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ABSTRACT After staphylococci, streptococci and enterococci are the most frequent
causes of periprosthetic joint infection (PJI). MICs and minimum biofilm bactericidal
concentrations of rifampin, rifabutin, and rifapentine were determined for 67 enterococ-
cal and 59 streptococcal PJI isolates. Eighty-eight isolates had rifampin MICs of #1 mg/
ml, among which rifabutin and rifapentine MICs were # 8 and #4 mg/ml, respectively.
There was low rifamycin in vitro antibiofilm activity except for a subset of Streptococcus
mitis group isolates.

IMPORTANCE Rifampin is an antibiotic with antistaphylococcal biofilm activity used in
the management of staphylococcal periprosthetic joint infection with irrigation and
debridement with component retention; some patients are unable to receive rifam-
pin due to drug interactions or intolerance. We recently showed rifabutin and rifa-
pentine to have in vitro activity against planktonic and biofilm states of rifampin-sus-
ceptible periprosthetic joint infection-associated staphylococci. After staphylococci,
streptococci and enterococci combined are the most common causes of peripros-
thetic joint infection. Here, we investigated the in vitro antibiofilm activity of rifam-
pin, rifabutin, and rifapentine against 126 Streptococcus and Enterococcus peripros-
thetic joint infection isolates. In contrast to our prior findings with staphylococcal
biofilms, there was low antibiofilm activity of rifampin, rifabutin, and rifapentine against
PJI-associated streptococci and enterococci, apart from some Streptococcus mitis group
isolates.

KEYWORDS rifamycin, periprosthetic joint infection, streptococci, enterococci, biofilm,
rifampin, rifabutin, rifapentine

Rifampin is an antibiotic with antibiofilm activity used in the management of staphy-
lococcal periprosthetic joint infection (PJI) with irrigation and debridement with

component retention (IDCR) (1, 2); some patients are unable to receive rifampin due to
drug interactions or intolerance. We recently showed that rifabutin and rifapentine,
which have more favorable drug interaction/side effect profiles than rifampin, have in
vitro activity against planktonic and biofilm states of rifampin-susceptible PJI-associ-
ated staphylococci (3), and that these rifamycins are as active as rifampin in combina-
tion therapy regimens in experimental rat Staphylococcus aureus foreign body osteo-
myelitis (4). After staphylococci, streptococci and enterococci combined are the most
common causes of PJI, accounting for up to 20% of cases (5–8). Here, we investigated
the in vitro activity of rifampin, rifabutin, and rifapentine, alongside levofloxacin, against
planktonic and biofilm states of Streptococcus and Enterococcus PJI isolates.

The in vitro activity of rifampin, rifabutin, rifapentine, and levofloxacin against plank-
tonic and biofilm states of 126 Streptococcus and Enterococcus PJI isolates was tested.
Isolates were collected between 1996 and 2018 from separate patients with infected
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arthroplasties managed at the Mayo Clinic and included 61 isolates of E. faecalis, 6 E. fae-
cium, 23 S. agalactiae, 1 S. pyogenes, 6 S. dysgalactiae, 17 S. mitis group, 6 S. anginosus
group, 4 S. salivarius group, 1 S. mutans group, and 1 S. gallolyticus. E. faecalis ATCC 29212
and S. pneumoniae ATCC 49619 were used as quality control strains. Rifampin, rifabutin,
rifapentine, and levofloxacin (Sigma-Aldrich, St. Louis, MO) MICs were determined by broth
microdilution by following Clinical and Laboratory Standards Institute (CLSI) guidelines (9,
10). Rifampin and levofloxacin were prepared following CLSI guidelines (10). Rifabutin and
rifapentine were prepared in dimethyl sulfoxide and methanol, respectively, per the manu-
facturer’s instructions. Current CLSI rifampin breakpoints for enterococci are #1 mg/ml
susceptible, 2 mg/ml intermediate, and $4 mg/ml resistant. There are no rifampin break-
points defined by the CLSI for beta-hemolytic or viridans group streptococci. No rifabutin
or rifapentine breakpoints are defined for any of the tested bacteria (10). EUCAST rifampin
breakpoints for Streptococcus groups A, B, C, and G are #0.06 mg/ml susceptible and
.0.5 mg/ml resistant, and the EUCAST epidemiological cutoff (ECOFF) for viridans group
streptococci is 0.125 mg/ml (11). Levofloxacin breakpoints defined by CLSI for all orga-
nism types tested are #2 mg/ml susceptible, 4 mg/ml intermediate, and $8 mg/ml
resistant (10). Minimum biofilm bactericidal concentration (MBBC) values were deter-
mined using a pegged-lid microtiter plate assay, as previously described (3, 12).

Detailed findings for all study isolates are depicted in Table S1 in the supplemental
material, which shows the aggregated MIC and MBBC values for the E. faecalis, S. aga-
lactiae, and S. mitis group isolates. Overall, 29/61 (48%) E. faecalis isolates were rifampin
susceptible, among which rifabutin and rifapentine MICs were #8 and #4 mg/ml,
respectively (Table 1). All enterococcal rifamycin MBBCs were .8 mg/ml, except for E.
faecalis IDRL-11962 (all rifamycin MBBCs, 4 mg/ml). Overall, 48/61 (79%) E. faecalis iso-
lates were levofloxacin susceptible; levofloxacin MBBCs were .8 mg/ml, except for E.
faecalis IDRL-10026 (levofloxacin MBBC, 4 mg/ml) (Table 1).

All 23 S. agalactiae isolates tested had rifampin MICs of #0.25 mg/ml (among
which 3 would be considered susceptible and 20 intermediate by EUCAST break-
points), with rifabutin and rifapentine MICs of #0.25 and #1 mg/ml, respectively
(Table 1). All 6 S. dysgalactiae isolates had rifampin MICs of 0.03 mg/ml (susceptible
based on EUCAST breakpoints), among which rifabutin and rifapentine MICs were
0.03 and #0.06 mg/ml, respectively (Table S1). S. agalactiae and S. dysgalactiae rifa-
mycin MBBCs were all .8 mg/ml (Table S1).

S. mitis group isolates had rifampin, rifabutin, and rifapentine MICs of #0.25, #0.125,
and #0.5 mg/ml, respectively, except one isolate, which had MICs of 4, .8, and 4 mg/ml,
respectively; 87% of these isolates were at or below the EUCAST rifampin ECOFF (Table 1).
MBBC50 values for rifampin, rifabutin, and rifapentine were $8, 1, and $8 mg/ml,
respectively.

All six S. anginosus group isolates tested had rifampin MICs of#0.5 mg/ml, rifabutin
MICs of #0.5 mg/ml, and rifapentine MICs of #1 mg/ml (Table S1). Four isolates were
at or below the EUCAST rifampin ECOFF. All S. anginosus group rifamycin MBBCs were
.8 mg/ml, except for IDRL-12364 (rifabutin MBBC, 0.5 mg/ml).

All but one of the streptococcal isolates tested were levofloxacin susceptible. For S.
agalactiae, levofloxacin MBBCs were .8 mg/ml for 18/23 isolates (Table 1). For levo-
floxacin-susceptible S. dysgalactiae, levofloxacin MBBCs were 4 mg/ml for 2 isolates
and .8 mg/ml for 4 isolates (Table S1). For S. anginosus group, levofloxacin MBBCs
were 2 mg/ml for 2 isolates and $8 mg/ml for 4 isolates (Table S1). For S. mitis group
isolates, levofloxacin MBBCs were$1 mg/ml (Table 1).

In contrast to our findings with staphylococcal biofilms (3), results of this study
show low in vitro activity of rifamycins against enterococcal biofilms. The biofilm
results reported here are consistent with those of other reports. Holmberg et al. stud-
ied rifampin and ciprofloxacin alone and in combination against 15 PJI E. faecalis iso-
lates (13). All except one isolate was rifampin susceptible, but MBBCs (tested for four
isolates) were 64 to 128 mg/ml (13). Likewise, for ciprofloxacin, three isolates had cipro-
floxacin MICs of .16 mg/ml, with the remaining classified as susceptible; ciprofloxacin
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MBBCs (tested for four isolates) were 256 mg/ml (13). This is similar to our findings
with levofloxacin. Holmberg et al. also reported rifampin MICs of 1 to 2 mg/ml and
MBBCs of 64 to 128 mg/ml for three E. faecium PJI isolates (14). Minardi et al. reported
planktonic MICs of 2 mg/ml for E. faecalis ATCC 29212 and ATCC 51299, with adherent
biofilm concentrations of 16 and 32 mg/ml, respectively, using a crystal violet assay
(15). They evaluated tigecycline and rifampin alone or combined for prevention of ure-
teral stent infection in an experimental rat model, showing more activity of combina-
tion therapy than either drug alone (13, 15). Oliva et al. showed that rifampin alone
had no activity against enterococcal biofilms, either in vitro or in vivo, but did demon-
strate activity when administered as a combination therapy (16).

Data on rifampin treatment of enterococcal PJI is sparse. Thompson et al. reported
a tendency toward better outcome with rifampin-combination therapy for enterococ-
cal PJI; however, most cases were given combination therapy directed toward coinfec-
tions with staphylococci (17). Tornero et al. reviewed characteristics and outcomes of
203 patients with enterococcal PJI at 18 hospitals in 6 European countries. For those
with infection within 30 days of implantation, rifampin in combination with another
active antibiotic was associated with a higher remission rate than alternatives without
rifampin (18).

Fiaux et al. reported results of a retrospective multicenter cohort study of 95 strep-
tococcal PJIs from 2001 through 2009 (19). All isolates tested were rifampin suscepti-
ble. Fifty-five cases were treated with IDCR with rifampin combinations, including with
levofloxacin, used in 52 and 28 cases, respectively; the overall remission rate was 71%.
Antibiotic treatment regimens other than rifampin combinations were associated with
worse outcome by univariate analysis (19). Rifampin combinations, including with levo-
floxacin, were associated with improved remission rates. Andronic et al. found no dif-
ference in failure rates with or without rifampin in a retrospective analysis of 22 strep-
tococcal PJIs from a single institution, five of which were treated with rifampin
combination regimens (20). In a study by Loubet et al. that included six S. agalactiae
PJI cases, two were treated with combinations with rifampin, one with a good out-
come; however, only 57% of tested S. agalactiae strains were susceptible to rifampin
(21). Lora-Tamayo et al. recently published results of a retrospective, observational, multi-
center, international study of 462 streptococcal PJI cases managed with IDCR, 37% of
which were managed with rifampin. Failure occurred in 42% (187/444) of evaluable
patients. Early use of rifampin and treatment for $21 days with a b-lactam as monother-
apy or in combination with rifampin was associated with successful outcomes (22). The
relevance of in vitro biofilm susceptibility testing and its relationship with clinical success
with combination rifamycin therapies is incompletely defined.

This study is one of the largest evaluating the in vitro planktonic and biofilm activity
of rifampin against PJI-associated streptococci and enterococci and, to our knowledge,
the only study evaluating rifabutin and rifapentine against PJI isolates. Overall, there
was low antibiofilm activity of rifamycins against PJI-associated streptococci and enter-
ococci, with the exception of some S. mitis group isolates. Whether the study findings
correlate with in vivo efficacy or in vitro efficacy in combination with other agents
remains to be determined.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, DOCX file, 0.04 MB.
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