupled transport using the two step model and the same is verified using the
electron–phonon MC. First, the electric field ~F(y) is modified into non-uniform form with a
constant peak at the y1 < y < y2 region of the channel. The function ~F(y) takes the form,

~F(y) =

{
−Fmax ŷ, for y1 < y < y2,
−Fminŷ, elsewhere.

(39)

~F(y), the electron temperature (Te) and phonon temperature (Tph) are obtained using
the MC and the two step model/FDM, a magnified version of Tph in the range y1 < y < y2

(y1 = 2500 nm, y2 = 2800 nm) for Fmax = 1.0× 106 Vm−1 and Fmax = 2.0× 106 Vm−1,
shown in Figure 4a,b, respectively. Fmin = 1.6× 105 Vm−1 is set for both cases.

Second, the volumetric heat source term S in the two step model in Equation (35) is also
modified in accordance with ~F(y) to incorporate the non-uniform electric field effect. As we
can see, the high energy electrons emitted by the source undergo vigorous interactions
with phonons, thus rapidly loosing their energy, raising the phonon energy and phonon
temperature. At the same time, the electric field pumps extra energy to the electron as they
drift through. The electric field sharply increases at y = y1 from Fmin to Fmax, resulting
in the electrons receiving a lot of extra energy and Te rising sharply. The increase in Te
also leads to a corresponding increase in Tph due to strong electron–phonon interaction.
Since ~F(y) returns to Fmin at y = y2, both Te and Tph also return back to the original quite
abruptly. This creates localized peaks of Te and Tph at y1 < y < y2. The amplitude of the
peak is found to be proportional to the magnitude of Fmax, which is evident in comparing
Figure 4a,b. As far as the whole scenario is concerned, the MC simulation and two step
model are found to be in good agreement.
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Figure 4. (a) Electron and phonon temperatures (Te and Tph) along the y direction using the MC and
the two step model (FDM) for the non-uniform electric field (~F = −1.0× 106 Vm−1ŷ) peaking at
2500–2800 nm. A sharp peak in Te is observed in the high electric field region and a corresponding
rise in Tph is magnified and separately shown as inset. (b) Electron and phonon temperatures
along the y direction using MC and two step model (FDM) for non-uniform electric field (~F(y) =
−2.0× 106 Vm−1ŷ) peaking at 2500–2800 nm.

5. Conclusions

The thermal energy transport in semiconductors is mostly governed by phonons.
However, in polar semiconductors like GaN, electronic contribution to the thermal transport
is significantly high. In this paper, we used a electron–phonon Monte Carlo to study
temperature distribution and thermal properties in a two-dimensional GaN computational
domain with a localized, steady, continuous electron heat source. High energy electrons
entering the domain from the source and interacting with the phonons drift under the
influence ofan external electric field. A two step/temperature analytical model is proposed
to describe the electron as well as phonon temperature profiles and is solved using FDM.
FDM data is then compared with the MC simulation results. Both FDM and MC simulation
data were found to be in a good agreement. The electric field is found to act as an internal
volumetric heat source as it continuously pumps energy to the electrons. While the phonon
temperature readily catches up with electron temperature under zero field conditions, there
always exists a gap between them for non-zero fields. Gap size is found to be directly
proportional to the intensity of the electric field. We have also examined the case of non-
uniform electric field impact on the electron–phonon coupled transport using the two step
model and the same is verified using the electron–phonon MC. Since the computational
domain resembles the two dimensional electron gas channel of a typical GaN-based HEMT,
this work provides more insight into further investigations on electrothermal properties
of HEMTs.
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Abbreviations
The following abbreviations are used in this manuscript:

MC Monte Carlo
BTE Boltzmann Transport Equation
EPI Electron Phonon Interaction
FDM Finite Difference Method
HEMT High Electron Mobility Transistor
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