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In the context of multidimensional structures, with the presence of a common factor
and multiple specific or group factors, estimates of reliability require specific estimators.
The use of classical procedures such as the alpha coefficient or omega total that
ignore structural complexity are not appropriate, since they can lead to strongly
biased estimates. Through a simulation study, the bias of six estimators of reliability in
multidimensional measures was evaluated and compared. The study is complemented
by an empirical illustration that exemplifies the procedure. Results showed that the
estimators with the lowest bias in the estimation of the total reliability parameter are
omega total, the two versions of greatest lower bound (GLB) and the alpha coefficient,
which in turn are also those that produce the highest overestimation of the reliability of
the general factor. Nevertheless, the most appropriate estimators, in that they produce
less biased estimates of the reliability parameter of the general factor, are omega limit
and omega hierarchical.

Keywords: reliability, multidimensional, bifactor, Monte – Carlo simulation, measurement

INTRODUCTION

This article examines the biases that can occur when estimating the reliability of the total score of a
multi-item measure when the latent structure of that set of items corresponds to a bifactor model.
The majority of internal consistency reliability coefficients were deduced based on the assumption
that the items were homogeneous in that they measure a single construct, that is, unidimensionality
was assumed (Graham, 2006; Peters, 2014). For this reason, the current literature (Green and Yang,
2009, 2015; Crutzen and Peters, 2017) underlines the need to evaluate the factorial structure of
constructs (their dimensionality) of multi-item measures, as a pre-exam step of its reliability.

Perfect unidimensionality, also known as strict unidimensionality, refers to the presence of a
single common factor that adequately explains the inter-item covariance matrix (or correlations).
However, perfect unidimensionality is a difficult requirement to meet (ten Berge and Sočan, 2004)
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since, in practice, there is usually inter-item covariance beyond
the common factor, which suggests a certain degree of
multidimensionality (Reise et al., 2000; Sočan, 2000). Strict
unidimensionality requires that there be no specific groupings
or factors and that there is no correlation between item errors,
since these correlations indicate that the items share variance
beyond that explained by the common factor. For example, the
redundancy of the content of the items (asked more than once,
but with slightly different wording) or similarity in the way
the items are presented are usually indicated as sources of this
additional variance, other than the variance due to the common
factor. To the extent that additional sources of variance, such
as that attributed to correlations between errors or to group
or specific factors, allow complex structures to be modeled,
estimates of the reliability of the common factor will require
controlling those sources of additional variance.

When items with very similar content are included in a test
(i.e., content overlap), a positive correlation between errors is
observed. If this correlation between errors is not controlled in a
unidimensional test, for example by applying the Raykov formula
(2001), the alpha, total omega, or GLB reliability coefficients will
overestimate the true reliability of that scale.

If instead of two items with similar content, there are three or
more items with content overlap, new factors will be generated
so that if their specific variance is not controlled by bifactor
modeling (Reise, 2012) that allows hierarchical omega estimation,
the alpha, total omega, and GLB estimations will overestimate
reliability by ignoring the multidimensionality produced by
correlated errors. Another example of a similar overestimation is
observed in tests with overlapping alternatives, as it is the case of
the testlet (Gessaroli and Folske, 2002; Teker and Dogan, 2015).

Considering the difficulty of obtaining strictly unidimensional
measures, a more realistic alternative is to investigate the so-
called essential unidimensionality, which implies the coexistence
of a general factor, common to all items, and of group or specific
factors that are only common to some subsets of items. The
so-called bifactor model is the most recommended procedure
(Reise, 2012; Rodriguez et al., 2016) to evaluate the essential
unidimensionality of a multi-item measure.

When the strict unidimensionality assumption is violated,
most estimators tend to produce biases that affect the correct
estimate and interpretation of reliability (Raykov, 2001; ten Berge
and Sočan, 2004; Green and Yang, 2015; Crutzen and Peters,
2017). Of particular relevance are the overestimation biases of
true reliability (Revelle and Zinbarg, 2009; Yang and Green,
2011; Sijtsma, 2012; Dunn et al., 2014) since they generate the
false sensation of being accurately measured when, in fact, that
estimate is positively biased (Viladrich et al., 2017).

Cronbach’s alpha coefficient is the main estimator of reliability
despite its limitations (Green and Yang, 2009; Sijtsma, 2009a,
2012; Yang and Green, 2011; Cho and Kim, 2015; Trizano-
Hermosilla and Alvarado, 2016; McNeish, 2018). In bifactor
structures, the alpha coefficient usually overestimates the
reliability of the general or common factor (Zinbarg et al., 2006)
and underestimates the reliability attributed to all the factors of
the model, including simultaneously the common and specific
factors (Revelle and Zinbarg, 2009). In fact, Cortina (1993)

recommends not using this coefficient in multidimensional
measurements, arguing that if the set of items in a test is explained
by orthogonal (or poorly correlated) factors, the alpha coefficient
of that set of items can provide values greater than 0.70 when
the true reliability is much lower and even nil in balanced
structures in which orthogonal factors provide equal variance.
Even in cases where there are correlations between errors, the
alpha coefficient delivers higher reliability values than would
be expected if the relevant corrections were made, as long as
the correlations between the errors of these items are positive
(Raykov, 2001). The Cronbach’s alpha coefficient is equivalent to
the lambda 3 proposed by Guttman (1945). The other lambda
estimators, as well as alpha, do not take into account the possible
multidimensionality of the measure. Given these limitations, it
is necessary to examine whether other estimators, other than
alpha, turn out to be more suitable for computing the reliability
of multidimensional measurements. This could be the case of
the omega coefficient family (Zinbarg et al., 2006; Revelle and
Zinbarg, 2009; Green and Yang, 2015).

One of the alternatives to the traditional alpha coefficient
is the family of omega coefficients (McDonald, 1999; Zinbarg
et al., 2005, 2006). Of these, the best known are the total omega
and the hierarchical omega coefficient. Total omega is used to
evaluate the joint reliability of all the factors of the model,
without differentiating between the sources of variance of specific
or general factors, while the hierarchical omega coefficient is
used to correctly estimate the reliability of the general factor,
controlling the variance of the specific factors (Green and Yang,
2015). The main advantages of these coefficients are that they
are evaluated within a factorial model, have more realistic
assumptions than the alpha coefficient (Dunn et al., 2014) and
allow clarifying the distinctions between validity and reliability
(Green and Yang, 2009).

Despite GLB’s solid theoretical foundation (Sijtsma, 2009a) it
has not been used often by researchers (Sijtsma, 2009b), although
some recent empirical studies have shown that it behaves better
than alpha (Lila et al., 2014) and is less biased in unidimensional
scales than alpha and omega (Wilcox et al., 2014; Trizano-
Hermosilla and Alvarado, 2016). However, in samples of less
than 1000 cases and under the assumption of normality, it has
been observed that this coefficient tends to overestimate the true
value of reliability (Shapiro and ten Berge, 2000). Revelle and
Zinbarg (2009) argue that GLB, contrary to its name, is not the
greatest lower limit of reliability, but that other coefficients, such
as total omega, allow for clearer estimations of reliability and in
some cases obtain higher values than those presented by GLB.
Beyond the debate about which estimator to choose in strictly
unidimensional structures, it is necessary to conduct simulation
studies to determine which is the best reliability alternative when
the assumption of unidimensionality is questionable in terms of
goodness of fit, but when a strong general common factor is
observed according to the theoretical model (i.e., bifactor model).

A simulation study assessed and compared bias in six
estimators of reliability in bifactor models. In addition to
the Cronbach’s alpha coefficient, three Omega coefficients
(Hierarchical, Total, and Limit) and two versions of the
greatest lower bound coefficient (GLBFa and GLBAlgebraic) were
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examined. In addition, for illustrative purposes, these coefficients
were evaluated and compared using real data.

METHODS

Data Conditions
Eighty-one bifactor models with six sample sizes were simulated,
manipulating four independent variables: (1) nine loadings sizes
for the general factor, with values of 0.40, 0.45, 0.50, 0.55,
0.60, 0.65, 0.70, 0.75, and 0.80; (2) three loading sizes for the
specific factors, with values of 0.35, 0.45, and 0.55; (3) six sample
sizes of 100, 150, 200, 250, 500, and 1,000; and (4) three test
lengths with 12, 24, and 48 items, thus considering a wide
range of conditions that can be observed in real situations. The
simultaneous consideration of these four conditions generated a
total of 486 specific combinations, with 500 replications being
made per condition. An example of one of these conditions is
shown in Figure 1, which includes 12 items organized according
to a bifactor structure composed by a well-defined general factor
with high saturation (loading = 0.70), as well as three poorly
defined specific factors with low saturation (loading = 0.35).

Analysis of Data
As dependent variables, the bias [6 (ρ̂-ρ)/Nr]-where ρ̂
represents the estimator, ρ the true reliability, and Nr the number
of replications- of each of the six coefficients was obtained
regarding both the reliability attributable to the general or
common factor (general reliability) and that attributable to all
common and specific factors of the model (total reliability).
Bias levels close to zero were indicative of an adequate
estimate of the parameter. Then, descriptive analyses of the
center and dispersion statistics of the global bias of each
estimator were performed. Next, by calculating the coefficient of
determination (r2, understood as the squared correlation between
the true reliability and each of the reliability estimators), the
percentage of variance shared between each reliability estimator
and the parameter of true reliability was examined, both for
general reliability and for total reliability, for each condition,
presenting the mean between conditions. A high r2 value was
indicative of greater overlap between the estimator and true
reliability, suggesting a less biased estimator. Subsequently,
the behavior of the six reliability estimators was evaluated
using data collected through the Authoritative School Climate
Scale (ASCS; Cornell and Huang, 2016) in 1,868 Chilean
adolescent students. This scale includes 15 items grouped

FIGURE 1 | Example of a 12-item bifactor model, with one general factor, with loadings = 0.70 and three specific factors, with loadings = 0.35.
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into two highly correlated dimensions. With these data and
by using confirmatory factor analysis (CFA), three models
were examined first: a unidimensional, a bidimensional and a
bifactor model. Four measures of goodness of fit (Chi-square,
CFI, TLI, and RMSEA) were obtained and their values were
interpreted according to the acceptance criteria conventionally
established in the literature (Schreiber et al., 2006). In addition,
the Explained Common Variance (ECV) was estimated, which
is the common variance explained by the general factor
divided by the total common variance, indicating the degree
of unidimensionality, or relative strength, of general to group
factors (Reise et al., 2013; Rodriguez et al., 2016). Factorial
analyses with empirical data were performed with Mplus 8.1
software (Muthén and Muthén, 1998–2017) while reliability
estimates were obtained using the psych package (Revelle, 2020)
in R software (R Core Team, 2016).

RESULTS

The results shown below were obtained through all conditions.

Coefficient Bias When Estimating the
Reliability of the General Factor and
Total Reliability
Table 1 shows the global descriptive statistics of the bias levels for
each of the six coefficients. When considering the reliability of the
general factor as a parameter, the Omega Limit coefficient, which
corresponds to an asymptotic version of Omega Hierarchical,
presents the average bias closest to zero. This result indicates
that Omega Limit tends to deliver less biased estimates of
general factor reliability. The Omega Hierarchical coefficient also
exhibits a small average bias, close to zero, although negative.
The remaining four coefficients (Omega Total, Cronbach’s Alpha,
GLBFa, and GLBAlgebraic) have positive averages bias, indicating
that they tend to overestimate the reliability of the overall factor.
Regarding the dispersion of the estimators, it was observed

TABLE 1 | Overall descriptive statistics of the level of bias when estimating the
General reliability and total reliability of each coefficient.

Parameter Estimator Average SD Minimum Maximum

General
factor
reliability

Omega hierarchical −0.039 0.047 −0.459 0.135

Omega limit 0.001 0.046 −0.393 0.293

Omega total 0.148 0.071 −0.036 0.386

Cronbach’s alpha 0.128 0.065 −0.206 0.375

GLBFa 0.153 0.072 0.030 0.397

GLBAlgebraic 0.164 0.077 −0.036 0.630

Total reliability Omega hierarchical −0.186 0.085 −0.731 −0.033

Omega limit −0.146 0.079 −0.716 0.119

Omega total 0.001 0.008 −0.226 0.103

Cronbach’s alpha −0.019 0.017 −0.446 0.053

GLBFa 0.007 0.012 −0.075 0.138

GLBAlgebraic 0.017 0.015 −0.120 0.300

GLBFa, greatest lower bound by factorial methods; GLBAlgebraic, greatest lower
bound using algebraic methods.

TABLE 2 | Determination coefficients (r2) between the reliability estimators and the
parameters of general reliability and total reliability.

Omega
hierarchical

Omega
limit

Omega
total

Cronbach’s
alpha

GLBFa GLBAlgebraic

General
factor
reliability

0.845** 0.787** 0.500** 0.549** 0.498** 0.408**

Total
reliability

0.569** 0.326** 0.974** 0.941** 0.945** 0.924**

GLBFa, greatest lower bound by factorial methods; GLBAlgebraic, greatest lower
bound using algebraic methods.
**p < 0.001.

that Omega Limit and Omega Hierarchical presented the lowest
dispersion values for the reliability of the general factor. On
the contrary, Omega Total and GLBFa estimators presented
the lowest SD in the estimation of total reliability. In the
Supplementary Material, two graphs display the behavior of
these coefficients as they are used to estimate the reliability of the
general factor as a function of the different manipulated factors.

When evaluating the degree of bias presented by the
coefficients when estimating the reliability of all the factors, it can
be seen that Omega Total and GLBFa show the levels closest to 0.
The former presents the least variability, indicating that it tends
to provide unbiased estimates of the reliability of all factors, while
GLBAlgebraic has a slight positive bias, and the Alpha coefficient
shows a slight negative bias when estimating the reliability of
all factors. It is observed that Omega Hierarchical and Omega
Limit present considerable negative biases when estimating the
reliability of all factors.

Coefficients of Determination Between
Estimators and True Reliability
As observed in Table 2, the Omega Hierarchical and Omega
Limit coefficients share 84.5% and 78.7% of variance, respectively,
with the true reliability attributed to the general factor (the two
with the least bias and variability). In the other coefficients, the
percentages of shared variance are lower and range from 54.9%
(Alpha) to 40.8% (GLBAlgebraic).

Meanwhile, when evaluating the relationship between the
coefficients of reliability and the reliability attributable to all
the factors of the model (total reliability), it is observed that
Omega Total has the highest coefficient of determination,
followed closely by GLBFa, then by Cronbach’s alpha and finally,
by GLBAlgebraic. The Omega Total and GLBFa estimators
presented the least bias and the least dispersion in the descriptive
analyses. It can also be seen that Omega, in its Hierarchical and
Limit version, has a comparatively low association with total
reliability (see Table 2).

An Illustration With Real Data
A CFA of the responses to the ASCS provided unsatisfactory
adjustment rates for the unidimensional model, χ2

(90) = 2,271.382, p < 0.001, CFI = 0.937, TLI = 0.927,
RMSEA = 0.111 (90% CI 0.107–0.115). However, these
indices were relatively acceptable for the bidimensional
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model χ2 (89) = 1,704.840, p < 0.001, CFI = 0.954,
TLI = 0.945, RMSEA = 0.096 (90% CI 0.092–0.100), with
a correlation between both factors of 0.89 and significantly
better values for the bifactor model χ2 (75) = 1,062.371,
p < 0.001, CFI = 0.972, TLI = 0.960, RMSEA = 0.082
(90% CI 0.078–0.086). Considering these fit values, it was
decided to analyze the reliability of the bifactor model.
For the general factor, the estimated reliability was 0.785
(Omega Hierarchical), 0.861 (Omega Limit), 0.912 (Omega
Total), 0.900 (Alpha and GLBFa), and 0.931 (GLBAlgebraic).
The ECV was 0.795, suggesting the existence of a strong
common factor. As expected, the Omega Hierarchical and
Omega Limit estimators obtained comparatively lower
reliability values, giving a less biased estimate of reliability
since these coefficients control for the variance from the
specific factors. On the other hand, Alpha, Omega Total,
and the two GLB versions obtained estimates higher than
0.90 when the total reliability was examined. As these
four coefficients do not distinguish between the different
sources of variance, it can be said that they have a positive
bias in estimating the reliability of the general factor in
bifactor measurements.

DISCUSSION

In this simulation study, which was illustrated by an analysis of
real data, the behavior of six reliability estimators was evaluated
when applied to latent multidimensional bifactor structures.
While the literature clearly points out the advantages and
disadvantages of each of these coefficients (Zinbarg et al., 2005,
2006; Revelle and Zinbarg, 2009; Sijtsma, 2009a; Yang and Green,
2011; Cho and Kim, 2015; Trizano-Hermosilla and Alvarado,
2016; McNeish, 2018), the practical implications are usually
poorly understood by applied researchers (Sijtsma, 2012; Sijtsma
and van der Ark, 2015).

In this study, we examined the reliability of the general
factor in bifactor models (Zinbarg et al., 2005, 2006; Reise,
2012), a situation in which the most suitable coefficients
proved to be Omega Hierarchical and Omega Limit due to
their low bias and low dispersion. The Omega Total, Alpha,
and the two versions of GLB show levels of overestimation
biases of that true reliability, delivering inflated values since
they do not distinguish between the variances attributed to
the general factor and the specific factors. Thus, these four
estimators are not recommended to examine the reliability of
the general factor in bifactor models, except when the loadings
of the general factor are high, and the loadings of the specific
factors are very small (see Supplementary Material). In a
recent work by Green and Yang (2015) on reliability in the
bifactor model, the proper functioning of Omega Hierarchical
has been observed.

When estimating the reliability of all factors (both general
and specific), the most accurate estimators of the population
parameter in order are: the Omega Total coefficient, the
two versions of GLB and third, the Alpha coefficient, since
the latter presented a slight negative bias when estimating

the parameter. Recently, Raykov (2019) showed that Alpha
is a good population estimator, which is consistent with
our results, although the study did not analyze the behavior
of other estimators. According to our results, Omega Total
(Revelle and Zinbarg, 2009) and GLBFa (Sijtsma, 2009a)
are the estimators that have the greatest association with
the total reliability. This apparently favorable result hides
a strong overestimation of the reliability of the general
factor. Therefore, the Omega Total and GLB coefficients
should not be used in bifactor structures to determine the
precision with which the general attribute of interest is
measured. As indicated by Trizano-Hermosilla and Alvarado
(2016), GLB is deduced from the assumption that there
is no correlation between errors, so that in conditions of
strict unidimensionality their behavior is excellent. However,
when this assumption is generally unfulfilled, even when
the scale was initially designed to be unidimensional, the
correlation between errors becomes part of the true variance
and consequently there is a strong overestimation of the
general factor, as with Omega Total and to a lesser extent the
Alpha coefficient.

The results obtained with real data illustrate the findings of
the previous simulation study. The first step in any practical
application should be to show the goodness of fit to the bifactor
model (Green and Yang, 2015). Among the six coefficients
examined, Omega Hierarchical and Omega Limit delivered
comparatively less biased values when estimating the reliability
of the general factor in bifactor models. On the other hand, the
coefficients Alpha, Omega Total, and the two versions of GLB,
being exposed to a positive biased estimate of the reliability of
the general factor, provide higher values of reliability than such a
general factor really has.

Regarding the limitations of this article, it should be
mentioned that the estimator bias results were presented
without detailed evaluations between the conditions and their
interactions due to the low dispersion of the Omega Limit and
Omega Hierarchical estimators. However, the high dispersion
shown by the unidimensional estimators indicates that their
values are sensitive to the specific conditions of application
and therefore, before using them, additional simulations should
be conducted to find their magnitude of bias in the specific
scenario. Future lines of research could expand upon the
findings of the present study by considering categorical variables
in the simulation.

We invite researchers and editors to use the current
recommendations regarding the correct estimation of the
internal structure of multi-item measures, and then proceed
to examine the evidence of reliability by means of the
coefficients that offer less bias in the parameter estimation.
Obtaining unbiased values of the reliability with which
a certain attribute is being measured allows avoiding the
acceptance of measures that show high total reliability,
without differentiating between general and specific factors,
due to positively biased estimates. The relevance of this
advice is that these biased estimates affect the quality of
inferences that can be made from the scores obtained
from these measures.
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