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Extracellular Vesicles (EVs) are small vesicles that can be actively secreted by most cell
types into the extracellular environment. Evidence indicates that EVs can carry microRNAs
(miRNAs), long non-coding RNAs (lncRNAs), tRNA-derived small RNAs (tsRNAs),
proteins, and lipids to target cells or tissue organizations. Latest studies show that EVs
play a vital role in the immune modulation and may contribute to the pathogenesis of
autoimmune diseases. Systemic lupus erythematosus (SLE) is a common autoimmune
disease characterized by abnormal T cell activation and sustained production of
autoantibodies against self-antigens, resulting in inflammation and damage to multiple
systems. Pathogenic mechanisms of SLE, however, are still not well understood. In this
review, we summarize the latest research advances on the functions and mechanisms of
EVs, and its role in the pathogenesis, diagnosis, and treatment of SLE.
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1 INTRODUCTION

Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease characterized by loss of
tolerance and sustained production of autoantibodies against self-antigens that form immune
complex deposits (Crispin et al., 2010). The prevalence of SLE varies from 30/100,000 to 50/
100,000, and the disease is more common in women of childbearing age. SLE is hard to diagnose due
to its complex pathogenesis and variable clinical symptoms. Most patients are diagnosed based on
the 1997 American College of Rheumatology classification criteria, and the disease activity is assessed
based on the SLEDisease Activity Index (SLEDAI). Nevertheless, it is not always effective. At present,
a majority of scholars believe that it is the interaction of genetic susceptibility, environment,
immunology, and hormone factors that lead to SLE, but the exact mechanism is not clear (Tsokos,
2011). Although non-steroidal anti-inflammatory drugs such as glucocorticoid (GCs),
immunosuppressants, and biological agents are commonly used in the treatment of SLE, hurdles
such as toxic side effects, the lack of target tissue, and non-response to treatment remain to be crossed
(Tsokos, 2011).

First described as “platelet dust” by Peter Wolf in 1967, extracellular vesicles (EVs) are a collective
term for phospholipids bilayer structures secreted by cells, which contain microRNAs (miRNAs),
long non-coding RNAs (lncRNAs), tRNA-derived small RNAs (tsRNAs), proteins, lipids, and other
substances (Raposo and Stoorvogel, 2013). The term “extracellular vesicles (EVs)” includes multiple
types of vesicles. Specifically, there exist three main classified subtypes based on their biogenesis, size,
and release mechanisms, namely microvesicles (100 nm-1 μm), apoptotic bodies (1–5 μm), and
exosomes (30–100 nm in diameter) (Yanez-Mo et al., 2015). Microvesicles (MVs, also called
microparticles) are larger than exosomes and pinch directly off from the outer cell membrane
(Akers et al., 2013). Microvesicles formation is the result of molecular rearrangements of the plasma
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membrane regarding phospholipid and cytoskeletal protein
composition as well as Ca2+ levels (Taylor and Bebawy, 2019).
Apoptotic bodies are large structures, which are also produced by
direct budding of the membrane and differ from exosomes and
MVs as apoptotic bodies are formed only during programmed
cell death. They are characterized by the presence of closely
packed cellular organelles and fragments of nuleus (Saraste
and Pulkki, 2000). Over the past few years, the cutting-edge
knowledge about EV research provides insights into new tools for
diagnosis, prognosis, and disease activity monitoring, novel
therapeutic strategy, and innovative evaluation approaches for
treatment effectiveness in SLE (Perez-Hernandez and Cortes,
2015; Perez-Hernandez et al., 2017; Wu et al., 2020; Zhang
et al., 2020; Zhao et al., 2020).

As the smallest vesicles and probably the most prominently
described class of EV, exosomes are ranging from 30–100 nm in
diameter, and are released by almost all cell types, including stem
cells, T and B lymphocytes, dendritic cells (DCs), macrophages,
endothelial cells, neurons, adipocytes, and epithelial cells

(Obregon et al., 2009; Mashouri et al., 2019; Rayamajhi et al.,
2019). They can be found in a wide range of bodily fluids, such as
blood, urine, saliva, breast milk, and in the supernatants of
cultured cells after being released into the extracellular
environment (Record et al., 2011; Matsumura et al., 2015).
Exosome has a lipid bilayer membrane structure and contains
bio-reactive macromolecules such as cell-specific proteins, lipids,
and nucleic acids, which can protect the coating substances,
targeting specific tissues and cells to perform their biological
functions. Recently, evidence indicates that exosomes play
important roles not only in physiological events, such as
intracellular communication, immune modulation, and
inflammation, but also in pathological conditions, including
autoimmune and cardio-metabolic diseases, as well as
development and metastasis of tumors (Shah et al., 2018; Stahl
and Raposo, 2019). In this review, we summarize the recent
progress of the potential role of exosomes in the pathogenesis,
diagnosis, and treatment of SLE (Figure 1 andTable 1). However,
there is always a heterogenous population of EVs regardless of the

FIGURE 1 |Role of EVs in systemic lupus erythematosus (SLE) and lupus nephritis (LN). The schematic diagram represents how EV components including miRNA,
lncRNA, tsRNA and proteins are involved in the pathogenesis of SLE and LN. In serum, EVmiR-451a is correlated with SLE disease activity and renal damage. MiR-146a
could be internalized into mesenchymal stem cells (MSCs) via circulating EVs and participates in MSCs senescence in SLE patients by targeting TRAF6/NF-κB signal
pathway. Serum EV miR-21 and miR-155 expression present correlations with autoantibodies and proteinuria. Levels of serum EV tRF-His-GTG-1 could be used
to distinguish SLE with LN from SLE without LN. In plasma, EV miR-574, let-7b and miR-21 activate pDC cells through the TLR7 signaling. MSC-derived EV tsRNA-
21109 inhibits the M1-type polarization of macrophages. UNC93B1 can be detected in RAW macrophage-derived EVs, it can recruit syntenin-1 to suppress TLR7
signaling and prevent autoimmunity. Overexpression of BPI in T cell-derived EVs suppresses Treg differentiation and induces EV-mediated inflammation in SLE. ECP
overexpression in T cell-derived EVs induces IFN-γ production and tissue inflammation. MiR-26a from urinary EVs can be used as a direct biomarker for podocyte injury.
Urinary EV miR-29c, miR-150 and miR-21 promote renal fibrosis through SP1 and Smad3/TGFβ signaling pathway. Urinary EV miR-135b-5p, miR-107 and miR-31
could meliorate renal disease by inhibiting HIF-1α. MiR-146a from urinary EVs negatively regulates inflammation by suppressing the TRAF6 axis. MiR-3135b, miR-654-
5p and miR-146a-5p in urinary EVs are candidate biomarkers for Type IV lupus nephritis with cellular crescent (LNIV-CC). Urinary EV let-7a and miR-21 may guide the
clinical staging of LN patients. CP, a protein from urinary EVs, could be an early biomarker to diagnose kidney disease.
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TABLE 1 | Diagnostic role of EVs in systemic lupus erythematosus (SLE) and lupus nephritis (LN).

Source of EVs Isolation method Candidate markers Function

Serum EVs — MiRNA —

ExoQuick Kit miR-451a↓ Tan et al. (2021) Correlate with SLE disease activity and renal damage, involved in intercellular
communication.

ExoQuick Kit miR-146a↓ Dong et al. (2019), Li et al. (2020) miR-146a is negatively correlated with anti-dsDNA antibodies and participates in
mesenchymal stem cells (MSCs) senescence in SLE patients by targeting TRAF6/NF-
κB signal pathway

ExoQuick Kit miR-21↑ Li et al. (2020) miR-21 is negatively correlated with anti-SSA/Ro antibodies. miR-21 and miR-155
show positive correlations with proteinuriaExoQuick Kit miR-155↑ Li et al. (2020)

— TsRNA —

N.A. tRF-His-GTG-1↑ Yang et al. (2021) Can be used to distinguish SLE with LN from SLE without LN.
Plasma EVs — MiRNA —

Ultracentrifugation miR-574↑ Salvi et al. (2018) Activate pDC cells through the TLR7 signaling, allowing them to produce IFN-α and
proinflammatory cytokineslet-7b↑ Salvi et al. (2018)

miR-21↑ Salvi et al. (2018)
Mesenchymal stem cells (MSCs) — tsRNA —

Cell culture media exosome
purification kit

tsRNA-21109 Dou et al. (2021) Inhibit the M1-type polarization of macrophages

RAW
macrophages Ultracentrifugation

Protein
Recruit syntenin-1 to suppress TLR7 signaling and prevent autoimmunityUNC93B1 Majer et al. (2019)

T cells
ExoQuick Kit

Protein
BPI↑ Chuang et al. (2021) Suppress Treg differentiation and induce EV-mediated inflammation in SLE.

ExoQuick Kit ECP↑ Chuang et al. (2022) Induce IFN-γ production and tissue inflammation
Urinary EVs

Ultracentrifugation
MiRNA
miR-26a↑ Ichii et al. (2014) Can be used as a direct biomarker for podocyte injury

Ultracentrifugation, miRCURY Exosome
Isolation Kit

miR-29c↓ Solé et al. (2015), Solé et al. (2019) Correlate with renal chronicity (CI) and promote renal fibrosis in LN through SP1 and
Smad3/TGFβ signaling pathwaymiR-150↑ Solé et al. (2019)

miR-21↑ Solé et al. (2019)
miRCURY Exosome Isolation Kit miR-135b-5p↑ Garcia-Vives et al. (2020) Meliorate renal disease by inhibiting HIF-1α, can be early markers for predicting LN

clinical responsemiR-107↑ Garcia-Vives et al. (2020)
miR-31↑ Garcia-Vives et al. (2020)

Ultracentrifugation miR-146a↑ Perez-Hernandez et al. (2015),
Perez-Hernandez et al. (2021)

Correlate with lupus activity, proteinuria, and histological features. Negatively regulate
inflammation by suppressing the TRAF6 axis

Ultracentrifugation miR-3135b↑ Li et al. (2018) Candidate biomarkers for Type IV lupus nephritis with cellular crescent (LNIV-CC)
miR-654-5p↑ Li et al. (2018)
miR-146a-5p↑ Li et al. (2018)

Ultracentrifugation miR-21↓ Tangtanatakul et al. (2019) Guide the clinical stage of LN patients
let-7a↓ Tangtanatakul et al. (2019)

Urinary EVs
Ultracentrifugation

Protein
Early biomarker to diagnose kidney diseaseCP↑ Gudehithlu et al. (2019)
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isolation method used. Additionally, none of the involved studies
published to date can prove that the isolated fractions are
exosomes only. In this context, we utilized the generic term
“extracellular vesicles (EVs)” instead of “exosomes” throughout
the rest of this survey. It is also in line with the recommended
terminology from the international society for extracellular
vesicles (ISEV) (Thery et al., 2018).

2 BIOLOGICAL CHARACTERISTICS OF EVS

2.1 The Biogenesis of EVs
The formation of EVs involves a variety of proteins and transport
complexes, and the fusion of primary endocytic vesicles should be
the first step of the early endosomes (EEs) formation. Then, two
pathways are shown by the EEs. One is that EEs become recycling
endosomes, returning to plasma membrane, and the other way is
converting into “late endosomes” (LEs)/multivesicular bodies
(MVBs) via inward budding of the membrane under the
endosomal sorting complex required for transport (ESCRT)-
dependent or ESCRT-independent mechanism. Afterwards,
LEs are fused with cell membranes, released into the
extracellular space under the control of Ras-related proteins in
barin (Rab) GTPases and soluble N-ethylmaleimide-sensitive
factor attachment protein receptors (SNAREs), which are
called EVs (Thery et al., 2002b; Simons and Raposo, 2009;
Hessvik and Llorente, 2018).

2.2 Isolation and Extraction of EVs
EVs play an essential role in mediating cell communications and
participate in the pathological process of multiple diseases. How
to extract EVs efficiently with high purity, high recovery, and low
cost has become the key to further downstream cell function
research. EV samples contain a large number of vesicles or
proteins that have similar volume, density or surface charge to
EVs, which can interfere with the result of the experiment. A
variety of methods have been developed in this regard (Ramirez
et al., 2018). Among them, ultracentrifugation is the most widely
used protocol and has also evolved as the gold standard for EV
separation. There are, however, still some inevitable downsides
such as high instrument cost and long extraction time. Moreover,
factors (e.g., multiple cleaning, high sample viscosity, etc.) are
likely to shape the downstream analyses negatively in an
uncertain manner (Momen-Heravi et al., 2012a; Momen-
Heravi et al., 2012b). Size exclusion chromatography is a
scheme using EV purification columns to separate EVs. It
does not require the use of expensive centrifuges, and the
obtained EVs have high purity. However, compared to
ultracentrifugation, it is more challenging to handle large
samples due to the limitations of the purification columns
(Koh et al., 2018; Monguio-Tortajada et al., 2019). Faced with
bodily fluids and other large-volume samples, ultrafiltration can
be perceived as a solution. The principle of ultrafiltration is the
same as membrane separation, and it takes less time, but
impurities such as other vesicles and proteins tend to block
the pores and reduce the extraction efficiency (Cheruvanky
et al., 2007; Konoshenko et al., 2018). The above-mentioned

traditional extraction methods have multiple drawbacks
including low purity, low recovery rate, and low efficiency.
Nowadays, a mounting number of new extraction methods are
discovered. Lewis et al. (2018) utilized static electricity to adsorb
EVs around the positive electrode, which largely improves the
purity and specificity of the EVs (Lewis et al., 2018). Wu et al.
developed a sonic-based separation method that can directly
isolate EVs from whole blood, greatly reducing the time
required to extract EVs (Wu M. et al., 2017). These new
technologies bring new opportunities for the diagnosis and
treatment of diseases in the future.

2.3 Function of EVs
EVs were originally considered to be vesicles employed to expel
excess transferrin receptor vesicles (Pan and Johnstone, 1983).
With the development of the research, various functions of EVs
were gradually revealed to the public. The vesicle structure of EVs
can protect its internal transported substances from the
interference of soluble substances such as proteases in vivo. At
present, it is generally believed that EVs serve as carriers and play
a big part in mediating information exchange between cells by
transporting microRNAs (miRNAs), long non-coding RNAs
(lncRNAs), tRNA-derived small RNAs (tsRNAs), proteins,
lipids, and other substances (Mathivanan et al., 2012; Barile
and Vassalli, 2017; Mathieu et al., 2019). These substances
may be involved in the pathogenesis of different diseases. EVs
of nasal epithelial cells in patients with chronic rhinosinusitis
with nasal polyps contain differentially expressed proteins, which
are mainly involved in epithelial remodeling through p53 and
other pathways, leading to sinus mucosal remodeling (Zhou et al.,
2020). EVs can carry β-Amyloid, prion, and α-synuclein, thus
spread disease-causing proteins in the brain, which may be
involved in Alzheimer’s disease progression (Nath et al., 2012;
Arellano-Anaya et al., 2015; Lööv et al., 2016). Evidence shows
that EV-associated miRNAs and lncRNAs play essential roles in
the pathogenesis of osteoarthritis (OA), including OA diagnosis,
pathogenesis, and treatment (Maehara et al., 2021; Miao et al.,
2021). In addition, EVs are involved in many physiological
processes, such as intracellular communication, signal
transduction, transport of genetic materials, and modulation of
immune response (Natasha et al., 2014). Evidence in previous
studies indicates that EVs are also involved in the progression of
diseases, including cancers, neurodegenerative diseases, and
autoimmune diseases (Anderson et al., 2010), such as
rheumatoid arthritis (RA), Sjogren’s syndrome (SS), and SLE.
In this review, we summarize the latest progress and recent
advances in EV research, therapeutic potential, and
mechanism of EVs in the pathogenesis of SLE, as well as their
clinical implications.

3 ROLE OF EVS IN IMMUNE FUNCTION

It was not until 1996 that B cells were found to induce T cell
responses by secreting EVs with major histocompatibility
complex (MHC) class II, which indicated the relationship
between EVs and immune regulation (Raposo et al., 1996).
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After that, EVs from other immunocytes, such as T cells, natural
killer (NK) cells, and dendritic cells (DCs), have also been proven
to mediate either immune stimulation or immune modulation
(Gutierrez-Vazquez et al., 2013; Zhang et al., 2014; Jong et al.,
2017; Reis et al., 2018).

3.1 EVs and Innate Immune Cells
Immune cell-derived EVs are involved in the regulation of the
innate immune responses. EVs released by neutrophils,
macrophages, NK cells, and DCs act on the innate immune
system as pro-inflammatory mediators via paracrine
messengers (Yanez-Mo et al., 2015).

3.1.1 Neutrophils
Neutrophils are the most abundant leukocyte population in
peripheral blood and are the first line of host defense against a
wide range of infectious pathogens (Mayadas et al., 2014). In
addition to regulating macrophage activation (Gasser and
Schifferli, 2004), neutrophil-derived EVs have inhibitory
effects on monocyte-derived DCs (Eken et al., 2008). These
EVs modify the morphology of monocyte derived DCs
(MoDCs) by inhibiting the formation of dendrites,
downregulate their phagocytic activity and maturation, and
inhibite the cytokine release of MoDCs, resulting in an
attenuated capacity to stimulate T cell proliferation (Eken
et al., 2008). Other studies identified several neutrophil-
derived EV associated molecules which can influence DC and
T cell function potentially, such as annexin A1 (Dalli et al., 2008;
Gavins and Hickey, 2012) and arginase-1 (Leliefeld et al., 2015;
Shen et al., 2017). What’s more, it was found that several
proteases in neutrophil-derived EVs such as myeloperoxidase
(MPO), elastase, cathepsin G and proteinase 3 may influence
adaptive immunity (Hess et al., 1999; Gasser et al., 2003; Dalli
et al., 2013; Timar et al., 2013; Slater et al., 2017).

3.1.2 Macrophages
Another type of innate immune cells which is a rich source of
EVs is macrophages (Wang et al., 2020). Macrophages are
important phagocytic cells distributed in essentially all
tissues, where they respond to a complex variety of
regulatory signals to coordinate immune functions involved
in tissue development, homeostasis, metabolism, and repair
(Wynn and Vannella, 2016). EVs secreted by bacterially
infected macrophages have a pro-inflammatory effect, which
can induce the maturation of DCs and activate CD4+ and CD8+

T cells (Giri and Schorey, 2008; Ramachandra et al., 2010).
Besides, these macrophage-derived EVs promote the release of
multiple pro-inflammatory cytokines and chemokines (Singh
et al., 2012). Furthermore, several studies characterized EVs
content and their effects on uninfected macrophages which
revealed that EVs released from infected macrophages holds
a vital role in immune surveillance (Bhatnagar et al., 2007;
Bhatnagar and Schorey, 2007).

3.1.3 Natural Killer Cells
Natural killer (NK) cells are innate lymphoid cells with potent
cytolytic function toward viral invasion and prevent survival or

spread of tumor cells (Morvan and Lanier, 2016). NK cells have
multiple activating receptors (e.g., NKG2D) and inhibitory
receptors (e.g., killer-cell immunoglobulin-like receptors,
KIRs), and the balance between these signals determines
whether or not NK cells are activated (Fernandez-Messina
et al., 2012; Sivori et al., 2019). NK cells are found to secrete
EVs in a constitutive way and independent of their activation
status (Lugini et al., 2012). Several studies reported that NK cell-
derived EVs show cytotoxic activity against tumor cells (Fais,
2013; Zhu et al., 2017) and activate immune cells (Lugini et al.,
2012).

3.1.4 Dendritic Cells
As the sentinel antigen-presenting cells (APCs) of the immune
system, dendritic cells (DCs) function as the link between innate
and adaptive immunity, leading to either antigen-specific
immunity initiation or tolerance (Steinman, 2012). Like DCs,
EVs secreted by DCs were found to possess functional MHC-
peptide complexes, costimulatory molecules, and other
components that interact with immune cells (Thery et al.,
1999; Thery et al., 2001; Thery et al., 2002a). EVs secreted by
mature DCs contain class II MHC complexes and costimulatory
molecules, which can directly interact with T cells to activate the
immune system (Segura et al., 2005). On the other hand, EVs
secreted by immature DCs can regulate the immune response, but
do not function in direct T cell activation (Quah and O’Neill,
2005). In addition, studies have shown that DC-derived EVs can
be absorbed by epithelial cells and promote the release of
inflammatory mediators (MCP-1, IL-8, TNFα, RANTES)
secreted by epithelial cells, suggesting that EVs promote
immune-inflammatory response (Obregon et al., 2009).

3.2 EVs and Adaptive Immune Cells
The adaptive immune cells mainly include T and B lymphocytes.

3.2.1 T Cells
DC-T cell interaction results in T cell activation. The interaction
is transmitted from T cells to DCs via the transfer of EV-DNA,
making DCs more resistant to infections (Torralba et al., 2018).
EVs derived from activated CD3+ T cell together with IL-2 can
modulate the activity of immune cells, including other T cells
(Wahlgren et al., 2012). In addition, depending on their activation
status, CD4+ T cells regulate the release of distinct vesicle
subpopulations with various abilities to activate other
untouched T cells (van der Vlist et al., 2012). T cell tolerance
is shown due to EVs secreted by CD8+ suppressor T cells
(Bryniarski et al., 2013). The protein expression profile of
T cell EVs change substantially after different stimuli
(activation vs apoptosis induction). Induction of apoptosis
causes T cells to release more apoptotic bodies than exosomes,
while activated T cells release exosomes and microvesicles both
in lower amounts (Tucher et al., 2018). Studies have shown
that Treg-derived EVs express immunomodulatory molecules
(CD25, CD73, CTLA4), which have immunosuppressive
effects and can regulate effector T cell proliferation and
cytokine secretion to regulate immune response (Agarwal
et al., 2014).
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3.2.2 B Cells
EVs derived from B cells exert a predominant role in antigen
presentation and immunoregulation. B cell-derived EVs can
induce antigen-specific MHC II-restricted T cell responses,
suggesting antigen presentation capacities just like B cells
(Raposo et al., 1996). Different types of antigens, carried by B
cell-derived EVs, may dictate different types of immune
responses (Hood, 2017). Recently, it has been suggested that B
cell-derived EVs may have immunoregulatory functions which
are independent of their ability to present antigen (Zhang et al.,
2019). In addition, the role of different lymphocytes subsets
(CD4+ T cells, CD8+ T cells, and NK cells) and DCs in CTL
immune response to antigen presented on B-cell derived EVs has
been described, demonstrating an complex interplay of
cooperating lymphocytes for EV immunogenicity (Saunderson
and McLellan, 2017).

4 ROLE OF EVS IN SLE AND LN

4.1 EVs, SLE
EVs were found to be increased (Pereira et al., 2006; Sellam et al.,
2009; Lee et al., 2016; Lopez et al., 2020) or decreased (Nielsen
et al., 2011) in SLE patients compared to healthy controls.
Proteins, mRNAs, miRNAs, lncRNAs, tsRNAs and other
noncoding RNAs have been shown to be associated with EVs
(Mathivanan et al., 2012; Barile and Vassalli, 2017; Mathieu et al.,
2019). Recent studies have revealed that the ncRNAs play
dominant roles in the pathogenesis of SLE (Long et al., 2018;
Xie and Xu, 2018; Zhao et al., 2018; Chen et al., 2019; Liu et al.,
2021). In this sense, miRNAs, lncRNAs, tsRNAs and proteins in
SLE EVs might serve as biomarkers for disease diagnosis and
therapeutic targets (Tan et al., 2016; Ortega et al., 2020).

4.1.1 EVs, miRNA, SLE
MiRNA is a type of single-stranded non-coding RNA with a
length of about 19–24 nucleotides, which can regulate the
expression of many genes in vivo and participate in the
pathogenesis of many diseases. Abnormal expression of
circulating miRNAs in SLE patients have been found, and
some of these miRNAs are related to clinical parameters
(Carlsen et al., 2013; Ishibe et al., 2018). Circulating miRNAs
are extracellularly secreted miRNAs circulating in the peripheral
blood, which are either encapsulated by extracellular vesicles such
as exosomes and microvesicles or bound to molecules such as the
Argonaute protein or HDL cholesterol (Arroyo et al., 2011;
Vickers et al., 2011). Tan et al. (2021) have reported that
compared with healthy controls, serum EV miR-451a was
decreased in SLE patients, which correlated with SLE disease
activity and renal damage (Tan et al., 2021). Moreover, they
found that EV shuttled miR-451a was involved in intercellular
communication (Tan et al., 2021). Li et al. (2020) demonstrated
that compared with healthy controls, serum EVmiR-21 andmiR-
155 of SLE patients were up-regulated, whereas the expression of
miR-146a was down-regulated (Li et al., 2020). Additionally, the
expression of miR-21 and miR-146a were negatively correlated
with anti-SSA/Ro antibodies and anti-dsDNA antibodies,

respectively (Li et al., 2020). What’s more, both EV miR-21
and miR-155 expression presented positive correlations with
proteinuria. These findings indicated that the expression levels
of EV miR-21 and miR-155 might serve as potential biomarkers
for the diagnosis of SLE. The aforementioned studies, however,
have some limitations yet to be addressed. The mechanism
underlying the reported dysregulation of the EV-associated
miRNAs expression and the cell origin of the EVs remain
unclear in the studies, which are performed based on relatively
limited samples.

With the continual advances in this thread, the mechanism of
EV-associated miRNAs in SLE pathogenesis has been revealed
gradually. It is shown that miR-574, let-7b and miR-21 in plasma
EVs can activate plasmacytoid DCs (pDCs) through the TLR7
pathway, enabling them to continuously produce IFN-α and
proinflammatory cytokines, which may contribute to the
pathogenesis of SLE (Salvi et al., 2018). Another study
suggests that miR-146a could be internalized into
mesenchymal stem cells (MSCs) via circulating EVs and
participates in MSCs senescence in SLE patients by targeting
TRAF6/NF-κB signal pathway (Dong et al., 2019).

4.1.2 EVs, lncRNA, SLE
LncRNA is another regulatory noncoding RNA longer than 200
nucleotides, capable of modulating many biological functions
more specifically than miRNA. Aberrant circulating lncRNA
expressions are found in SLE patients as well. Wu et al.
(2017), Wu et al. (2019) found that plasma levels of GAS5,
lnc7074 and lnc-DC were significantly reduced, whereas levels
of linc0597, linc0640 and lnc5150 were elevated in SLE patients
compared with those of healthy controls (Wu G.-C. et al., 2017;
Wu et al., 2019). However, due to the complexity of its role, there
is no literature regarding EV-associated lncRNA’s role in the
pathogenesis of SLE. Thus, this promising research line is
worthwhile to be investigated.

4.1.3 EVs, tsRNA, SLE
Transfer RNAs (tRNAs) are a group of classic ncRNAs with a
well-defined role in protein translation (Schulman and Abelson,
1988). tRNA-derived small RNAs (tsRNAs) are cleaved from
precursor or mature tRNAs with a length of 18–40 nt and can be
broadly classified into two main groups: tRNA halves and tRNA-
derived fragments (tRFs) (Anderson and Ivanov, 2014). tRFs have
been implicated to participate in diverse physiological processes
and involved in many diseases through the protein synthesis by
regulating mRNA expression (Zhu et al., 2018; Kim et al., 2020).
In a recent study, Xu et al. (2020) found that tRNAs and tsRNAs
were significantly differentially expressed in the PBMCs of SLE
patients, compared with those of healthy donors, and the targeted
genes of the differentially expressed tsRNAs were enriched in the
signaling pathway involved in primary immunodeficiency, T cell
receptor and Th cell differentiation, suggesting that tRNAs and
tsRNAs play important roles in the pathogenesis of SLE (Xu et al.,
2020). More precisely, Geng et al. (2021) showed that tRF-3009
was substantially over-expressed in CD4+ T cells of SLE patients
than those of healthy donors. What’s more, tRF-3009 may be
involved in SLE pathogenesis by modulation of IFN-α-induced
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CD4+ T cell oxidative phosphorylation (Geng et al., 2021). As for
the EV, Dou et al. (2021) revealed that mesenchymal stem cell
(MSC)-derived EV tsRNA-21109 inhibited the M1-type
polarization of macrophages, offering a promising therapeutic
strategy for SLE (Dou et al., 2021). Nowadays, Yang et al. (2021)
found that tRF-His-GTG-1 was significantly upregulated both in
serum of SLE without LN, and in serum EVs of SLE with LN
compared with healthy controls, suggesting that it could be
employed as a noninvasive biomarker for diagnosis and
prediction of nephritis in SLE (Yang et al., 2021). Nonetheless,
the exact mechanism underlying tsRNA-21109 and tRF-His-
GTG-1 mediated SLE development remains yet to be elucidated.

4.1.4 EVs, Protein, SLE
Proteins in EVs are also involved in the pathogenesis of SLE. Majer
et al. (2019) found that UNC93B1 can be detected in RAW
macrophage-derived EVs, it can limit TLR7 signaling and prevent
TLR7-dependent autoimmunity in mice (Majer et al., 2019).
Moreover, UNC93B1 mutation can enhance the TLR7 signaling
pathway, leading to the development of autoimmune diseases (Majer
et al., 2019). More recently, Chuang et al. (2021) proved that
bactericidal/permeability-increasing protein (BPI) is a negative
regulator of Treg differentiation (Chuang et al., 2021). They
identified the overexpression of BPI in T cells and T cell-derived
EVs contributed to autoimmune responses through both intrinsic
(inhibition of Treg population) and extrinsic (induction of
inflammatory EVs) pathways, which might be a biomarker and a
pathogenic factor for SLE (Chuang et al., 2021). And just this month,
they reported another EV-associated protein, Eosinophil Cationic
Protein (ECP, also namedRNase 3), whichwas overexpressed in SLE
T cell-derived EVs (Chuang et al., 2022). What’s more, ECP
overexpression in T cells resulted in an increase of inflammatory
responses and T-cell activation. Notably, ECP-containing EVs from
T cells led to tissue inflammation of the recipient mice. These results
suggest that ECP-overexpressing T cells or ECP-containing EVsmay
play an important role in SLE pathogenesis (Chuang et al., 2022).
Nevertheless, except for the small sample size, it would be
challenging yet essential to dig into the fundamental mechanisms
of BPI/ECP-induced inflammation via EVs in the future.

4.2 EVs, LN
Lupus nephritis (LN) is one of the most devastating
manifestations of SLE, and a primary cause of morbidity and
mortality of SLE (Hahn et al., 2012). At present, renal biopsy is
still the gold standard for diagnosis and evaluation of residual
nephron function. Renal puncture, however, presents many
perilous complications and can only reflect the state of a small
part of the renal tissue. Therefore, pursuing a non-invasive and
sensitive diagnostic method is urgently needed (Ortega et al.,
2010; Morell et al., 2021). Over the past few years, changes in
urinary miRNAs have been reported in LN patients, and its
expression may be relevant to disease activity (So et al., 2021).

4.2.1 EVs, miRNA, LN
Urinary EV-associated miRNAs are promising novel markers
for the diagnosis and prognosis of disease, and also clinical
outcomes. Lv et al. (2013) showed that high levels of miRNA

were confined to urinary EVs in patients with a diversity of
chronic diseases (Lv et al., 2013). Urinary EV in lupus nephritis
was first described in 2014, Ichii et al. (2014) first found that in
patients with lupus nephritis, the expression level of miR-26a in
urinary EVs was significantly higher than that in the control
group, and miR-26a expression was related to podocyte injury,
suggesting that miR-26a can be used as a direct biomarker for
podocyte injury in autoimmune glomerulonephritis (Ichii et al.,
2014). Solé et al. (2015) showed reduced expression level of
miR-29c in LN patients compared with healthy controls, and its
level in urinary EVs was negatively correlated with the
histological chronicity index and glomerular sclerosis,
indicating that miR-29c level could be used as a novel non-
invasive marker for predicting histological fibrosis of LN (Solé
et al., 2015). As the research proceeds, the mechanism of
urinary EV-associated miRNAs in LN pathogenesis has been
gradually revealed. Recently, their team revealed that miR-21
and miR-150 were substantially up-regulated while miR-29c
was down-regulated in the urinary EVs of LN patients, and
their expression was strongly correlated with renal chronicity.
They also demonstrated that these miRNAs promoted renal
fibrosis through SP1 and Smad3/TGFβ signaling pathway (Solé
et al., 2019). And a more recent study by their team found that
the overexpression of urinary EV miR-135b-5p, miR-107, and
miR-31 could meliorate renal disease by inhibiting HIF-1α,
suggesting their potential to become early markers for
predicting clinical response in LN (Garcia-Vives et al.,
2020). Perez-Hernandez et al. (2015) confirmed that urinary
miRNAs were contained mainly in EVs, and they reported an
impressive increase in miRNA-146a in urinary EVs in patients
with active lupus nephropathy, implying that miRNA-146a in
EVs may be able to distinguish SLE patients with active LN
from control group or SLE patients in absence of LN (Perez-
Hernandez et al., 2015). Recently, their group identified a
protective role that urinary EV miR-146a played in LN
progression through negative regulation of inflammation by
suppressing the TRAF6 axis (Perez-Hernandez et al., 2021).
Furthermore, it has been evidenced that Type IV lupus
nephritis with cellular crescent (LNIV-CC) has a unique
urinary EV-associated miRNA expression profile, and
urinary EV miR-3135b, miR-654-5p and miR-146a-5p are
candidate biomarkers for LNIV-CC (Li et al., 2018). In
addition, another study discovered that compared with
inactive disease, let-7a and miR-21 in urine EVs were
significantly down-regulated in LN patients with active
disease. Interestingly, their expression increased after the
entire course of treatment, indicating that urinary EV-
related miRNA, let-7a and miR-21, may be leveraged to
guide the clinical stage of LN patients (Tangtanatakul et al.,
2019). The above findings indicate that miRNAs in urinary EVs
may have great potential to serve as biomarkers in LN diagnosis
and monitoring.

4.2.2 EVs, Protein, LN
Proteins in urine EVs are also involved in the pathogenesis of LN.
Gudehithlu et al. (2019) found that urine EV ceruloplasmin (CP)
was increased in LN patients. What’s more, in biopsied cases, CP
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was strongly localized to kidney tubules, suggesting that the CP
found in urine EVs came from the kidney. Moreover, in mouse
models, urine EV CP were observed to increase prior to
proteinuria, indicating it could be an early biomarker to
diagnose kidney disease (Gudehithlu et al., 2019).

These findings strongly suggest the potential role of urinary
EVs as a non-invasive biomarker in the diagnosis and treatment
of LN. Multiple limitations of the present studies, however, need
to be acknowledged and are summarized as follows. Firstly,
studies involving a reasonably larger patient cohort are
necessary for further analyzing and validating these findings,
especially for diagnosis. Secondly, most of the research works
described above are cross-sectional studies. The longitudinal
studies such as during disease flare or before and after
treatment are also needed to further extend these findings.
Thirdly, the thorough comparative analysis between the
reported urinary EV-associated miRNAs/protein and the
existing inflammatory and clinical markers of disease is
missing and thus worthwhile to be performed in the further.
Fourthly, the differentially expressed urinary EV-associated
miRNAs/protein is delivered from various kidney cell types.
Further study to characterize specific cell types that contribute
to the dysregulation of miRNAs/protein in urine EVs is thus
demanded. What’s more, the present studies lack functional
experiments at molecular or cellular level to verify the
association between miRNAs/protein and LN. All these
imperfections are likely due to the low recovery ration, low
yield and purity of EV extraction as well as the immature
technology of EV transfection and infection.

5 CONCLUSION

In recent years, EVs have emerged as an important endogenous
“nanovehicles” for carrying and transferring molecular mediators
such as nucleic acids, proteins, and bioactive lipids for
intercellular communications and signal transduction. Besides,

it is well established that EVs are involved in a multitude of
physiological and pathological processes, such as immune
response, antigen presentation, cell differentiation, cell
migration, and tumor invasion. A rapidly expanding body of
evidence indicates that the presence of EV-specific patterns and
their cargo play crucial physiological and pathological roles in
SLE. In this context, miRNAs, tsRNAs, and proteins transported
into serum/plasma/urinary EVs are correlated with glomerular
damage, SLE disease activity, clinical stage and response,
proteinuria as well as the severity of renal fibrosis in lupus
nephritis. In this article, we provide the up-to-date survey of
relevant literature evidencing that EVs have great potential in SLE
disease diagnosis, prediction, prognosis, and targeted treatment
(Figure 1 and Table 1). However, the underlying
pathophysiological mechanisms of EVs in SLE pathogenesis
and their functionality as therapeutic agents or targets are not
fully understood. Future investigations into the exact
mechanisms of EVs in SLE will undoubtedly bring new
breakthroughs for SLE disease diagnosis and therapies.
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