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Purpose. Preoperative prediction of isocitrate dehydrogenase 1 (IDH1) mutation in lower-grade gliomas (LGGs) is crucial for
clinical decision-making. This study aimed to examine the predictive value of a machine learning approach using qualitative and
quantitative MRI features to identify the IDH1 mutation in LGGs. Materials and Methods. A total of 102 LGG patients were
allocated to training (n = 67) and validation (n = 35) cohorts and were subject to Visually Accessible Rembrandt Images
(VASARI) feature extraction (23 features) from conventional multimodal MRI and radiomics feature extraction (56 features)
from apparent diffusion coefficient maps. Feature selection was conducted using the maximum Relevance Minimum
Redundancy method and 0.632+ bootstrap method. A machine learning model to predict IDH1 mutation was then established
using a random forest classifier. The predictive performance was evaluated using receiver operating characteristic (ROC) curves.
Results. After feature selection, the top 5 VASARI features were enhancement quality, deep white matter invasion, tumor
location, proportion of necrosis, and T1/FLAIR ratio, and the top 10 radiomics features included 3 histogram features, 3 gray-
level run-length matrix features, and 3 gray-level size zone matrix features and one shape feature. Using the optimal VASARI or
radiomics feature sets for IDH1 prediction, the trained model achieved an area under the ROC curve (AUC) of 0:779 ± 0:001 or
0:849 ± 0:008 on the validation cohort, respectively. The fusion model that integrated outputs of both optimal VASARI and
radiomics models improved the AUC to 0.879. Conclusion. The proposed machine learning approach using VASARI and
radiomics features can predict IDH1 mutation in LGGs.

1. Introduction

Diffuse lower-grade gliomas (LGGs; World Health Organiza-
tion (WHO) grade II or III) are infiltrative neoplasms which
account for about 33%-45% of all adult gliomas [1, 2].
Although LGGs are usually less aggressive with better treat-
ment response and prolonged prognosis compared with
glioblastomas (WHO grade IV), many cases eventually

progress to glioblastoma. Previous studies have shown that
the high tumor heterogeneity in clinical behavior depends
on genetics more than histology [1–3]. Therefore, the 2016
WHO classification of Tumors of the Central Nervous Sys-
tem integrates molecular biomarkers with histology for gli-
oma diagnosis [4].

Isocitrate dehydrogenase (IDH) is one of the most
important molecular biomarkers in gliomagenesis. In the
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2016 WHO classification scheme, IDH mutation status
serves as the first molecular determinant beyond histology,
and accordingly, LGG is classified into IDH-mutant and
IDH-wildtype entities [4]. Patients with an IDH-mutated gli-
oma have a longer survival duration than those with an IDH-
wildtype tumor. Recent evidence has also suggested that IDH
may be a potential therapeutic target in IDH-mutant gliomas
[5]. Therefore, preoperative prediction of IDH mutation sta-
tus is crucial for prognosis and therapeutic decision-making.

MRI can facilitate glioma diagnosis in a noninvasive
manner [6, 7]. Qualitative MRI analysis still remains the basis
in imaging diagnosis. For interpretation accuracy and consis-
tency, Visually Accessible Rembrandt Images (VASARI) lex-
icon based on conventional MRI has been proposed to
describe the features and guidelines. Previous studies have
shown the biological or clinical relevance of the VASARI fea-
tures in gliomas. For example, Zhou et al. [6] reported that
VASARI features including proportion of necrosis and lesion
size were associated with IDH1 mutation status.

Quantitative MRI has emerged as a promising tool in the
evaluation of gliomas as it can provide information on tumor
functionality. Apparent diffusion coefficient (ADC) calcu-
lated from diffusion-weighted imaging (DWI) is one of the
most clinically useful quantitative measurements [8–10].
Radiomics, a recently developed high-throughput approach,
can add value to the routine MRI to a greater extent by
extracting and mining a large number of imaging traits
[11]. Growing evidence has revealed the feasibility and clini-
cal implications of radiomics in the characterization of gli-
oma phenotypes [6, 12].

We hypothesized that the use of both qualitative and
quantitative MRI features could facilitate better IDH geno-
type discrimination. In this study, we aimed to develop a
machine learning approach based on VASARI and ADC
radiomics features to characterize the IDH1 mutation status
in LGGs.

2. Materials and Methods

2.1. Subjects. This retrospective study was approved by the
local institutional review board with a waiver of the written
informed consent from patients. Patients were identified by
searching the database of our institution for radiologic and
histopathologic records from January 2015 to December
2018. The inclusion criteria for the study patients were as fol-
lows: (a) histologically proven LGG; (b) available IDH1
mutation records; (c) complete preoperative MRI data
including native T1- and T2-weighted imaging (T1W and
T2W); T2 fluid attenuation inversion recovery (FLAIR),
DWI, and postcontrast T1W; and (d) sufficient image qual-
ity. Patients who had received treatment for glioma prior to
MRI were excluded. Finally, 102 LGG patients (60 men and
42 women; age range, 18-77 years; mean age, 45:3 ± 16:3
years) were included for the subsequent analyses. Subjects
were randomly divided into two subsets, a training cohort
(n = 67) and a validation cohort (n = 35).

2.2. MRI. Images were acquired using a 3 Tesla MRI system
(Signa HDxt; GE Medical Systems, Milwaukee, Wis, USA)

with an eight-channel head coil. The protocol included
native T1W, T2W, FLAIR, and DWI in the axial plane and
postcontrast T1W in three orthogonal planes. Postcontrast
imaging was achieved with intravenous administration of
0.1mmol/kg dose of gadopentetate dimeglumine (Magne-
vist; Bayer Healthcare, Berlin, Germany). In all native
sequences, the same asymmetric field of view (260 × 260
mm2), section thickness (5mm), and intersection gap
(20%) were used. DWI was performed before the injection
of contrast material with repetition time = 4850ms, echo
time = 74ms, acquisitionmatrix = 160 × 160, b value = 0 and
1000 sec/mm2, and number of averages = 2.

2.3. Feature Extraction. For qualitative image analysis, read-
ings were performed on all sequences with a Digital Imaging
and Communications in Medicine viewer (RadiAnt DICOM
Viewer; Poznan, Poland) by two neuroradiologists (Mengqiu
Cao and Yan Zhou, with 6 and 19 years of experience in neu-
rological MRI interpretation, respectively) in consensus.
Each tumor was scored according to the VASARI lexicon,
which consists of 23 imaging traits related to the morphology
of brain tumors. Detailed descriptions of the VASARI feature
set are available in Supplementary Table S1.

For quantitative ADC analysis, segmentation of the
tumor area was first manually performed using the 3D Slicer
software (version 4.7; https://www.slicer.org). The tumor
area was defined as the abnormal hyperintensity area on
FLAIR images. The volume of interest (VOI) was generated
by including all consecutive image sections containing tumor
areas. Independent analysis of the segmentation labels (from
30 randomly selected subjects in the training set) by two neu-
roradiologists was conducted to evaluate the interobserver
reliability of the segmentation. The Dice similarity coefficient
(DSC) [13] was measured over the two labels per case from
the two neuroradiologists. A DSC value of 0 indicates no
overlap and a value of 1 corresponds to exact overlap. After
registering ADC maps to FLAIR images, VOI was propa-
gated to ADC maps. A total of 56 radiomics features were
then extracted from the volumetric ADC data including 3
shape features, 13 first-order histogram features, 9 gray-
level co-occurrence matrix (GLCM) features, 13 gray-level
run-length matrix (GLRLM) features, 13 gray-level size zone
matrix (GLSZM) features, and 5 neighborhood gray-tone dif-
ference matrix (NGTDM) features [14]. Before the feature
selection process, all the radiomics features were normalized
to the range of [0, 1] for standardization, so that features of
different orders of magnitude could be reasonably compared.
Feature extraction was performed using the Matlab software
(version 2016a; MathWorks, Natick, Mass, USA). Detailed
calculations of the radiomics features are provided in Supple-
mentary Table S2.

2.4. Feature Selection. Our study adopted a two-step feature
selection scheme to identify the most predictive variables.
First, the maximum Relevance Minimum Redundancy
(mRMR) method was used to select features that had the
maximal mutual information with respect to the target class
(maximum relevance) and minimal mutual information with
respect to each other (minimum redundancy). Second, the
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0.632+ bootstrap method and the area under the receiver
operating characteristic curve (AUC) metric were used to
explore the features with optimal discrimination perfor-
mance on the training data set [14]. A random forest classi-
fier was chosen as a statistical model in this process.
According to the AUC metric, the top 5 VASARI and 10
radiomics features were finally selected for further predictive
model building.

2.5. Machine Learning-Based Prediction. Predictive models of
different orders (1–5 for VASARI features and 1–10 for
radiomics features) were constructed separately on the opti-
mal combinations of VASARI and radiomics features. Ran-
dom forest classifiers were trained on the training cohort.
The prediction performance was evaluated with the 0.632+
bootstrap AUC method. Sensitivity, specificity, accuracy,
and AUC were calculated for each condition.

The random forest prediction models were then validated
on the validation cohort. Further, the fusion model from the
optimal VASARI model and radiomics model was obtained
by integrating the predicted probability of both models. The
weight value of fusion of the two models was set according
to the weighted average fusion strategy, that was, 0.5. When
analyzing a new case, we separately calculated the prediction
probability of VASARI and radiomics models and, then,
averaged the two values as the final prediction probability.
To demonstrate the complementary roles of VASARI and
radiomics features in the fusion model, the correlation anal-
ysis was performed using the Pearson correlation coefficient.
The prediction performance of the fusion machine learning
model was evaluated. The influence of common clinical var-
iables including age and gender on the prediction perfor-
mance was also tested.

The flowchart of the experimental design of the machine
learning approach is illustrated in Figure 1. All the machine
learning algorithms were implemented using the Matlab
software.

2.6. Statistical Analysis. Comparison of categorical character-
istics between groups was performed with the chi-square test
or Fisher’s exact test and comparison of continuous charac-
teristics with Student’s t-test. Receiver operating characteris-
tic (ROC) curves were generated on the basis of the
classification results of random forest models. Results with
P values less than 0.05 were considered to indicate a signifi-
cant difference. All the statistical analyses were performed
using the Matlab software and IBM SPSS Statistics software
(version 21; SPSS, Chicago, Ill, USA).

3. Results

3.1. Patient Characteristics. Of all the 102 LGG patients, 61
(59.8%) were diagnosed as WHO grade II glioma and 41
(40.2%) with WHO grade III. Among them, 50 (49%) and
52 (51%) patients were confirmed with IDH1-mutant and
IDH1-wildtype LGG, respectively. Patient characteristics of
the whole cohort, the training cohort, and the validation
cohort were summarized in Table 1. No significant difference

in age, gender, WHO grade, or IDH1 mutation status was
noted between the training and validation cohorts (P > 0:05).

3.2. Interobserver Reliability of Segmentation. Interobserver
reliability analysis of the manual segmentation showed good
agreement between the neuroradiologists, with a DSC score
of 0:879 ± 0:046. A representative case showing the interob-
server reliability of segmentation is illustrated in Figure 2.

3.3. IDH1 Mutation Prediction with VASARI Features. After
feature selection, the top 5 VASARI features were enhance-
ment quality, deep white matter invasion, tumor location,
proportion of necrosis, and T1/FLAIR ratio (Table 2). Pre-
diction models with orders 1 to 5 were generated by incorpo-
rating the above optimal features. On the training cohort, the
highest AUC of 0:827 ± 0:031 was reached, with a sensitivity
of 0:671 ± 0:058 and a specificity of 0:712 ± 0:049, respec-
tively. Using the optimal feature set (the single enhancement
quality feature), the trained model achieved an AUC of
0:779 ± 0:001 on the validation cohort, with a sensitivity of
0:718 ± 0:070, a specificity of 0:733 ± 0:100, and an accuracy
of 0:726 ± 0:017, respectively. Representative cases of IDH1-
mutant and IDH1-wildtype LGGs are shown in Figures 3 and
4.

3.4. IDH1 Mutation Prediction with Radiomics Features. In
ADC radiomics analysis, the top 10 quantitative features
were listed in Table 2. On the training cohort, the highest
AUC of 0:849 ± 0:027 was reached, with a sensitivity of
0:790 ± 0:038 and a specificity of 0:770 ± 0:043, respectively.
Using the optimal feature set (all the 10 features), the trained
model achieved an AUC of 0:849 ± 0:008 on the validation
cohort, with a sensitivity of 0:724 ± 0:035, a specificity of
0:761 ± 0:017, and an accuracy of 0:743 ± 0:022, respectively.

3.5. IDH1 Mutation Prediction with a Fusion Model with
Optimal VASARI and Radiomics Features. The fusion model
was constructed with the optimal VASARI model (enhance-
ment quality) and radiomics model (the top 10 radiomics
features). Results of the Pearson correlation analysis showed
that these two types of features remained very low correlation
(Figure 5), demonstrating their complementary roles in the
fusion model. The fusion model improved the AUC to
0.879, with a sensitivity of 0.765, a specificity of 0.778, and
an accuracy of 0.771, respectively. ROC curves of the optimal
VASARI model, radiomics model, and the fusion model with
VASARI and radiomics features are illustrated in Figure 6.
The inclusion of clinical variables including age and gender
to the model did not benefit the prediction performance
(AUC = 0:859).

4. Discussion

In this study, the machine learning algorithm was used to
explore the predictive value of VASARI features based on
preoperative conventional MRI images and the radiomics
features based on ADC maps in IDH1 genotyping of LGG
patients. The results obtained by random forest classifiers
showed that the AUCs were 0.779 and 0.849 on the optimal
VASARI and radiomics feature sets, respectively, and the
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fusion model with both feature sets achieved an improved
AUC of 0.879 on the validation.

MRI is one of the essential methods for preoperative gli-
oma diagnosis. Different imaging sequences can reveal differ-

ent characteristics of tumor texture, blood supply, border,
edema, hemorrhage, etc., and these characteristics are
extremely important for the final diagnosis. The VASARI
lexicon extracts features from routine MRI and provides
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Figure 1: The flowchart of the experimental design of the machine learning approach.
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standardized visual grading of MRI findings. In our study,
enhancement quality was the most significant one for IDH1
mutation prediction among all VASARI features. IDH1-
wildtype LGGs tended to represent a higher degree of con-
trast enhancement on the postcontrast T1W images com-
pared with IDH1-mutant LGGs, which is consistent with
previous studies [15–17]. Kickingereder et al. [18] found
that IDH1-wildtype gliomas showed increased HIF1A acti-
vation, thus leading to a transcriptome signature induced
by upregulating vasculo- and angiogenesis-related signaling
pathways. Increase in proangiogenic molecules could result
in more contrast agent uptake and more marked contrast
enhancement on postcontrast T1W images. Besides
enhancement quality, other VASARI features of strong pre-
dictive power for IDH1 mutation status included deep white
matter invasion, tumor location, proportion of necrosis, and
T1/FLAIR ratio. These findings are in line with those from
previous studies [6, 15, 19, 20]. Among these features, tumor
location in the frontal lobe in IDH1-mutant gliomas has been
reported by many investigators in existing literature [21].
The frontal lobe predominance of IDH1-mutant gliomas
may be because this type of tumors probably originates from
glial progenitors in the forebrain subventricular zone [22].
VASARI-based random forest classifier showed an AUC of
0.779 on validation in predicting IDH1 mutation in LGGs,
similar to the result reported by Park et al., who constructed
a multivariable model with an AUC of 0.778 [20].

Radiomics is a method to extract quantitative features
that are difficult to detect by human eyes from medical
images and to use data mining and machine learning algo-
rithms for diagnostic decision-making. In this study, radio-
mics analysis of ADC maps was conducted by extracting
57 quantitative features and subsequently building a predic-
tion model with 10 optimal features. Given that the choice of
classifier depends on the specific task as well as disease type,
thus, comparative experiments were conducted, and ulti-
mately random forest was chosen with the best performance

for IDH1 prediction. The prediction performance on the
independent validation set using different classifiers is
shown in Supplementary Figure S1. Our optimal radiomics
model achieved an AUC of 0.849 for IDH1 prediction in
LGGs. ADC was used for radiomics analysis in our study,
since ADC has been established as the most commonly used
quantitative MRI metric, thus enabling first-order statistical
features comparable between individuals. Previous studies
have shown the benefit of ADC first-order statistical
features in identifying IDH1 genotypes [23–25]. Our study
further demonstrated the added value of ADC high-order
radiomics features to first-order features for this purpose.
Additionally, radiomics on other MRI modalities has also
been investigated in terms of its relationship with IDH1
mutation status. Zhou et al. [6] found that random forest
analysis of T2W-based texture features could predict IDH1
mutation status in LGGs with an AUC of 0.86, a sensitivity
of 0.75, and a specificity of 0.89. By performing radiomics
analysis on FLAIR images, Yu et al. [26] reported AUCs of
0.86 and 0.79 on the training and validation cohorts,
respectively, in IDH1 prediction of LGGs. Interestingly, these
results are consistent with ours on ADC radiomics analysis.

The major strength in our study design was the model
building using both qualitative semantic and quantitative
radiomics features, which were usually separately investi-
gated in some previous studies [20, 27]. Results showed that
the fusion model that integrated outputs of the optimal
VASARI model and ADC-based radiomics model improved
the AUC to 0.879 in IDH1 genotype prediction of LGGs,
indicating that the fusion model was superior to the model
using a single type of features. These findings suggest that
radiomics analysis may add value to routine qualitative
image analysis for IDH1 classification. Similarly, a recent
study [28] also showed that the VASARI feature combined
with ADC texture analysis could improve the accuracy of
IDH1 mutation detection in anaplastic gliomas. In this study,
although the mean age of patients with IDH1-wildtype LGG
was higher than that of patients with IDH1-mutant LGG
(47.3 years vs. 43.2 years), there was no statistical difference
between the two groups (P = 0:201, independent sample t
-test). Therefore, the inclusion of age factor in the final model
failed to improve the accuracy of LGG IDH1 genotype
identification.

Recently, with its rapid advancement in various fields
within the past few years, deep learning has gained particular
attention in the radiology domain. For example, Chang et al.
[29] has used a deep learning method implemented with con-
volutional neural networks to classify genetic mutations in
gliomas and a high accuracy of 0.94 in IDHmutation predic-
tion was reached. Deep learning is advantageous in that it
does not need human-derived feature extraction or prior fea-
ture selection [29]. However, big data are essential for a
robust training process. A head-to-head comparison between
conventional machine learning and deep learning methods is
warranted in the future.

Apart from the intrinsic limitations of any retrospective
study, several other limitations are discussed as follows. First,
the cases were collected from a single center, and the patient
population was relatively small. Further validation on diverse

Table 1: Patient characteristics.

Characteristic
Whole
cohort

(n = 102)

Training
cohort
(n = 67)

Validation
cohort
(n = 35)

P
value∗

Age (years)† 45:3 ± 16:3 45:7 ± 17:1 44:6 ± 14:9 0.75

Gender

Male 60 (58.8%) 38 (56.7%) 22 (62.9%) 0.55

Female 42 (41.2%) 29 (43.3%) 13 (37.1%)

WHO grade

II 61 (59.8%) 44 (65.7%) 17 (48.6%) 0.10

III 41 (40.2%) 23 (34.3%) 18 (51.4%)

IDH1 status

Mutant 50 (49.0%) 33 (49.3%) 17 (48.6%) 0.95

Wildtype 52 (51.0%) 34 (50.7%) 18 (51.4%)

Unless otherwise specified, data are counts (percentages). WHO: World
Health Organization; IDH 1: isocitrate dehydrogenase 1. †Data are means
± standard deviations. ∗P value was obtained by comparing each variable
between training and validation cohorts.
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large data sets acquired frommultiple vendors and across dif-
ferent centers is needed. Second, the numbers of included
IDH1-mutant and IDH1-wildtype patients were similar
(50 : 52), which did not reflect the actual prevalence of IDH

mutation in LGG (around 80%) [3]. However, a balanced
sampling could contribute to the model training process.
Third, radiomics analysis was not performed on other rou-
tine MRI modalities. Routine MRI data were used to extract

(a) (b)

(c)

A 

S 

R 

(d)

Figure 2: Interobserver reliability of contours between the two neuroradiologists. (a) One original section of the volumetric data. (b) Contour
delineated by the first neuroradiologist. (c) Contour delineated by the second neuroradiologist. (d) Overlaid 3D volume rendering image (AP
view).

Table 2: List of selected VASARI and radiomics features.

Feature selection
Top 5 VASARI features AUC value Top 10 radiomics features AUC value

Enhancement quality 0.752 GLRLM short run low gray-level emphasis 0.756

Deep white matter invasion 0.738 GLRLM low gray-level run emphasis 0.682

Tumor location 0.684 GLRLM run-length variance 0.678

Proportion of necrosis 0.682 Histogram minimum 0.677

T1/FLAIR ratio 0.632 Eccentricity 0.662

GLSZM large zone high gray-level emphasis 0.641

GLSZM low gray-level zone emphasis 0.628

Histogram energy 0.616

Histogram standard deviation 0.612

GLSZM zone-size nonuniformity 0.607

VASARI: Visually Accessible Rembrandt Images; AUC: area under the receiver operating characteristic curve; GLRLM: gray-level run-length matrix; GLSZM:
gray-level size zone matrix.
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T2 FLAIRT2W

ADCT1W C+

Figure 3: A 26-year-old man with an IDH1-mutant glioma (diffuse astrocytoma, WHO grade II). The tumor is located in the frontal lobe
with no contrast enhancement, no deep white matter invasion, no necrosis, and an expansive tumor behavior (T1~FLAIR).

T2W T2 FLAIR 

ADCT1W C+

Figure 4: A 65-year-old man with an IDH1-wildtype glioma (diffuse astrocytoma,WHO grade II). The tumor is located in the brainstem with
marked contrast enhancement, deep white matter invasion, a necrosis proportion of <33%, and a mixed tumor behavior (T1<FLAIR).
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semantic features, as is performed in clinical routine. How-
ever, the results on ADC maps were consistent with those
on T2W images or FLAIR images reported before [6, 26].
Advanced MRI techniques such as perfusion-weighted imag-
ing and magnetization transfer imaging were also not
adopted for radiomics analysis. The inclusion of advanced
MRI modalities could provide more comprehensive func-
tional and metabolic information and should be considered
in further studies. Fourth, interobserver agreement of image
segmentation was evaluated in our study. However, interob-
server agreement of features was not analyzed, although it
has proven to be satisfactory for both VASARI and radiomics
features in previous studies [6, 20]. Fifth, considering the
small sample size of our study, we did not perform weight
optimization in order to avoid overfitting of the training data.
Although this weighting method may lose a little perfor-
mance improvement (not always), we believe that the fusion
results would be more robust, especially for new data, with-
out performance bias. It can be seen from the results that
our weighted average fusion strategy played a positive role

in guiding the overall forecast performance. Last, according
to the 2016 WHO classification of Tumors of the Central
Nervous System, 1p/19q codeletion is also an important
prognostic marker in molecular diagnosis of LGGs [4]. In
the study, 1p/19q codeletion status was not evaluated because
this information was not available on most subjects due to
the retrospective nature.

5. Conclusion

In conclusion, preoperative MRI VASARI features and ADC
radiomics features can effectively predict IDH1mutation sta-
tus in LGG, and the fusion model integrating both predictive
features shows even better prediction performance. The pro-
posed image-based machine learning approach may provide
an alternative to the conventional workflow for the noninva-
sive identification of IDH1 genotypes. However, these find-
ings should be validated in large multicenter data sets in
future studies.
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