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Abstract: Desmoid tumors (DTs), also known as desmoid fibromatosis or aggressive fibromatosis, are
rare, locally invasive, non-metastatic soft tissue tumors. Although histological results represent the
gold standard diagnosis, imaging represents the fundamental tool for the diagnosis of these tumors.
Although histological analysis represents the gold standard for diagnosis, imaging represents the
fundamental tool for the diagnosis of these tumors. DTs represent a challenge for the radiologist,
being able to mimic different pathological conditions. A proper diagnosis is required to establish
an adequate therapeutic approach. Multimodality imaging, including ultrasound (US), computed
tomography (CT) and Magnetic Resonance Imaging (MRI), should be preferred. Different imaging
techniques can also guide minimally invasive treatments and monitor their effectiveness. The purpose
of this review is to describe the state-of-the-art multidisciplinary imaging of DTs; and its role in
patient management.

Keywords: desmoid tumors; aggressive fibromatosis; magnetic resonance imaging; ultrasound;
computed tomography; diffusion-weighted imaging; dynamic contrast enhanced-MRI

1. Introduction

Desmoid tumors (DTs), also known as desmoid fibromatosis or aggressive fibromatosis,
is an unusual and locally aggressive monoclonal, fibroblastic proliferation characterized by
a variable and often unpredictable clinical course. According to the World Health Organi-
zation (WHO), DT is a “clonal fibroblastic proliferation that arises in the deep soft tissues
and is characterized by infiltrative growth and a tendency toward local recurrence but an
inability to metastasize”, even though it may be multifocal in the same limb or body part [1].
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Although histopathological analysis represents the gold standard for diagnosis [1–3], imaging
represents a necessary tool during the multidisciplinary approach to these tumors since it
allows, thanks to the possibility of multimodality assessment (ultrasound (US), computed
tomography (CT) and Magnetic Resonance Imaging (MRI)) [4–10], the detection, localization
and evaluation of adjacent structures involvement, to establish a differential diagnosis so as to
guide management (surgical or minimal invasive) [11–25].

The purpose of this review is to describe state-of-the-art nature of multimodality imaging
evaluation, highlighting the advantages and disadvantages of the different techniques in
abdominal and extra-abdominal DTs. We assessed their role during the different phases of
patient management, including the possibility of guiding interventional radiology treatment.

2. Epidemiology and Histopathology

Desmoid tumors commonly affect individuals between the age of 15 and 60 years, with a
peak incidence at 35–40 years and a reported incidence of 2–4 per million population, mainly in
women of reproductive age [1–3]. The etiopathogenesis of DTs is unclear, although it is believed
to be multifactorial [1–3]. DT may be sporadic or familial. Trauma, pregnancy and the use of oral
contraceptives have been implicated in etiopathogenesis [1–3]. Although pregnancy and the use
of oral contraceptives have been shown to be associated with the development of DT, the exact
role of hormonal influence is not fully understood [1–3]. These lesions can involve different
types of connective tissues, including muscle, fascia and aponeurosis. The most common sites
are the abdominal wall, abdominal mesentery limbs and girdles [1–3,26–33]. These lesions
can infiltrate the surrounding tissues and organs, spreading across the various floors muscle
structures and although they have a low tendency to metastasize, they have a high propensity
for local recurrence. Therefore, this tumor has now been classified as an “intermediate, locally
aggressive” tumor in the WHO classification of soft tissue tumors [1,2,4].

To date, two different clinical–pathological entities have been identified: sporadic
DT and DT associated with adenomatous polyposis coli (APC) gene mutation [1]. Most
of these cancers arise as sporadic variants. Sporadic tumors are more frequently extra-
abdominal [2,34–37]. Several studies show that the inherited variant can be seen in 5–16%
of patients with familial adenomatosis polyposis (FAP) [1–3]. FAP-related DTs lesions are
mainly in the abdominal cavity (about 80%), abdominal wall (10–15%) and extra-abdominal
(about 5%). [1–3] Intra-abdominal DTs are mostly located in the mesentery. These tumors
grow slowly, generally increasing by 2 to 9 cm per year, and locally without metastasizing
distantly. Despite their benign nature, they can be infiltrative and multifocal, causing
significant morbidity and mortality [1,2]. In addition, DT associated with FAP tends to
have multifocal lesions, larger and most commonly occurs in younger patients [1–3].

It was demonstrated that a third variant known as “wild-type” DT (without CTNNB1
or APC mutations) does not exist and is the result of a diagnostic error (other proliferations
of spindle cells that mimic DT) or DT with unrecognized CTNNB1 or APC mutations [1–3].

The definitive diagnosis is histopathological with evidence of the proliferation of uni-
form spindle cells resembling myofibroblasts in the background of abundant collagenous
stroma and the vascular network and characterized immunohistochemistry stains positive
for nuclear B-catenin, vimentin, cyclooxygenase 2, tyrosine kinase PDGFRb, androgen
receptor and estrogen receptor beta but negative for desmin, S-100, h-caldesmon, CD34
and c-KIT [1,2].

3. Clinical Presentation and Treatment

The clinical presentation of DTs is variable and correlates with tumor location [1–3].
Generally, DTs have a chronic progression, remaining asymptomatic for a long time

and developing into a solid lesion which might present with pain. However, larger lesions
and those adjacent to neurovascular structures may be associated with pain and functional
impairment [1–3]. Desmoid tumor complications correlate to their locally aggressive character,
causing compression and/or invasion of the adjacent organs and tissues (Figure 1). Intra-
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abdominal DTs may determine bleeding, intestinal obstruction, perforation and, infrequently,
an abscess [1–3].
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Figure 1. (a,b) CT assessment (arrow) of aggressive fibromatosis; the arrow shows lesion in axial;
(c) MPR coronal plane of portal phase of contrast study. The lesion enhancement is mild to moderate
with involvement of intestinal loops.

Most DTs in the abdominal wall and extra-abdominal sites may present as a painless
mass. Extra-abdominal DTs (EADTs) localization is more common in the head and neck
region, where involvement of the airways or major vessels can present with hoarseness,
dyspnea or, in extremely rare cases, be fatal [37–41]. Follow localizations at limbs, pre-
senting as palpable masses, severe pain or muscle contractures and at the thoracic and
abdominal wall [42–50].

Surgical resection may be more complicated for intra-abdominal DTs compared to
extra-abdominal and abdominal wall lesions. In fact, resection may be technically challeng-
ing, particularly in patients with FAP. So, surgery has lost its traditional role as a first-line
treatment of the disease, and several other treatment methods are being considered [51–61].
In fact, for asymptomatic patients, close observation by serial imaging should be initiated
with an interval of 3 to 6 months, given the variable nature of DTs, including the possibility
of spontaneous regression. Despite this, primary surgery with negative margins was con-
sidered, in the past, the standard of care. However, due to the pattern of infiltrative growth,
the scope of resection needed to achieve negative margins could often lead to important
function impairments and cosmetic alterations, which are not acceptable in an indolent
disease. Furthermore, the efficacy of marginal R1 resections remains unclear. A positive sur-
gical margin was found to be an adverse predictor of worse local control in some series but
not in others [3,34]. Several researchers showed that progression-free survival curves were
not significantly different based on the microscopic assessment of surgical resection quality
(R0 versus R1), although R2 resections resulted in a significantly poorer prognosis [3,34].
Other prognostic factors associated with poor PFS were age younger than 37 years, tumor
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size larger than 7 cm and extra-abdominal localization, especially tumors found in the distal
extremities [3,34]. Based on these data, French [60] and Italian sarcoma groups [11] did not
recommend surgery as upfront therapy, except in the case of the patient’s preference. So,
increasing attention has been directed toward initial non-operative management, including
watchful waiting using nonsteroidal anti-inflammatory drugs (NSAIDs) with or without
hormonal manipulation, chemotherapy or radiation therapy [3,11,34,60].

With regard to radiation therapy, this approach should be considered for tumors
located at critical sites (such as the head and neck, limb girdles and pelvis), for which
surgery would involve functional impairment, or for inoperable, symptomatic/progressive
disease that did not respond to other therapeutic approaches, radiotherapy alone could
be preferable over other local treatments [3]. Adjuvant radiotherapy is recommended for
extremity/limb girdle disease after R1/R2 resection for recurrent disease or following
surgery at critical sites (i.e., head and neck), regardless of margins status.

Aggressive chemotherapy should be avoided because it is associated with significant
morbidities. However, cytotoxic chemotherapy, non-cytotoxic systemic therapy and tar-
geted therapy have been revealed as part of different treatment regimens [62–72]. Cytotoxic
chemotherapy is usually the first treatment option for rapidly growing and symptomatic
unresectable or advanced diseases. The most frequently used regimens include methotrex-
ate and vinblastine in combination and an anthracycline-based regimen [3]. Recent progress
regarding DT biology and molecular pathways has led to the development of promising
novel biological agents. In any case, a multidisciplinary approach is required and is gradu-
ally employed, especially in intra-abdominal DTs [62–72]. In addition, recent studies in the
literature have shown that EADTs, following a correct surgical excision of the lesion with
undamaged surgical margins, have a low rate of local recurrence and distant metastasis.
The relationship between age, sex and local recurrence prognosis is controversial. Con-
versely, tumor size can be considered a possible risk factor for a poor prognosis, as tumors
> 5 cm in size have a higher recurrence rate [2–4]. Occasionally, surgical management is the
only option in complicated patients [73–79].

4. Imaging

Since the management of DTs mandates a multidisciplinary approach, imaging plays a
pivotal role in the detection and assessment of these lesions. In the correct radiological disease
management, multimodality imaging, including ultrasound (US), Computed Tomography
(CT) and Magnetic Resonance Imaging (MRI), should also be preferred concerning the different
phases of DTs approaches [80–92]. In fact, during radiologist work-up, different moments may
be considered: detection and characterization, adjacent structures involvement assessment,
treatment response evaluation and surveillance [93–110]. During each of these moments, the
different techniques can be associated with and/or follow each other.

5. Ultrasound Assessment

Ultrasound (US) is an inexpensive tool, widely available and safe since it does not
use ionizing radiation so that the examination can be repeated several times, even in risk
categories such as children and pregnant women [111–116]. US plays a limited role mainly
in the delineation of mass and lesions involving the abdominal wall, chest wall, breast and
extremities. However, due to operator dependence and the poor performance of small
intra-abdominal lesions, the necessity for patient collaboration reduces the sensitivity and
specificity both in detection and characterization [111–116].

On US assessment (Table 1), these lesions show a variable appearance ranging from
well-circumscribed to poorly defined infiltrative heterogeneous solid mass with variable
echogenicity depending upon the amount of collagen, fibrosis and cellular components within
the lesion. Vascularity is variable, as manifested at Color Doppler US or Contrast-enhanced US
(CEUS) [80]. DT may be associated with a fascial tail sign, indicating thin linear extension along
fascial planes and the staghorn sign from intramuscular fingerlike extensions of the tumor [80].
Sometimes DTs appear as irregular, speculated, hypoechoic masses with Color Doppler flow
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mimicking malignancy [117–119]. US can be used to guide ablation treatment in DT unfit
for surgical resection [120]. Radiofrequency ablation (RFA) is the most frequently employed
ablation tool, and its success is essentially due to the minimally invasive nature of the treatment
with lower complication rates, superior toxicity profiles and often comparable or superior
mid- and long-term oncologic outcomes compared to conventional therapies such as surgical
procedures or systemic treatments [121–125]. There are few reports on the RFA treatment of
DTs with relatively small volumes in superficial tissues, such as the abdominal wall, limbs
and trunk [126–129]. In these cases, US is a promising tool for planning, targeting, monitoring,
intra-procedural modification and assessing treatment response, including technical success,
treatment efficacy and complications [130–134].

To the best of our knowledge, one study described CEUS appearance in abdominal
DT [135], with the early enhancement of the contrast agent and very long wash-out, a typical
pattern of benign lesions probably due to the presence of fibrotic tissue [135]. Xu et al.
described CEUS appearance in 19 cases of superficial DF: the tumors were hyperenhanced,
with an enhanced pattern of rapid wash-in and slow wash-out [136].

Table 1. Imaging features of abdominal and extra-abdominal DTs and advantages and weaknesses of
diagnostic tools.

Desmoid Tumor US CT MRI

Abdominal features [80]

Variable appearance ranging from
well-circumscribed to poorly defined
infiltrative heterogeneous solid mass

with variable echogenicity. Vascularity
is variable. At CEUS, early

enhancement of the contrast agent
and a very long washout

CT findings of intra-abdominal lesions
are determined by the amount of

collagen and myxoid tissue; therefore,
the myxoid component of the tumor
tends to be hypodense compared to
skeletal muscle, while the collagen

and fibrotic component may be
isodense or hyperdense. After

intravenous contrast administration,
the enhancement is mild to moderate

Heterogeneous pattern, with signal iso- to
hyperintense to skeletal muscle on

T2-weighted images and isointense to muscle
on T1-weighted images. Decreased signal

intensity on T2-weighted images most likely
results from dense collagen and

hypocellularity; conversely, increased T2
signal intensity reflects a high content of

spindle cells.
DTs commonly (90%) show moderate to

intense contrast enhancement, especially in
the more cellular and less fibrotic regions.

Extra-abdominal Features [137]

Variable appearance from
well-circumscribed to poorly defined
infiltrative heterogeneous solid mass

with variable echogenicity. Vascularity
is variable. At CEUS, early

enhancement of the contrast agent
and a very long washout

Slightly lower density, a higher degree
of enhancement and unclear

boundaries

Extra-abdominal DTs typically occur in the
intermuscular location along deep fascia and
may show a thin rim of surrounding fat (split

fat sign), linear enhancing extension along
the fascial planes, and feathery margins

resembling a flame (flame sign).

Advantages Inexpensive;
widely available; safe [111–116]

Requires high spatial resolution to
obtain sufficient anatomical detail for
the detection of deep lesions and for

targeting interventional procedures [80]

Multiparametric approach; the exceptional
contrast resolution; functional assessment

[138–143]

Weakness

Operator dependence;
poor performance for small

intra-abdominal lesions; patient’s
collaboration [111–116]

Radiation exposure [97] Long examination and interpretation time;
high costs [97]

6. Computed Tomography Assessment

CT has a dual approach: diagnostic and therapeutic. The sensitive advantage of the
use of CT is to have a high spatial resolution and obtain sufficient anatomical detail for the
detection of deep lesions and for targeting interventional procedures [144–146]. A recent
technique, dual-energy CT (DECT), was established to increase tumor detection [147,148].
DECT, which is founded on the instantaneous acquisition of two image datasets at different
energy levels, can produce virtual monochromatic images (VMIs) [149]. Additionally,
thanks to DECT, radiation and contrast media doses are lower compared to conventional
CT, which is mainly beneficial for patient surveillance [149].

CT is commonly used to image DTs (Tables 1 and 2), particularly for intra-abdominal
localizations for diagnosis and follow-up, as well as in preoperative assessment to identify
the relationship of the tumor with adjacent neurovascular structures and organs. CT can
provide critical information required for treatment planning. In addition, complications
such as bowel obstruction, bowel ischemia and hydronephrosis are readily identified on CT.
However, CT contributes up to 65% of medically induced radiation exposure, and this is a
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main critical point that should be considered during follow-up in young patients [97]. In
addition, the administration of intravenous contrast media (CM) is an integral element of
many CT examination protocols [97]. However, CM administration is also accompanied by
a potential risk for adverse reactions, in particular, allergic reactions and contrast-induced
nephropathy. Therefore, CM administration should be scrutinized, and the lowest adequate
dose should be used [97].

Table 2. Imaging features of abdominal and extra-abdominal DTs compared to other malignancies.

Tumor Desmoid Abdominal
Tumor

Other Abdominal
Malignancy

Desmoid
Extra-Abdominal

Tumor

Malignant Soft Tissue
Tumors

Imaging Assessment
[80,137]

The density of the
lesions on CT imaging

is uniform, and an
enhanced scan can

show uniform
enhancement.

Homogeneous signal is
isointense in T1-W and
hyperintense in T2-W

Inhomogeneous
density on CT and

signal intensity on MRI,
due to necrosis and
calcifications, with

inhomogeneous
contrast enhancement

during contrast studies

CT features of desmoid
tumors of the

extremities exhibited a
slightly low density,
mild enhancement,

unclear boundary and
uneven enhancement

after contrast
administration. Their
imaging features on
MRI were a round or

fusiform shape, unclear
boundaries, uniform

signal, uneven
enhancement, “tree

root” or “claw”
infiltration and
invasion of the

neurovascular bundles

Inhomogeneous
density on CT and long
T1 and long T2 signals,

T2 signal intensity
higher than that of fat

on MRI.
Calcification or cystic

necrosis

The CT findings of intra-abdominal lesions are determined by the amount of collagen
and myxoid tissue; therefore, the myxoid component of the tumor tends to be hypodense
compared to skeletal muscle, while the collagen and fibrotic component may be isodense or
hyperdense. After intravenous contrast administration, enhancement is mild to moderate
(Figure 2) [80]. Necrosis and calcifications are extremely rare.
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Figure 2. CT assessment (arrow) of mesenteric DT (a) in portal phase of contrast study. The lesion
enhancement is mild to moderate. The 18-FDG (b) assessment (arrow) with moderate uptake. Surgical
sample (c).

Shi et al. evaluated the imaging features in 13 patients with desmoid fibroma of the
extremities, finding that the tumors showed a lower density (69.23%), a higher degree of
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enhancement (61.54%) and unclear boundaries (84.62%) (Figure 3); a CT value < 50 Hu was
encountered in 53.85% of lesions, and the enhancement was uneven in 53.85% of cases [137].
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Figure 3. Axial (a) and MPR coronal (b) CT assessment of aggressive fibromatosis (arrow) in portal
phase of contrast study. The lesion shows mild enhancement and involvement of blood vessels.

To the best of our knowledge, no one study described the role of DECT in DTs.
As in US, CT also plays a pivotal role in guiding ablative treatment. In particular,

CT-guided cryoablation is safe, effective and offers some important advantages. First, it
presents the possibility of treating even large and multiple lesions in one session, creating
a large area of ablation with low risks of spreading the pathological cells. Second, the
technique is minimally invasive and requires low hospitalization times and mild anesthesia.
Third, the functional recovery is satisfyingly immediate. Fourth, the procedure can be
repeated with no risks for the patient in case of partial treatment [150–152].

7. Magnetic Resonance Imaging Assessment

Thanks to the multiparametric approach, the exceptional contrast resolution and the
possibility to exploit several advanced sequences, magnetic resonance imaging is the diag-
nostic gold standard for the study, characterization and follow-up of extra-abdominal DTs,
with a pivotal role for intra-abdominal ones [138–143]. Most advantages are evident in
particular extra-abdominal lesions occurring in the extremities, head and neck, abdominal
and chest wall and in lesions at mesenteric localization in patients allergic to contrast agents
or in young patients to reduce radiation exposure [1,7,21]. The signal intensity of MRI
reflects the proportion of collagen fibers, spindle cells and extracellular matrix present and
varies with imaging sequences. The commonly observed MR imaging appearance is a het-
erogeneous pattern, with signal iso- to hyperintense in the skeletal muscle on T2-weighted
images and isointense in the muscle on T1-weighted images. Decreased signal intensity
on T2-weighted images most likely results from dense collagen and hypocellularity; con-
versely, increased T2 signal intensity reflects a high content of spindle cells. DTs commonly
(90%) show moderate to intense contrast enhancement (Figures 4 and 5), especially in the
more cellular and less fibrotic regions; however, areas of non-contrast enhancement related
to necrosis may rarely be present (Tables 1 and 2) [80].
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Figure 5. The same patient of Figure 4, treated by CT-guided cryoablation (probes and ice-ball within
the lesion in (a); the follow-up control after 6 months depicts evident volumetric and enhancement
reduction (arrows) of the lesion (b,c).

Some characteristic but not specific findings of DTs on MRI have been identified. Low-
signal-intensity non-enhancing linear bands in all sequences, known as the band sign, are
present in 60% to 90% of DTs and can be seen in other benign (giant cell tumor of the
tendon sheath) and malignant (myxofibrosarcoma and malignant fibrous histiocytoma), likely
corresponding to the dense collagenous stroma often found at histologic examination [80].
Extra-abdominal DTs typically occur in the intermuscular location along deep fascia (Figure 6)
and may show a thin rim of surrounding fat (split fat sign) (83% of DTs), linear enhancing
extension along the fascial planes and feathery margins resembling a flame (flame sign) [80].

Beyond information on morphology, several MRI sequences can be used to obtain
functional, ultrastructural information on tissue and deepen the diagnosis.

Using DWI imaging, the DWI signal and the ADC values reflect the cellularity of the tissues,
so even if there are no normal cutoff values, DWI can characterize the biological activity of the
tissues [153–160]. In the study of musculoskeletal soft tissue tumors, this means that, as a general
rule, benign tumors with a low degree of biological activity will have a loss of ADC signal
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as the b values increase, while malignant tumors (in which the water has greater restriction
in movement) will show high intensity at high b values [161,162]. The mean ADC of DTs
was found to be significantly higher than that of malignant soft tissue tumors without overlap
in the minimum ADC values [163]. DWI has also proved very useful in the assessment of
treatment response [66,96]. Similarly, the evaluation of enhancement patterns can be challenging,
as both granulation and scar tissues (aspecific tissue changes after chemo/radiotherapy) are
enhanced after contrast administration, and the differentiation from the viable tumor is not
always direct. DWI was demonstrated to improve this discrimination earlier than conventional
imaging, as solid tumors are characterized by high cellularity with intact cell membranes, while
tissues after cytotoxic treatment show lower cellularity and membrane damage. DWI also
implements standard morphological sequences in the evaluation of postsurgical follow-up,
aiding in detecting residual/recurrent tumor tissue [42,94].
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Dynamic perfusion MRI is another functional imaging technique often used to evalu-
ate tumors, mainly to depict the early intravascular and interstitial distribution of gadolin-
ium [164–172]. In DTs, despite considerable variability, a time-intensity curve character-
ized by rapid early enhancement followed by a plateau was described [80]. However,
despite the characteristic imaging results of DTs on MR imaging, a biopsy is required
for histological characterization. In addition, the histological characteristics of DTs can
vary over time and are reflected in MR imaging and are useful as a support in evaluating
response to treatment [80].

MRI can guide ablative treatment as US and CT. High-intensity focused ultrasound
(HIFU) ablation is a noninvasive treatment that has been successfully used for the treatment
of various solid tumors [17]. In the past decade, several studies have been reported,
suggesting the safety and efficacy of HIFU ablation for the treatment of DTs [173–179].
HIFU uses nonionizing radiation ultrasound as the physical therapy factor. Therefore, it
not only has the potential of being a repeatable treatment but also has the potential to safely
ablate more tumor tissue. Although a few studies have reported the safety and efficacy
of HIFU in DTs, the sample size was too small. In addition, DTs can occur in any part of
the body, including the extra-abdominal, abdominal wall and intra-abdominal types. The
safety and efficacy of HIFU ablation for different types of DTs also should be assessed [180].

The critical weakness of MR assessment is related to the long examination and in-
terpretation time, as well as higher costs, which still represent barriers to MRI use [97].
Abbreviated MRI protocols have emerged as an alternative to standard MRI protocols.
These abbreviated protocols seek to reduce longer MRI protocols by eliminating unnec-
essary or redundant sequences that negatively affect the cost, examination time, patient
comfort and image interpretation time [97].
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8. Differential Diagnoses

Regarding the abdominal wall, several pathological processes can cause wall lesions to
comprise infection, hematoma, endometriosis and neoplasm [181,182]. Regarding mesen-
teric DT, these entities typically occur in FAP patients. However, in FAP patients with
colorectal cancer, it is possible to find mesenteric metastases that mimic DT. In addition,
other pathological entities should be considered in the differential diagnoses, including
gastrointestinal stromal tumor (Figure 7), lymphoma (Figure 8), neuroendocrine tumor,
carcinoma (Figure 9) and retractile sclerosing mesenteritis [2]. In this context, clinical
history and imaging features could be helpful in lesion characterization.
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Desmoid tumors in FAP patients are characterized considering clinical data, surgi-
cal history and imaging studies. CT and MRI allow us to characterize the lesion and to
determine the relationship between lesions and surrounding organs for proper treatment
planning. During CT study, the lesion density is uniform with uniform enhancement
during the contrast study [80,137]. These features are not typically for gastrointestinal
stromal tumors, lymphoma, neuroendocrine tumors and/or carcinoma, which show in-
homogeneous density due to necrosis or for hormonal mesenteric reaction [80,137]. In
addition, DTs have several typical features on MRI evaluation, such as a star shape and
extension into the fascial planes and fat tissue in a sunburst-like form, with homogeneous
signal isointense in T1-W and hyperintense in T2-W [80].

Regarding extra-abdominal DTs, several soft tissue lesions (melanoma metastases,
primitive soft sarcoma, etc.), occurring in extremities, head and neck and trunk, may
mimic these entities. During CT studies, DTs of the extremities show a low density, mild
enhancement and unclear boundary [137]. In MRI studies, typical features are a round or
fusiform shape, unclear boundaries, uniform signals, uneven enhancement, “tree root” or
“claw” infiltration and invasion of the neurovascular bundles [137]. Conversely to them,
malignant soft tissue tumors show inhomogeneous T1-W and T2-W signals, and the T2
signal intensity is higher than fat signal, with calcifications or cystic necrosis [183,184].
Therefore, CT and MRI studies allow us to identify typical extremities’ DTs features,
although MRI provides an objective basis for the diagnosis. Additionally, MRI has a higher
soft tissue contrast with clear advantages in the soft tissue tumors assessment (especially
in the extremities or head and neck). It is also suitable for younger patients in whom the
use of ionizing radiation should be avoided or who are allergic to iodine contrast agents.
However, CT and MRI can be combined to optimize the diagnostic accuracy, as well as to
reduce the incidence of missed diagnosis or misdiagnosis [183].

So, CT or MRI scans can not only help for diagnosis but also in determining the
relationship between tumors and the surrounding organs to obtain proper pre-treatment
planning. Otherwise, although US assessment is safe since it does not use ionizing radiation
so that the examination can be repeated several times [111–116], it plays a limited role
in the delineation of mass and lesions involving the abdominal wall, chest wall, breast
and extremities. However, due to operator dependence and the poor performance of
small intra-abdominal lesions, there is a necessity for patient collaboration to reduce the
sensitivity and specificity both in the detection and characterization of these tumors.

Although imaging assessment could help characterization, a definitive diagnosis
requires histopathological confirmation [2]. Pathology is the gold standard for the diagnosis
of DTs. Histological examination reveals paucicellular proliferation of fibroblasts and
myofibroblasts in a dense collagenous background, spindle cells with small and regular
nuclei, pale eosinophilic cytoplasm and acellular central areas with increasing cellularity
towards the periphery. Immunohistochemistry shows the cells are b-catenin, vimentin,
Ki-67, SMA, CD68 and CD34 positive, which can assist with the diagnosis [2].

9. Conclusions

Desmoid tumors represent a challenge for the radiologist, being able to mimic different
pathological conditions. A proper diagnosis is required to establish the proper therapeutic
approach in relation to the location, clinic and evolution of the disease. Imaging plays a
pivotal role in the detection and assessment of these lesions. In the correct radiological dis-
ease management, multimodality imaging, including US, CT and MRI, should be preferred.
Furthermore, in relation to the different phases of DTs approaches, detection and character-
ization, adjacent structures involvement assessment, treatment response evaluation and
surveillance should also be considered. These different imaging techniques can also guide
minimally invasive treatments and monitor their effectiveness.

Regarding differential diagnoses, although imaging assessment could aid characteri-
zation, a definitive diagnosis requires histopathological confirmation.
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