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Abstract: Diabetes mellitus is one of the major risk factors for cardiovascular disease and is an
important health issue worldwide. Long-term diabetes causes endothelial dysfunction, which in turn
leads to diabetic vascular complications. Endothelium-derived nitric oxide is a major vasodilator
in large-size vessels, and the hyperpolarization of vascular smooth muscle cells mediated by the
endothelium plays a central role in agonist-mediated and flow-mediated vasodilation in resistance-size
vessels. Although the mechanisms underlying diabetic vascular complications are multifactorial and
complex, impairment of endothelium-dependent hyperpolarization (EDH) of vascular smooth muscle
cells would contribute at least partly to the initiation and progression of microvascular complications
of diabetes. In this review, we present the current knowledge about the pathophysiology and
underlying mechanisms of impaired EDH in diabetes in animals and humans. We also discuss
potential therapeutic approaches aimed at the prevention and restoration of EDH in diabetes.
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1. Introduction

Endothelial cells play a critical role in the regulation of vascular tone through the release of
endothelial-derived relaxing and constricting factors [1]. Nitric oxide (NO) contributes greatly
to the endothelium-dependent relaxation in large-conduit arteries, but the hyperpolarization of
vascular smooth muscle cells mediated by endothelial cells is the predominant mechanism that
explains the endothelium-dependent relaxation in small resistance arteries [1]. Depending on the
vascular beds and species, electrical coupling between endothelial cells and smooth muscle cells via
myoendothelial gap junctions (MEGJs) and/or endothelium-derived diffusible substances contributes
to the endothelium-dependent smooth muscle hyperpolarization [2–6].

Endothelial stimulation with agonists or by shear stress increases the intracellular calcium
concentrations, which in turn generates endothelial hyperpolarization through the opening of small
(SKCa) and intermediate conductance (IKCa) Ca2+-activated K+ channels [2–5,7]. Then, in a number
of arteries in which MEGJs exist, the endothelium-dependent hyperpolarization (EDH) spreads to
adjacent smooth muscle cells via MEGJs, leading to vasorelaxation [2–5,8,9]. Although the intracellular
Ca2+ release from the endoplasmic reticulum (ER) and the subsequent activation of the SKCa and
IKCa channels is an initial step for the generation of EDH [3,4,7], the Ca2+ influx through endothelial
nonselective cation channels of the transient receptor potential (TRP) family after ER calcium depletion
also contributes to the generation of EDH via the downstream activation of SKCa and IKCa channels
(Figure 1) [2–5,10–12].
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Figure1. Endothelium-dependent hyperpolarization of vascular smooth muscle cells. Endothelial stimulation 4 
with agonists or by shear stress increases the intracellular Ca2+ concentration due to Ca2+ release from the 5 
endoplasmic reticulum (ER) and Ca2+ influx through endothelial nonselective cation channels of the transient 6 
receptor potential (TRP) family. The rise in the endothelial Ca2+ concentration subsequently activates small (SKCa) 7 
and intermediate conductance (IKCa) Ca2+-activated K+ channels, generating endothelium-dependent 8 
hyperpolarization (EDH). The EDH then spreads to adjacent smooth muscle cells via myoendothelial gap 9 
junctions (MEGJs), leading to vasorelaxation in a number of vascular beds. In some vascular beds, diffusible 10 
factors hyperpolarize vascular smooth muscle cells via the opening of potassium channels and/or activation of 11 
Na+/K+-ATPase. Diffusible factors also act on endothelial potassium channels to generate or amplify EDH in 12 
certain vascular beds in specific conditions. 13 

In some vascular beds, the rise in the intracellular calcium concentration causes a release of 14 
diffusible substance termed endothelium-derived hyperpolarizing factor (EDHF) which are distinct 15 
from NO or vasodilator prostanoids. Several factors such as epoxyeicosatrienoic acids (EETs), K+ ions, 16 
C-type natriuretic peptide (CNP), hydrogen peroxide, and hydrogen sulfide (H2S) have been 17 
proposed for the nature of EDHF [2,4,6]. Although these diffusible factors in general hyperpolarize 18 
the membrane via the activation of smooth muscle potassium channels and/or the Na -K pump, these 19 
factors also act on endothelial potassium channels to generate or amplify EDH in certain vascular 20 
beds in specific conditions (Figure 1) [13,14]. 21 

Diabetes mellitus is a metabolic disease characterized by high levels of blood glucose resulting 22 
from defects in insulin secretion and/or insulin action [15]. Long-term diabetes mellitus causes 23 
macrovascular and microvascular complications, and endothelial dysfunction appears to play a 24 
pathophysiological role in the incidence and development of these complications [15]. Since 25 
EDH/EDHF represents a predominant vasodilatory mechanism in small resistance arteries [1–4], it is 26 
plausible to hypothesize that an impairment of EDH/EDHF would particularly contribute to the 27 
incidence and progression of diabetic microvascular complications such as retinopathy, 28 
nephropathy, and neuropathy. Moreover, impairment of EDH/EDHF in diabetes would increase the 29 
peripheral vascular resistance and thus the arterial blood pressure, which could further accelerate the 30 
progression of the vascular complications associated with diabetes. In addition to diabetic vascular 31 
complications, diabetic cardiomyopathy is also a major cause of mortality and morbidity in patients 32 
with diabetes mellitus [16], and EDH/EDHF may have direct effects on cardiomyocytes or modulate 33 
diabetic cardiomyopathy through its effects on vascular biology. 34 

Figure 1. Endothelium-dependent hyperpolarization of vascular smooth muscle cells. Endothelial
stimulation with agonists or by shear stress increases the intracellular Ca2+ concentration due to Ca2+

release from the endoplasmic reticulum (ER) and Ca2+ influx through endothelial nonselective cation
channels of the transient receptor potential (TRP) family. The rise in the endothelial Ca2+ concentration
subsequently activates small (SKCa) and intermediate conductance (IKCa) Ca2+-activated K+ channels,
generating endothelium-dependent hyperpolarization (EDH). The EDH then spreads to adjacent
smooth muscle cells via myoendothelial gap junctions (MEGJs), leading to vasorelaxation in a number
of vascular beds. In some vascular beds, diffusible factors hyperpolarize vascular smooth muscle
cells via the opening of potassium channels and/or activation of Na+/K+-ATPase. Diffusible factors
also act on endothelial potassium channels to generate or amplify EDH in certain vascular beds in
specific conditions.

In some vascular beds, the rise in the intracellular calcium concentration causes a release of
diffusible substance termed endothelium-derived hyperpolarizing factor (EDHF) which are distinct
from NO or vasodilator prostanoids. Several factors such as epoxyeicosatrienoic acids (EETs), K+

ions, C-type natriuretic peptide (CNP), hydrogen peroxide, and hydrogen sulfide (H2S) have been
proposed for the nature of EDHF [2,4,6]. Although these diffusible factors in general hyperpolarize
the membrane via the activation of smooth muscle potassium channels and/or the Na -K pump, these
factors also act on endothelial potassium channels to generate or amplify EDH in certain vascular beds
in specific conditions (Figure 1) [13,14].

Diabetes mellitus is a metabolic disease characterized by high levels of blood glucose resulting from
defects in insulin secretion and/or insulin action [15]. Long-term diabetes mellitus causes macrovascular
and microvascular complications, and endothelial dysfunction appears to play a pathophysiological
role in the incidence and development of these complications [15]. Since EDH/EDHF represents a
predominant vasodilatory mechanism in small resistance arteries [1–4], it is plausible to hypothesize
that an impairment of EDH/EDHF would particularly contribute to the incidence and progression of
diabetic microvascular complications such as retinopathy, nephropathy, and neuropathy. Moreover,
impairment of EDH/EDHF in diabetes would increase the peripheral vascular resistance and thus the
arterial blood pressure, which could further accelerate the progression of the vascular complications
associated with diabetes. In addition to diabetic vascular complications, diabetic cardiomyopathy is
also a major cause of mortality and morbidity in patients with diabetes mellitus [16], and EDH/EDHF
may have direct effects on cardiomyocytes or modulate diabetic cardiomyopathy through its effects on
vascular biology.
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The increasing prevalence of diabetic mellitus is a global public health problem [17], and it is thus
of clinical importance to elucidate the underlying mechanisms of diabetic microvascular complications
and to identify effective treatments. In this review, we summarize the relevant studies in animals
and humans, and we address the pathogenesis and possible treatment of impaired EDH/EDHF in
diabetes mellitus.

2. EDH in Animal Models of Diabetes

In humans, type 1 diabetes is characterized by an autoimmune destruction of the pancreatic
β cells, leading to a lack of insulin secretion. Animal models of type 1 diabetes have been created
by destroying the pancreatic β cells with streptozotocin (STZ), and most of the studies examining
EDH-mediated responses in type 1 diabetes have been investigated using STZ-treated rodents [18].
In 1997, Fukao et al. revealed that in the mesenteric arteries of STZ-induced diabetic rats, acetylcholine
(ACh)-induced EDH and relaxation resistant to inhibitors of NO and prostaglandin synthesis (and
thus EDH-mediated responses) were reduced [19]. Subsequent studies in STZ-induced diabetic rats
and mice also described impaired EDH-mediated responses in mesenteric arteries [20–27], coronary
arteries [28,29], retinal arterioles [30], renal microcirculation [31], corpus cavernosum [32], and in
arterioles overlying the sciatic nerve [33].

Type 2 diabetes, the most common type of diabetes, is characterized by insulin resistance,
inappropriate insulin secretion, and hyperglycemia. Various experimentally induced rodent models
of type 2 diabetes have been developed to gain insight into the pathophysiology of human type 2
diabetes [18,34]. These models include the Zucker diabetic fatty (ZDF) rat, the Otsuka Long-Evans
Tokushima Fatty (OLETF) rat, the Goto-Kakizaki (GK) rat, and the db/db mouse [18,34]. As with
type 1 diabetes, reduced EDH-mediated responses in these rodent models of type 2 diabetes have
been reported in a number of vascular beds including mesenteric [35–42], coronary [43], renal [44],
cerebral [45], and penile [46] arteries as well as in epineurial arterioles of the sciatic nerve [47].

Thus, in general, EDH-mediated responses are reduced in both type 1 and type 2 animal models
of diabetes. However, some studies have reported unaltered [48,49] or even augmented [50,51]
EDH-mediated responses in experimental diabetes. The precise reason(s) for the discrepancies among
the studies are unclear, but they may be dependent on the severity and/or the duration of diabetes [52].
Alternatively, the unaltered and/or augmented EDH-mediated responses in diabetes could be explained
by the theory that EDH is upregulated to maintain overall endothelial function in certain circumstances,
in particular when NO-mediated vasorelaxation is compromised [53,54].

Regardless of the underlying mechanisms that lead to the upregulation of EDH in diabetes,
such compensatory mechanisms would be expected to disappear when diabetes is sustained over
a long period of time. Indeed, it was reported that in the skeletal-muscle microvascular circulation
in a primate model of diet-induced obesity and insulin resistance, a compensatory upregulation of
EDH was sustained for >18 months after the start of a high-fat diet and then abruptly disappeared
at 24 months [55]. Thus, although EDH may be upregulated in some circumstances (particularly in
early-stage diabetes), long-term diabetes would produce an impairment of EDH, and this impairment
would aggravate the microvascular and macrovascular complications associated with diabetes.

3. Mechanisms of Impaired EDH in Diabetes

3.1. The Role of Intracellular Ca2+ Mobilization

The membrane potential changes induced by EDH are typically composed of two phases: An initial
rapid phase followed by a sustained second phase [4,19]. The initial rapid phase appears to be provided
by the Ca2+ released from intracellular stores, and the sustained second phase seems to be due to the Ca2+

influx through ion channels located on the cell membrane [56,57]. Thus, dysregulation of these Ca2+

signaling pathways in endothelial cells would exert a deleterious effect on EDH-mediated responses.
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Changes in intracellular Ca2+ mobilization in response to a high glucose concentration have
been reported in cultured vascular endothelial cells. An exposure to high glucose enhanced
the agonist-stimulated Ca2+ mobilization in porcine aortic endothelial cells [58], and subsequent
studies showed inhibitory effects of high glucose on endothelial Ca2+ mobilization upon agonist
stimulation [59–62] or as a consequence of the accumulation of reactive oxygen species (ROS) [59,60]
or excessive protein kinase C (PKC) activation [60,61]. In addition, in cultured endothelial cells from
bovine aorta and rat heart, the glycation of extracellular matrix proteins has been shown to impair
agonist-stimulated Ca2+ mobilization, possibly due to increased oxidative stress [63]. These results
may provide a rational explanation for the previous data describing inhibitory effects of high glucose
on EDH-mediated responses in a ROS-dependent manner in some vascular beds [64–66].

Impaired intracellular Ca2+ mobilization upon agonist stimulation has also been reported in both
freshly isolated endothelial cells and endothelial cells in an isolated intact arterial segment (native
endothelial cells) from diabetic rats and mice [42,67–69]. In freshly isolated coronary endothelial
cells from STZ-induced diabetic mice, impaired endothelial Ca2+ mobilization was due to a decrease
in the Ca2+ released from the ER [68]. In native aortic endothelial cells from STZ-induced diabetic
mice, both the Ca2+ release from intracellular stores and the Ca2+ influx from the extracellular space
were compromised, possibly as a result of increased lysophosphatidylcholine (LPC) released from
oxidized low-density lipoprotein (ox-LDL) [67]. Since the plasma concentration of ox-LDL is elevated
in STZ-induced diabetic rats [70], and because LPC inhibits EDH-mediated responses in some vascular
beds [67,71,72], it is tempting to speculate that LPC released from ox-LDL, at least in part, impairs
EDH-mediated responses by decreasing endothelial Ca2+ rise in STZ-induced diabetes.

Accumulating evidence suggests that nonselective cation channels of the transient receptor
potential (TRP) family in endothelial cells play a crucial role in agonist-stimulated Ca2+ influx, which in
turn induces endothelium-dependent vasorelaxation in a number of vascular beds [10,11]. In particular,
recent studies highlight the pathophysiological role of endothelial TRP vanilloid type 4 (TRPV4)
channels in disease-associated endothelial dysfunction [73,74]. In relation to diabetes, high glucose
downregulated the protein expression of TRPV4 channels, thereby attenuating the agonist-stimulated
Ca2+ influx in retinal microvascular endothelial cells [75]. A reduced protein expression of endothelial
TRPV4 channels has also been reported in retinal arterioles [75] and mesenteric arteries [24] from
STZ-induced diabetic rats, and as such this expression was associated with impaired EDH-mediated
responses in mesenteric arteries of this diabetes rat model [24].

In this scenario, a study by Cassuto et al. [76] is highly interesting. They showed that the
membrane-localized caveolin-1, a major structural protein of the caveolae [77], was decreased in
both high glucose-exposed human coronary endothelial cells and coronary endothelial cells from
type 1 and type 2 diabetic patients [76]. Moreover, the number of endothelial caveolae quantified
by electron microscopy was significantly decreased in patients with diabetes, possibly due to the
disruption of caveolae by peroxynitrite [76]. Taking these results together in conjunction with a recent
study that showed the co-localization of TRPV4 channels with caveolin-1 in the caveolae of arterial
endothelial cells [78], it is apparent that a decrease in the number of caveolae might underpin the
reduced expression of endothelial TRPV4 channels and thus impaired EDH during diabetes in some
vascular beds.

3.2. The Role of Endothelial Potassium Channels

The rise in the intracellular Ca2+ concentration in endothelial cells in turn generates EDH through
the downstream activation of SKCa and IKCa channels in a number of vascular beds [2–4]. In addition,
inwardly rectifying (Kir) channels function as an amplifier of EDH in some vascular beds [13,79–81].
Thus, changes in the function and/or expression of these potassium channels could also contribute to
the altered EDH-mediated responses in diabetes.

In mesenteric arteries of STZ-induced type 1 diabetic rats and mice, reduced responses to KCa

channel activators have been observed [21,23,25]. However, in that vascular bed, controversies exist
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regarding the expressions of SKCa and/or IKCa channels among different studies: Decreased, unchanged,
or even increased (Table 1) [22,24,26,27]. In uteroplacental arteries from STZ-induced diabetic pregnant
rats, impaired KCa channel function along with unchanged expressions of SKCa and IKCa channel
proteins was observed (Table 1) [82]. By contrast, in corpus cavernosum from STZ-induced diabetic
rats in which the EDH-mediated relaxation is compromised [32], reduced expressions of SKCa and
IKCa channel proteins were detected (Table 1) [83]. Thus, although the function of the KCa channels
appears to be impaired, the expressions of SKCa and/or IKCa channels have shown variable changes in
the vasculature of STZ-induced diabetic rats and mice.

Table 1. Changes in function and expression of KCa channels in type 1 diabetes.

Species Model Duration
of DM

Glucose
(mmol/L) Vascular Bed Function

EDH
Function

KCa

Expression
SKCa IKCa

Ref.

Rat STZ 8 w 31 mesenteric ↓
↓

1-EBIO ND ND [20]

Rat STZ 10 w >33 mesenteric ↓ ND ↑ ↑ [21]

Rat STZ 4 w 24 mesenteric ↓
↓

NS309 ND ND [22]

Rat STZ 12−15 w >15 mesenteric ↓ ND ↓ ND [23]
Rat STZ 12 w 21 mesenteric ↑ ND ND ND [49]

Rat STZ 18 day 21 uteroplacental ND ↓

NS309 → → [81]

Rat STZ 8 w 22 corpus
cavernosum ↓ ND ↓ ↓ [31,82]

Mice STZ+ApoE−/− 10 w 32 mesenteric ↓
↓

NS1619 ND ND [24]

Mice STZ+ApoE−/− 12–16 w >20 mesenteric ↓ ND ↓ → [25]
Mice STZ 10 w 44 mesenteric ↓ ND → ↑ [26]

DM, diabetes mellitus; EDH, endothelium-dependent hyperpolarization; ND, not determined; STZ, streptozotocin;
ApoE, apolipoprotein E; ↑, increased; ↓, decreased;→, unchanged.

In contrast to the results from STZ-induced type 1 diabetic rodents, in arteries from rodent models
of type 2 diabetes, inconsistent results have been observed in studies examining the vasorelaxant
responses to KCa channel activators: Decreased [37–40,43], unaltered [35,45,84,85], and increased [51,86]
(Table 2). The reason for these discrepant results is not clear, but the differences in the duration and/or
severity of diabetes may be involved. Indeed, in most but not all cases, unaltered or increased
KCa channel function in type 2 diabetes is associated with a relatively short duration of diabetes
(<15 weeks) [45,85] and/or mild hyperglycemia (<10 mmol/L) [45,51,84,86] (Table 2).

Table 2. Changes in function and expression of KCa channels in type 2 diabetes.

Species Model Duration
of DM

Glucose
(mmol/L)

Vascular
Bed

Function
EDH

Function
KCa

Expression
SKCa IKCa

Ref.

Rat ZDF 17–20 w 38 mesenteric ↓ → 1-EBIO ↑ → [34]
Rat ZDF 21 w 24 mesenteric ↓ ↓ NS309 → ND [37]
Rat ZDF 18 w 21 mesenteric ↓ ↓ 1-EBIO → ↑ [39]
Rat ZDF 12–14 w ND mesenteric ND → 1-EBIO ND ↓ [84]
Rat OZ 20 w 32 renal ↓ ↓ NS1619 ND ND [43]
Rat OZ 7–10 w 8.4 cerebral ↓ → NS309 ND → [44]
Rat OZ 17–18 w 9.1 coronary ND ↑ NS309 ↑ ↑ [50]
Rat OLETF 60 w 19 mesenteric ↓ ↓ 1-EBIO ND ND [38]
Rat OLETF 50–53 w 8.4 mesenteric ↓ ↓ NS309 ND ND [40]
Rat Diet 16–20 w 9.8 saphenous ND → 1-EBIO → ↑ [83]
Rat Diet 16–20 w 9.7 mesenteric ↓ ↑ 1-EBIO ND ↑ [85]

DM, diabetes mellitus; EDH, endothelium-dependent hyperpolarization; ND, not determined; ZDF, Zucker diabetic
fatty; OZ, obese Zucker; OLETF; Otsuka long-evans tokushima fatty; ↑, increased; ↓, decreased;→, unchanged.
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Thus, in the vasculature of type 2 diabetic rats and mice, although the KCa channel function may be
preserved or even upregulated at the early-stage and/or mild diabetes, sustained and/or severe diabetes
appears to impair the KCa channel function. However, these functional changes in KCa channels were
not necessarily accompanied by parallel changes in the expression of SKCa and/or IKCa channels,
as has been observed in STZ-induced type 1 diabetic rats and mice (Tables 1 and 2). The unaltered or
increased expression of KCa channels may be due to a compensatory upregulation of these channels.

The underlying mechanism that leads to the reduced KCa channel function during diabetes is not
known, but several possibilities can be suggested. One possibility is that compromised endothelial Ca2+

mobilization (i.e., a reduction in the intracellular Ca2+ release and/or extracellular Ca2+ influx) during
diabetes indirectly decreases the downstream KCa channel activation [67–69]. Another possibility is
that the KCa channel activity per se is reduced during diabetes: Brøndum et al. showed that the KCa

channel function is reduced in a cytosolic free Ca2+-independent manner in mesenteric arteries of
Zucker fatty rats (a model of obese and type 2 diabetes) [38]. Together with other studies showing
an unaltered or even increased expression of KCa channels in this vascular bed [35,38,40], the finding
by Brøndum et al. may indicate that the reduced KCa channel activity per se rather than an altered
expression of KCa channels underpins the impairment of the KCa channel function in this model [38].

The degradation of endothelial glycocalyx — a complex external layer of the endothelial cells
that is made up of proteoglycans, glycoproteins, and glycolipids [87] — might also contribute to the
impaired EDH-mediated responses in diabetes through a reduction of the SKCa channel input to
EDH [88]. Although speculative, as suggested in the paper by Dogné et al., a thicker glycocalyx might
inhibit the downregulation of the SKCa channel expression on the surface of endothelial cells through
preventing access of circulating inflammatory cells to the endothelium [88]. In such cases, when
the KCa channel activity per se is compromised, the direct activation of endothelial KCa channels by
pharmacological modulators of KCa channels may serve as a promising treatment strategy to ameliorate
impaired EDH in diabetes [38,45,89].

Given that diabetes is accompanied by increased ROS production which in turn modulates ion
channels in certain vascular beds [90–92], it is tempting to hypothesize that reduced KCa channel activity
and/or decreased KCa channel expression during diabetes are mediated by ROS. Indeed, an inhibition
of the KCa channel activity per se by ROS has been reported in vascular endothelial cells. The IKCa

channel currents recorded by a whole-cell patch clamp in human umbilical vein endothelial cells
(HUVECs) and bovine aortic endothelial cells were inhibited by superoxide and hydrogen peroxide,
respectively [93,94]. Moreover, ROS may reduce the KCa channel function via the downregulation of
KCa channel expression in some vascular endothelial cells [93,95]. Advanced glycation end products
(AGEs), the formation of which is accelerated during diabetes [96], may promote ROS generation and
thus reduce the KCa channel function by dysregulating the intracellular Ca2+ mobilization [97] or by
downregulating the expression of KCa channel proteins [98] in certain vascular endothelial cells.

Downregulation of the SKCa channel expression by ROS may also lead to arrhythmogenesis in
diabetes. In the atria of STZ-induced diabetic mice, increased oxidative stress reduced the expression
of SKCa channel proteins, resulting in action potential prolongation and arrhythmias [99].

In addition to endothelial S/IKCa channels, endothelial Kir channels also contribute to the
generation of EDH in certain vascular beds [13,79]. Intriguingly, some studies reported that the reduced
endothelial Kir channel function and expression partly account for impaired EDH in diet-induced obese
rats [86,100], and the loss of Kir channels input to EDH in these models might be mediated by a negative
influence of hypercholesterolemia on the activity of Kir channels [100–103]. Since dyslipidemia is a
common feature of diabetes, it is worthwhile to investigate the possible involvement of Kir channels in
the pathogenesis of diabetic vascular complications.

3.3. The Role of Gap Junctions

EDH initiated in endothelial cells spreads to adjacent smooth muscle cells via myoendothelial gap
junctions (MEGJs) in many arteries [2–5]. A gap junction channel is composed of two hemichannels
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(connexons), and each connexon is comprised of six subunit proteins named connexins (Cx) [104]. It is
generally agreed that in rodent and human blood vessels, four proteins (Cx37, Cx40, Cx43, and Cx45)
are expressed in the gap junctions [104,105]. Vascular endothelial cells express Cx37, Cx40, and
Cx43, and vascular smooth muscle cells express Cx43 and Cx45 [104,105]. With respect to the Cx
isoform present at MEGJs, Cx37, Cx40, and to a lesser extent Cx43 have been reported [104]. Since gap
junction channels formed by different connexin isoforms have different biophysical properties [104],
changes in the number and/or function of connexins that comprise MEGJs could lead to the impaired
EDH-mediated responses in diabetes.

In line with this theory, several studies using cell culture methods revealed that high glucose
reduced the dye transfer through gap junctions in vascular endothelial and smooth muscle cells because
of the phosphorylation of Cx43 via PKC [106,107] or a reduction in Cx43 expression [108,109]. Since dye
transfer is thought to occur through gap junctions between electrically coupled cells [110], the reduced
function and/or expression of Cx43 could have an impact on EDH-mediated responses in blood vessels.
Indeed, the physiological relevance of a high glucose-induced disruption of gap junction activity to
EDH-mediated responses has been suggested in experiments using isolated vessels, although the
isoform of connexin involved in these studies is not known [111,112]. In retinal microvessels from
STZ-induced diabetic rats, an activation of PKC by vascular endothelial growth factor inhibited the
electrical transmission along the axis of the vessels; this result might be due to the inhibition of gap
junctional communication via PKC [113].

The downregulation of other isoforms of connexin proteins has also been reported in arteries from
animal models of type 1 and type 2 diabetes [28,36,114]. Reduced Cx37 and Cx40 protein expression
was observed in endothelial cells from coronary arteries of STZ-induced type 1 diabetic mice in which
EDH-mediated responses were impaired [28]. In that model, in addition to the reduction in Cx40
expression, a reduced function of Cx40 due to an O-linked N-acetylglucosaminylation of Cx40 proteins
was suggested as an underlying mechanism of impaired EDH-mediated responses [114]. Similarly,
in mesenteric arteries of insulin-resistant obese Zucker rats (a model of type 2 diabetes), decreased
Cx40 proteins appears to contribute to the impaired EDH-mediated responses [36].

Together these studies suggest that changes in the expression and/or the function of connexins
that comprise MEGJs could underlie the impaired EDH-mediated responses in animal models of type
1 and type 2 diabetes. Nevertheless, caution should be taken in generalizing these results because Cx
protein expressions and EDH-mediated responses are not necessarily causally related, as was shown in
mesenteric arteries of spontaneously hypertensive rats [79,115].

Gap junctional permeability is regulated dynamically by intracellular messengers such as cAMP
and cGMP [116]. It was reported that cAMP facilitates EDH-mediated responses by enhancing the
electrotonic conduction through both myoendothelial and homocellular smooth muscle gap junctions
in some [117] but not all [118,119] vascular beds. Interestingly, Matsumoto et al. demonstrated that
impaired EDH-type relaxation is attributable, at least in part, to a reduction in the action of cAMP as a
result of both increased phosphodiesterase (PDE) activity and decreased cAMP-dependent protein
kinase A (PKA) activity in mesenteric arteries of type 1 and type 2 diabetic rats [39,120]. However,
some caution is warranted in interpreting these results [39,120], because a recent study by Moreira et al.
suggested that the PDE-3 inhibitor cilostazol (which was used as an enhancer of the activity of cAMP
in the studies by Matsumoto et al. [39,120]) ameliorated the age-related impairment of EDH via a
reduction in the oxidative stress in rat mesenteric arteries [121]. Moreover, in contrast to the results
from rat mesenteric arteries [39,120], the activity of cAMP appears to be preserved in the retinal
arterioles of STZ-induced diabetic rats, in which EDH-mediated responses are compromised [30].

3.4. The Role of ROS

Reactive oxygen species (ROS) are reactive molecules generated from oxygen metabolism that
play crucial roles in vascular function and structure [122]. These ROS include superoxide, hydroxyl
radical, hydrogen peroxide, singlet oxygen and peroxynitrite, which are produced as a result of electron
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transfer reactions [122]. The major sources of ROS in vasculature include the nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase, xanthine oxidoreductase, and uncoupled endothelial nitric
oxide synthase [122].

A growing body of evidence indicates that ROS plays a crucial role in the development of
endothelial dysfunction in diabetes [123]. With respect to the interaction between ROS and EDH,
as mentioned in the preceding text, ROS may impair EDH-mediated responses in several ways
(e.g., the inhibition of intracellular Ca2+ mobilization, the oxidation of LDL, the disruption of caveolae,
and the inhibition of function and/or expression of the KCa channel) in vascular endothelial cells of
animal models of diabetes.

Further support for the causative link between ROS and impaired EDH during diabetes comes
from a number of studies that showed significant improvements in EDH-mediated responses by
antioxidants such as α-lipoic acid [124], red wine polyphenols [125], apocynin [126], ebselen [127],
allopurinol [128], and tempol [129] in mesenteric arteries of diabetic rats and mice. In renal arteries
from STZ-induced diabetic rats, eugenol (a major constituent of clove oil that has an antioxidant
property) improved impaired EDH-mediated relaxation [130].

Nevertheless, it should be stressed that caution must be exercised in making generalizations from
those reports. Indeed, several studies have found no beneficial effects of antioxidants on impaired
EDH-mediated responses in animal models of type 1 and type 2 diabetes. These antioxidants include
superoxide dismutase [19,31], catalase [31], tempol [131], angiotensin receptor blocker [37,131], vitamin
C [31], vitamin E [132], and flavonoid [133]. It is not likely that these negative results were due to
a lack of the ability to delete ROS, because these antioxidants significantly improved NO-mediated
relaxation in these studies [21,131–133].

The reason for the above-described contradictory results is not known but might be related to the
differences in the agonist used, the vascular bed studied, the nature of ROS generated, or the amount
and duration of ROS exposure among the studies. In fact, the effects of ROS on EDH were inconsistent
and complex: Decreased [134], unaltered [135,136], and increased [137,138] EDH-mediated responses
mediated by ROS have been reported in blood vessels from rats and mice. Although poorly understood,
ROS, in particular H2O2, might augment EDH-mediated responses by potentiating intracellular
endothelial Ca2+ mobilization [138,139] or by exerting excitatory influences on KCa channels [140] in
some vascular beds in diabetes.

To sum up, although several lines of evidence from animal models of diabetes suggest a link
between ROS and reduced EDH, a causal relationship between these two factors during diabetes has
not yet been established and merits further investigation.

3.5. The Role of Inflammatory Cytokines

Emerging evidence suggests that low-grade inflammation is associated with diabetes-related
cardiovascular complications including endothelial dysfunction [141]. Interestingly, some studies
showed deleterious effects of pro-inflammatory cytokines on EDH in animal and human vessels.
For example, it was shown that the pro-inflammatory cytokine interleukin-1beta (IL-1β) inhibited
EDH-mediated responses via a decrease in the expression of cytochrome P450 enzymes in rabbit
carotid arteries [142]. Tumor necrosis factor-alpha (TNF-α) attenuated EDH-mediated relaxation in
human omental arteries [143]. However, a contradictory result was reported by Wimalasundera et al.:
TNF-α inhibited NO-mediated but not EDH-mediated relaxation in rat mesenteric arteries [144].

The effects of pro-inflammatory cytokines on EDH in diabetes are also controversial. In coronary
arterioles of type 2 diabetic db/db mice, Park et al. reported that impaired EDH-mediated relaxation
was restored by a three-day administration of neutralizing antibody to interleukin (IL)-6, indicating
that IL-6 exerts a deleterious influence on EDH in this vascular bed [43], whereas in renal arteries of
STZ-induced diabetic rats, a one-month treatment with IL-6 markedly restored impaired EDH-mediated
relaxation without altering plasma glucose levels [145].
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The reason for these inconsistencies are not known, but one possible and fascinating explanation
might be that in the latter study [145], the IL-6 infusion might have inhibited the TNF-α production
and thus led to EDH restoration. Indeed, an IL-6 infusion inhibited TNF-α production in humans
in vivo [146]. Further investigations are needed to gain insight into the mechanisms whereby
pro-inflammatory cytokines influence EDH, and to develop a more in-depth understanding of the
interplay between IL-6 and TNF-αwith reference to endothelial function.

3.6. The Roles of Diffusible Factors

In addition to the mechanisms mentioned above, a reduced production and/or bioavailability of
diffusible factors (i.e., EDHFs) were also suggested to contribute to the impaired EDH-mediated
responses in diabetes. In porcine coronary arterioles, high-glucose incubation impaired
bradykinin-induced, EDH-mediated responses via a reduced production of EETs and reduced CYP
activity [66]. Moreover, in mesenteric arteries of type 2 diabetic db/db mice, the inhibition of soluble
epoxide hydrolase (sEH) — a ubiquitous enzyme that rapidly hydrolyses EETs to less bioactive
dihydroxyeicosatrienoic acids [147] — augmented ACh-induced, EDH-mediated relaxation possibly
resulting from elevated EET levels [148]. Similarly, in coronary arteries of obese insulin-resistant
mice, the inhibition of sEH enhanced NS309 (a S/IKCa activator)-induced, EDH-type relaxation [149].
These findings suggest that a reduced production and/or bioavailability of EETs may contribute to the
impaired EDH-mediated responses in diabetes in some vascular beds.

H2S has also been suggested to contribute to the impaired EDH-mediated responses in
diabetes in particular circumstances. In mesenteric arteries of type 2 diabetic db/db mice with
hyperhomocysteinemia, a suppressed production of H2S by hyperhomocysteinemia was responsible
for the impaired EDH-mediated relaxation, because of a reduction in IKCa input to EDH [150]. In this
model, a reduction in the cell-surface expressions of SKCa and IKCa channels by homocysteine-induced
ER stress might also contribute to the impaired EDH-mediated responses [151]. Since the plasma
homocysteine levels were increased in type 2 diabetic patients with nephropathy [152], a reduced
contribution of H2S to EDH-mediated responses might be of clinical relevance for these patients. In this
regard, the increased protein expression of IKCa observed in diabetic rabbit carotid artery [153] may
be a compensatory upregulation to counteract the loss of IKCa activation due to the reduced blood
H2S concentration in diabetes [154]. Of interest, H2S attenuated myocardial fibrosis in STZ-induced
diabetic rats possibly through suppressing oxidative stress and ER stress [155].

Leptin, an adipose tissue hormone, was reported to induce EDH-mediated vasorelaxation [156],
and this relaxation was provided at least in part by H2S [157]. The reduced production of H2S during
sustained obesity [158] might contribute to the loss of the leptin-induced, EDH-mediated responses
observed in rats with long-term obesity [159].

Hydrogen peroxide (H2O2) acts as a diffusible EDHF in some vascular beds including coronary
arteries [160], and a recent report suggested that an excessive increase in H2O2 has deleterious effects on
coronary microcirculation in vivo in diabetic mice [161]. Thus, in db/db mice, the plasma concentration
of H2O2 was increased, and prolonged exposure to excessive H2O2 impaired TRP vanilloid-type-1
channels (TRPV1) activity, leading to a reduced TRPV1-dependent modulation of coronary blood
flow [161].

The activity of neural endopeptidase (NEP), an endogenous neuropeptide-degrading enzyme,
appears to be increased in diabetes [162], which would lead to enhanced CNP degradation. In this
context, treatment with the vasopeptidase inhibitor AVE7688 (a simultaneous inhibitor of NEP and
angiotensin-converting enzyme activity) improved the reduced ACh-mediated vascular relaxation
in epineurial arterioles of STZ-induced diabetic rats, at least in part because of an increase in CNP
input to EDH [163]. However, the beneficial effect of the NEP inhibitor on EDH via increased CNP
bioavailability might be a drug-specific and/or vascular-specific effect, because no significant differences
in EDH-mediated responses were observed with the use of the angiotensin type 1 receptor blocker
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(ARB) valsartan or that of sacubitril/valsartan (a dual blocker of NEP and the renin angiotensin system
[RAS]) in mesenteric arteries of spontaneously hypertensive rats (SHRs) [164].

Changes in the function and/or expression of the large-conductance (BKCa) Ca2+-activated K+

channels located on vascular smooth muscle cells could also contribute to the impaired EDH-mediated
responses in arteries in which diffusible factors induce membrane hyperpolarization through the
opening of smooth muscle BKCa channels. Indeed, in coronary arteries from high-fat diet-induced
diabetic mice [165] and type 2 diabetic db/db mice [166], the BKCa channel function was impaired due
to the downregulation of the BKCa channel β1 subunit expression in response to increased oxidative
stress [165,166]. Interestingly, in coronary arteries from diabetic mice, an induction of nuclear factor
erythroid-2-related factor-2 (Nrf2), a master regulator of antioxidants, restored the BKCa channel β1
subunit expression and thus augmented BKCa-mediated vasodilation [165,166], indicating that Nrf2
could be a potential therapeutic target to ameliorate impaired EDH in diabetes in some vascular beds.

3.7. Other Factors

Structural and functional changes in vascular smooth muscle cells may also be associated with
reduced EDH-mediated responses in obesity and diabetes. It has been reported that diabetes is
associated with media hypertrophy in a certain vascular bed [167]. Under such circumstances,
propagation of EDH might rapidly dissipate across the media in diabetic arteries. In resistance arteries
of diet-induced obese rats, sympathetic nerve-mediated vasoconstriction is augmented [168], which
could counteract the vasorelaxant effect of EDH.

Moreover, reduced responsiveness of the smooth muscle cells to hyperpolarization stimuli may
contribute to impaired EDH-mediated responses in diabetes. Indeed, the endothelium-independent
hyperpolarization and relaxation to levcromakalim, a KATP channel opener, were impaired in arteries
of diabetic rats [37,131,169]. Further, in endothelium-denuded mesenteric arteries of STZ-induced
diabetic rats, K+-induced vasodilation was attenuated, suggesting that the function of Kir channels
and Na+/K+ ATPase in the smooth muscle may be impaired [20].

4. Therapeutic Implications

Insulin and different types of oral antidiabetic drugs are used in the treatment of diabetes.
Although these drugs prevent the initiation and progression of diabetic complications mainly through
their blood glucose-lowering ability, some of the drugs appear to exert additional glucose-independent
beneficial effects on the endothelial function [170]. RAS inhibitors or statins are also widely used for
diabetic individuals who have hypertension or dyslipidemia, respectively. In this section, we explore
the therapeutic impact of these drugs as well as the impact of exercise on the endothelial function, with
a focus on EDH in mainly animal models of diabetes.

4.1. Insulin

Chronic treatment with insulin prevents or reverses impaired EDH-mediated responses in arteries
from STZ-induced diabetic rats [19,171]. It would be logical to speculate that chronic insulin treatment
exerts beneficial effects on EDH by lowering the blood glucose levels in this rodent model. Insulin might
also contribute to the restoration of impaired EDH in diabetes independently of its glucose-lowering
properties. Indeed, it has been reported that insulin directly generated [172,173] or facilitated [174]
EDH in some vascular beds. Interestingly, insulin promoted the production of EETs (a candidate
EDHF), which in turn induced vasodilation in human radial artery [175]. However, the effect of insulin
on EDH is equivocal; acute incubation with insulin (1 mU/mL) inhibited ACh-induced, EDH-mediated
relaxation in rat mesenteric arteries [176]. Such an inhibitory effect of insulin on EDH might underpin
the impaired EDH-mediated responses observed in a rat model of insulin resistance [177].



Int. J. Mol. Sci. 2019, 20, 3737 11 of 27

4.2. Biguanide (Metformin)

Accumulating evidence suggests that metformin, a biguanide oral hypoglycemic agent, exerts
direct (other than glucose-lowering) protective effects on vascular endothelial cells, and a number of
preclinical and clinical studies have reported that such direct effects of metformin on endothelial cells
contribute to the prevention or reduction of diabetic microangiopathy [178]. In this context, the results
of several animal studies suggested that metformin directly ameliorates the impaired EDH-mediated
responses associated with diabetes [65,179–181].

In their study of mesenteric arteries of OLETF rats, Matsumoto et al. suggested that metformin
directly improved EDH-mediated relaxation via suppression of vasoconstrictor prostanoids and
oxidative stress [179]. In STZ-induced diabetic spontaneously hypertensive rat aorta, chronic treatment
with metformin augmented EDH-mediated relaxation, possibly via an upregulation of the synthesis
of H2S (a candidate EDHF) independently of glycemic control [180]. In these two studies [179,180],
however, the reduction of blood pressure by metformin may also contribute to the improvement
of EDH.

Metformin was reported to restore an AGE-mediated downregulation of both SKCa and IKCa

channel protein expressions, possibly by inhibiting AGE-evoked ROS generation in HUVECs [98].
It thus seems likely that metformin improves the impaired EDH associated with diabetes at least
partly through mechanisms independent of its glucose-lowering ability. Although several studies have
suggested that metformin exerts beneficial effects on the endothelial function through an activation
of AMP-activated protein kinase (AMPK) [178], a recent report by Chen et al. showed that an acute
activation of endothelial AMPK inhibited EDH-mediated relaxation in rat mesenteric arteries [182].

4.3. Dpp-4 Inhibitors And Glp-1r Agonists

Although a number of studies demonstrated direct actions of dipeptidyl peptidase-4 (DPP-4)
inhibitors or glucagon-like peptide-1 receptor (GLP-1R) agonists on vascular endothelial cells [183,184],
few studies have investigated the possible involvement of EDH in the direct actions of those drugs on
vascular endothelium and its alterations in diabetes. In mouse aorta, acute treatment with alogliptin,
a DPP-4 inhibitor, induced EDH-mediated relaxation apart from the activation of GLP-1R [185]. In their
study of rat mesenteric arteries, Salheen et al. showed that acute treatment with linagliptin (a DPP-4
inhibitor) or extendin-4 (a GLP-1R agonist) prevented the high glucose-induced impairment of EDH
through direct ROS scavenging and GLP-1R activation [186].

Salheen et al. reported that chronic treatment with linagliptin improved the EDH-mediated
relaxation without decreasing the plasma glucose in mesenteric arteries of STZ-induced diabetic
rats, and that the improvement of EDH by linagliptin appears to be due to the suppression of ROS
generation [187]. Another DPP-4 inhibitor, vildagliptin, also improved EDH-mediated relaxation
independently of glycemic control in STZ-induced diabetic spontaneously hypertensive rat aorta [180].

A direct vasodilatory influence of GLP-1 and its analogues mediated by EDH has also been
reported [186,188,189]. Thus, acute treatment with GLP-1(7-36) or its metabolite GLP-1(9-36) induced
EDH-mediated relaxation in the third branches of rat mesenteric arteries [188]. Interestingly,
in that study, both the GLP-1(7-36)-evoked and GLP-1(9-36)-evoked EDH-mediated relaxations
were attenuated in STZ-induced diabetic rats compared to normoglycemic controls [188]. Further,
a recent report by Sukumaran et al. showed that chronic treatment with liraglutide, a human GLP-1
analogue, ameliorated the in vivo renal microcirculation of obese Zucker rats fed a high-salt diet,
probably due to the enhanced contribution of NO and/or EDH [189].

Collectively, the findings from these studies suggest that both DPP-4 inhibitors and GLP-1R
agonists exert beneficial actions on EDH in diabetes through mechanisms independent of their
glucose-lowering effects. The underlying mechanisms of such improvements remain unclear and
warrant further investigation.
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4.4. SGLT2 Inhibitors

Emerging evidence suggests that sodium glucose co-transporter2 (SGLT2) inhibitors provide
beneficial effects against cardiovascular events beyond their glucose-lowering properties, but the
underlying mechanisms of such benefits are not well understood [190]. Acute [191] or chronic [192]
treatment with SGLT2 inhibitors was shown to enhance endothelium-dependent vasorelaxation
independently of the inhibitors’ glucose-lowering effects, but the contribution of EDH to the restoration
of the endothelial function following the SGLT2 inhibitor treatments was not examined [191,192].

Interestingly, a recent report showed that the SGLT2 inhibitor empagliflozin restored the integrity
of the endothelial glycocalyx in human abdominal aortic endothelial cells [193]. Since the degradation
of endothelial glycocalyx seems to contribute to the impaired EDH-mediated responses in diabetes
through a reduction in the SKCa channel input to EDH [88], it is tempting to speculate that SGLT2
inhibitors ameliorate impaired EDH in diabetes by restoring the integrity of the endothelial glycocalyx.

4.5. Renin Angiotensin System Inhibitors

The tissue RAS appears to be involved in pathological mechanisms that lead to diabetic vascular
complications [194], and several research groups have investigated the effects of RAS inhibitors on
EDH in diabetic rats and mice [37,131,195,196]. In mesenteric arteries of GK rats (models of type 2
diabetes), chronic treatment with the ARB losartan ameliorated impaired EDH-mediated relaxation by
enhancing KCa channel activities [195]. By contrast, in mesenteric arteries of GK rats, chronic treatment
with another ARB, candesartan, or with the combination of candesartan and the superoxide dismutase
mimetic tempol (a scavenger of both intracellular and extracellular superoxides [131]) did not improve
EDH or EDH-mediated relaxation [37,131].

It seems unlikely that such disparities among study results arose from the insufficient dose
of candesartan used in the study by Oniki et al. [37,131], because chronic treatment with similar
doses of candesartan improved the reduced EDH-mediated responses in the same vascular bed
during hypertension and aging [197,198]. In mesenteric arteries of diabetic apolipoprotein E-deficient
mice, the combination of the ARB olmesartan and the calcium-channel blocker azelnidipine but not
olmesartan alone improved EDH and EDH-mediated relaxation [196]. The mechanisms underlying
such improvement remain to be clarified.

The effects of RAS inhibitors on EDH in diabetes are thus equivocal. It is nevertheless important
to determine whether RAS inhibitors can ameliorate the impaired EDH associated with diabetes,
because the activation of the vascular-tissue RAS induces vascular injury and inflammation, thereby
contributing to the development and progression of vascular disease [199].

4.6. Statins

Direct (pleiotrophic) beneficial effects of statins on the endothelial function beyond their
cholesterol-lowering ability have been firmly established in both animals and humans [200]. However,
the literature focusing on the effects of statins on EDH in diabetes is still limited, and the results are
inconsistent. In mesenteric arteries of STZ-induced diabetic rats, chronic treatment with rosuvastatin
corrected the decreased EDH-mediated relaxation without affecting the plasma cholesterol level [201].
By contrast, no change was observed in EDH after chronic treatment with pravastatin in coronary
arteries from OLFTE rats at the early stage of diabetes [49]. Presumably, the disparity between the two
studies’ findings [49,201] appears to be due to the differences in the severity of diabetes and/or the
timing of the treatment initiation.

The pleiotropic effects of statins on EDH may not be universal. Indeed, in mesenteric
arteries of stroke-prone spontaneously hypertensive rats (SHRSP), fluvastatin improved the impaired
endothelium-dependent relaxation via a restoration of NO-mediated relaxation without any changes
in EDH or EDH-mediated relaxation [202].
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4.7. Protein Kinase C Inhibitors

PKC activity is enhanced in diabetes, leading to vascular dysfunction in several ways [203].
As noted above, PKC appears to contribute to the high glucose-induced impairment of
EDH-mediated responses via the inhibition of both endothelial Ca2+ mobilization and gap junctional
communication [61,62,106,107]. In this regard, one study investigated the effect of a PKC inhibitor on
impaired EDH in diabetes; chronic treatment with LY333531, a specific inhibitor of the PKC β isoform,
partially restored the impaired EDH-mediated relaxation in mesenteric arteries of STZ-induced diabetic
rats [204].

The generation of thromboxane A2 (TXA2) is increased in diabetes at least partly due to the
enhanced activity of PKC [203]. Since the ACh-induced production of TXA2 was increased in
mesenteric arteries of OLETF rats [205], and because a TXA2 analogue depolarized the membrane
potential in rat mesenteric arteries [206], it can be speculated that ACh-induced EDH is opposed
by a simultaneous depolarization evoked by TXA2 in mesenteric arteries of OLETF rats. Indeed,
an interplay between EDH and simultaneous depolarization was reported in mesenteric arteries from
SHRs [79,207]. Such interactions between hyperpolarization and depolarization might explain the
observation that chronic treatment with a TXA2 inhibitor, ozagrel, partially ameliorated the impaired
ACh-induced, EDH-mediated relaxation in mesenteric arteries of OLETF rats [205].

4.8. Aldose Reductase Inhibitors

An aldose reductase inhibitor (ARI) acts to block the first step of the polyol pathway, which converts
glucose to sorbitol with NADPH as a coenzyme [208]. In addition to its protective effect on diabetic
neuropathy by suppressing sorbitol and fructose accumulation in nervous tissues, emerging evidence
suggests that ARI reduces diabetes complications through its antioxidant as well as anti-inflammatory
properties [208]. However, there are only a small number of studies regarding the effects of ARI on
EDH in diabetes.

In the mesenteric arteries of STZ-induced diabetic rats, chronic treatment with an ARI, WAY121509,
partially restored impaired EDH-mediated relaxation [209]. In accord with that report, chronic treatment
with another ARI, minalrestat, ameliorated the EDH-mediated vasodilation in vivo in mesenteric
arteries of alloxan-induced diabetic rats [210]. The underlying mechanisms of these improvements are
not known.

4.9. Exercise

Regular physical exercise is recommended as a non-pharmacological treatment of diabetes, and
several studies have described beneficial effects of regular exercise on the endothelial function in animal
models of diabetes [211]. Although most of those studies focused on the role of NO, an investigation
by Minami et al. demonstrated that exercise training improves impaired EDH-mediated relaxation
in OLETF rats (a model of type 2 diabetes), probably by ameliorating hyperglycemia and insulin
resistance [212].

Since exercise training decreased the serum concentrations of proinflammatory cytokines such as
TNF-α and IL-6 in diabetic rats [213] and because these cytokines inhibited EDH in certain vascular
beds [43,142], the decrease in these cytokines might also have contributed to the beneficial effect of
exercise on EDH-mediated responses revealed by the Minami et al. study [212].

5. EDH in Human Diabetes

Although the contribution of EDH to the regulation of vascular tone has been investigated in several
human arteries [214,215], few studies have focused on the role of EDH in human diabetes. In respect
to the effects of high glucose on EDH in human arteries, MacKenzie et al. showed that while exposure
to high glucose (20 mM, 2 h) inhibited bradykinin-induced, EDH-mediated relaxation in subcutaneous
arteries, exposure to high glucose (20 mM, 2 h) augmented bradykinin-induced, EDH-mediated
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relaxation in mesenteric arteries [216]. Thus, the effects of high glucose on EDH-mediated responses
differed depending on the vascular bed examined [216], and the inconsistent results might reflect
heterogeneity of EDH/EDHF among the agonists and vascular beds studied [4,26].

With respect to alterations in EDH in human diabetes, several studies have shown impaired
EDH-mediated responses. In an examination of human penile resistance arteries, EDH-mediated
relaxation was impaired in subjects with type 1 and type 2 diabetes, and the impairment of EDH
was restored by acute treatment with calcium dobesilate, an antioxidant and an inhibitor of aldose
reductase [217]. Moreover, in human coronary arterioles, NS309 (a S/IKCa activator)-induced, EDH-type
relaxation was impaired in subjects with type 2 diabetes because of the decreased SKCa and IKCa

channels activity per se [218,219]. In a study of human cutaneous microcirculation in subjects with
type 1 diabetes, post-occlusive hyperemia (an index of endothelium-dependent vasodilation) was
reduced partially by a decreased contribution of EDH [220]. Finally, a recent report by Duflot et al.
demonstrated that flow-mediated endothelium-dependent vasodilatation of the radial artery was
impaired in subjects with type 2 diabetes independently of their hypertensive status [175]. Of interest,
Duflot et al. revealed that a decreased production of EET (a candidate EDHF) and increased EET
degradation by sEH in conjunction with decreased NO bioavailability by ROS were mechanistically
involved in the impairment [175].

By contrast, EDH-mediated relaxation was augmented to compensate for reduced NO-mediated
relaxation in subcutaneous arteries from individuals with diabetes, and such an augmentation of EDH
appeared not to be attributable to the drugs used in that study [221]. The reason(s) for these disparities
among study results (i.e., reduced or augmented EDH) are not known, but they might be related to the
differences in the duration or the severity of diabetes among the study subjects.

6. Conclusions

EDH and EDH-mediated relaxation are impaired in long-term diabetes. Evidence from numerous
studies using animal models of diabetes suggests that multifactorial mechanisms contribute to the
impaired EDH associated with diabetes. The compromised Ca2+ handling in endothelial cells,
the reduced function and expression of endothelial ion channels, the disruption of gap junctional
communication or the breakdown of caveolae and glycocalyx independently or in combination appear
to play a causative role in the impaired EDH in diabetes in a number of vascular beds. A reduced
production and/or bioavailability of diffusible factors may also contribute to the impairment of EDH in
diabetes in some vascular beds. Several animal studies suggest a causative link between ROS and the
diabetes-associated impairment of EDH, but conflicting results showing no detrimental effects of ROS
on EDH in diabetes are also reported. Rigorous further investigations are needed to draw a definite
conclusion on the interplay between ROS and EDH in diabetes.

Although glucose lowering per se improves reduced EDH in diabetes, some pharmacological
drugs appear to exert beneficial effects on EDH independently of their glucose-lowering ability.
The extent of the improvement in EDH achieved by pharmacological drug therapy is limited in most
studies, and the mechanisms that mediate such improvements are not yet known.

EDH-mediated responses are decreased in some but not all arteries of individuals with type 1
or type 2 diabetes. Given that endothelial dysfunction is implicated in the pathogenesis of vascular
complications in diabetes and that EDH plays a pivotal role in the endothelial function in resistance
arteries, further explorations of the underlying mechanisms of impaired EDH in diabetes could open
new doors for the prevention and treatment of microvascular complications in individuals with
diabetes mellitus.
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Abbreviations

ACE angiotensin converting enzyme
ACh Acetylcholine
AGE advanced glycation end product
AMPK AMP-activated protein kinase
ARB angiotensin type 1 receptor blocker
ARI aldose reductase inhibitor
BKCa large conductance Ca2+-activated K+

CNP C-type natriuretic peptide
CYP cytochrome P450
Cx connexin
DPP-4 dipeptidyl peptidase-4
EDH endothelium-dependent hyperpolarization
EDHF endothelium-derived hyperpolarizing factor
EETs epoxyeicosatrienoic acids
eNOS endothelial nitric oxide synthase
ER endoplasmic reticulum
GK Goto-Kakizaki
GLP-1R glucagon-like peptide-1 receptor
H2O2 hydrogen peroxide
H2S hydrogen sulfide
HUVEC human umbilical vein endothelial cell
IKCa intermediate–conductance Ca2+-activated K+

IL-1β interleukin-1beta
IL-6 interleukin-6
KATP ATP–sensitive K+

Kir inward rectifier K+

L-NAME Nω-nitro-l-arginine
LPC lysophosphatidylcholine
MEGJs myoendothelial gap junctions
NEP neural endopeptidase
NADPH nicotinamide adenine dinucleotide phosphate oxidase
NO nitric oxide
Nrf2 nuclear factor erythroid-2-related factor-2
OLETF Otsuka long-evans tokushima fatty
Ox-LDL oxidized low-density lipoprotein
OZ obese Zucker
PDE phosphodiesterase
PKA protein kinase A
PKC protein kinase C
RAS renin-angiotensin system
ROS reactive oxygen species
sEH soluble epoxide hydrolase
SGLT2 sodium glucose co-transporter2
SHR spontaneously hypertensive rats
SHRSP stroke-prone spontaneously hypertensive rats
SKCa small-conductance Ca2+-activated K+

STZ streptozotocin
TNF-α tumor necrosis factor-alpha
TRP transient receptor potential
TRPV1 TRP vanilloid-type-1
TRPV4 TRP vanilloid-type-4 thromboxane A2 (TXA2)
TXA2 thromboxane A2
WKY Wistar–Kyoto
ZDF Zucker diabetic fatty
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