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The immune checkpoint blockade therapy has completely transformed cancer treatment
modalities because of its unprecedented and durable clinical responses in various
cancers. With the increasing use of immune checkpoint blockades in clinical practice, a
large number of patients develop acquired resistance. However, the knowledge about
acquired resistance to immune checkpoint blockades is limited and poorly summarized. In
this review, we clarify the principal elements of acquired resistance to immune checkpoint
blockades. The definition of acquired resistance is heterogeneous among groups or
societies, but the expert consensus of The Society for Immunotherapy of Cancer can be
referred. Oligo-progression is the main pattern of acquired resistance. Acquired resistance
can be derived from the selection of resistant cancer cell clones that exist in the tumor
mass before therapeutic intervention or gradual acquisition in the sensitive cancer cells.
Specifically, tumor intrinsic mechanisms include neoantigen depletion, defects in antigen
presentation machinery, aberrations of interferon signaling, tumor-induced exclusion/
immunosuppression, and tumor cell plasticity. Tumor extrinsic mechanisms include
upregulation of other immune checkpoints. Presently, a set of treatment modalities is
applied to patients with similar clinical characteristics or resistance mechanisms for
overcoming acquired resistance, and hence, further research is required.

Keywords: immune checkpoint blockade therapy, acquired resistance, neoantigen depletion, interferon signaling
aberration, tumor-induced exclusion, immunosuppression, tumor cell plasticity, treatment modalities.
INTRODUCTION

Since the approval of the first CTLA-4 blockade by the US Food and Drug Administration (FDA) in
2011 (1, 2), immune checkpoint blockades (ICBs) have completely changed cancer treatment
modalities (3–6). Due to more extensive use of ICBs in clinical practice, several patients exhibit
disease progression, although with an initial response, termed as acquired resistance (AR). However,
the underlying mechanisms of AR and strategies for overcoming AR are limited and poorly
summarized. Previous research (7–9) has focused on primary resistance to ICBs, providing limited
description about AR, whose mechanisms and countermeasures differ from those of primary
resistance. In addition, updated information on AR needs to be emphasized.
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In this review, we clarify the principal elements of AR to ICBs
including the (1) definition of AR; (2) clinical characteristics of
AR; (3) underlying mechanisms of AR; and (4) potential
strategies to overcome AR. We hope that this review will help
researchers and clinicians recognize AR to ICBs more
comprehensively and in detail.
DEFINITION OF AR TO IMMUNE
CHECKPOINT BLOCKADES

Primary resistance occurs when cancer cells do not respond to
immunotherapy, whereas AR normally occurs as disease
progression after an initial response. Contrary to primary
resistance, the current definition of AR is highly heterogeneous
among groups or societies. Different researchers define AR
differently when they explore the underlying mechanisms or
design clinical trials, with the main controversies being prior
response (10, 11) (whether the stable disease should be regarded
as a response to ICBs), treatment duration time (10, 12) (a cut-off
time to distinguish from primary resistance), and treatment
discontinuation (10, 13) (whether disease progression after
discontinuation to ICBs should be regarded as AR). These
divergent views have obstructed the integrated interpretation of
each solitary study and further research in this field. To clarify the
underlying resistance mechanisms to immunotherapy, Sharma et al.
introduced a three-category classification of primary resistance,
Frontiers in Immunology | www.frontiersin.org 2
adaptive immune resistance, and AR (7). However, adaptive
immune resistance can manifest like primary resistance or AR in
the clinic, and they did not clearly define these terms (7). The
International Association for the Study of Lung Cancer (IASLC)
expert panel has defined primary resistance (no objective tumor
radiographic response and treatment duration < 6 months) and AR
(an objective tumor response and treatment duration ≥ 6 months)
for lung malignancies immunotherapy, but they did not consider
other clinical settings in addition to advanced disease or the issue of
treatment discontinuation (14). The Society for Immunotherapy of
Cancer (SITC) proposed expert consensus definitions for PD-(L)1
inhibitor monotherapy resistance in solid tumors (15) (Table 1),
which can be widely applicable. However, definitions based on
empirical data from clinical trials, patient registries, or previous
studies investigating treatment beyond progression and/or
treatment after relapse are still needed, which will fuel future
research on AR to ICBs, providing guidelines for clinical practice.

AR is considerably different from primary resistance to ICB
therapy based on three aspects— (1) immunophenotypes: AR
mainly occurs in inflamed tumors, while primary resistance
occurs in excluded or desert tumors, which lack sufficient
immune infiltration (16); (2) underlying mechanisms: AR is
attributed to the mutual evolution of tumor and tumor
microenvironment (TME) under the pressure of ICB-activated
immune elimination, while primary resistance can be attributed
to the host, tumor, TME, and microbiome, a reflection of
baseline status resisting ICBs (17–19); and (3) coping
strategies: the coping strategies of AR could be specific to the
TABLE 1 | The definitions for PD-(L)1 inhibitor monotherapy resistance in solid tumorsa.

Definitions of neoadjuvant therapy resistance

Major pathological responseb Other requirements

Primary resistance No Follow primary resistance definitions
Acquired resistance Yes Follow acquired resistance definitions

Definitions of adjuvant therapy resistance

Timing of last dose prior to PD Confirmatory biopsyc

Primary resistance/early relapse <12 weeks Yes
Late relapse ≥12 Weeks Yes

Definitions of primary and acquired resistance in advanced disease setting

Drug exposure and best response Confirmatory scan

Primary resistance ≥6 weeks; PD, SD for <6 monthsd Yes, at least 4 weeks after progressione

Acquired resistance ≥6 months; CR, PR, SD for >6 monthsd Yes, at least 4 weeks after progressione

Definitions of resistance after discontinuing treatment for metastatic diseasef

Best response and duration of time after last dose of PD-(L)1 inhibitor Confirmatory scan

Primary resistance No CR/PR prior to discontinuation No
Acquired resistance Prior CR/PR and ≤12 weeks from last dose Yes
Late progression Prior CR/PR and >12 weeks from last dose Yes
J

aAdapted from SITC expert consensus for PD-(L)1 inhibitor monotherapy resistance in solid tumors (15).
bTumor shrinkage ≥90%.
cIn this setting, a confirmatory biopsy would supplant a confirmatory scan.
dIndolent tumor types might require modification of the timeframe.
eOther than when tumor growth is very rapid and patients are deteriorating clinically.
fThe reason for treatment discontinuation may be CR, PR, end of study, or other social rationales.
CR, complete response; PD, progressive disease; PR, partial response; SD, stable disease. Per Response Evaluation Criteria in Solid Tumors 1.1.
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resistance mechanisms, aiming at extending the patients’
survival, while the coping strategies of primary resistance are
comprehensive and largely dependent on heating the cold
tumor (20).
CLINICAL CHARACTERISTICS OF AR

Unlike primary resistance, the rates of AR have not been
routinely reported and thus are not characterized across tumor
types. Based on available data of response duration time,
Schoenfeld et al. inferred the AR rate and found that AR rate
ranges from 11% to 71% among different tumor types, with the
median of 39%, and a tumor with a lower response rate has a
higher AR rate (21). Additionally, based on clinical trial data, AR
to nivolumab in melanoma at 5-year follow-up was 39% (22),
while AR to nivolumab in non-small-cell lung cancer (NSCLC)
at 4-year follow-up was 65% (23).

In the population of patients with response to ICBs, the median
duration of response (DOR) was heterogenous among different
tumor types, lines of therapies, or PD-L1 levels. Patients with
melanoma had the longest DOR, with the median of more than
four years.While the median DOR in other tumor types was usually
less than two years, indicating that more than half responders would
progress within two years (Supplementary Table 1).

In the population of patients with AR to ICBs, the clinical
characteristics of these patients were not routinely reported in
clinical trials. Based on the limited clinical trials and real-world
studies on this topic (24–28), AR is more likely evident in
patients with prior partial response (PR) instead of complete
response (CR) (stable disease is not taken into consideration).
The median time to resistance is inconsistent and needs further
validation. Oligo-progression is the main pattern of resistance.
The median survival time after AR seems heterogeneous among
different patients and largely depends on the successive
treatment (Table 2). However, it must be noted that the
definition of AR in these studies is either not given or different
from the SITC recommendations, without the requirement of 6-
month drug exposure and 3-month limit for drug discontinuation.
Frontiers in Immunology | www.frontiersin.org 3
UNDERLYING MECHANISMS OF AR

Based on the origin of AR, AR to immunotherapy can be divided
into two major categories, though the phenotype of these two
categories is almost similar in the response and resistance phases
(Figure 1). The first type of resistance is a special form of
Darwinian natural selection that comes from the selection of
genetic or epigenetic heritable traits that exist in the tumor mass
before a therapeutic intervention (29). Intratumor heterogeneity
can come from numerical or structural chromosomal instability,
somatic mutagenesis, and epigenetic diversity (30). AR-related
heterogeneity lies in various aspects of anti-tumor immunity.
Additionally, the quantity and quality of resistant tumor cell
clones reflect the forms of resistance. The abundant and high-
quality resistant clones provide a basis for the occurrence of
primary resistance, while scarce and low-quality resistant clones
retain the possibility for AR.

PD-L1 expression is broadly used as a biomarker for the
initiation of PD-(L)1 inhibitor therapy, approved by the US
FDA, although it has many shortcomings (17). However, PD-L1
expression is associated with T cell infiltration and forms a
scattered but not disseminated pattern in tumor tissues (31),
which can result in different responses of the individual tumor
cell to PD-(L)1 inhibitor. PD-L1 expression also shows
heterogeneity among different anatomic sites and decreases
after ICB therapy (32). Tumor cells can express neoantigens,
resulting from the instability of the genome, which can be
recognized by the cytotoxic immune cells and elicit effective
anti-tumor immunity (33–35). Similarly, neoantigens exhibit
intratumor heterogeneity, and the clonal neoantigen load
rather than the subclonal one can predict ICB-treated patient
survival (36, 37). Single-cell RNA-Seq data from lung
adenocarcinoma patients and cell lines revealed the intratumor
heterogeneity of IFN-g signaling pathway genes and tumor
antigen expression levels (38). Proteomic analysis of the single
cell-derived tumor organoids also revealed that the human
leukocyte antigen (HLA) class I peptides are heterogeneous
within a tumor mass (39). Rosenthal et al. reported 64
untreated early-stage NSCLC patients in the TRACERx 100
TABLE 2 | Clinical characteristics of acquired resistance to ICBs.

Study Cancer
type

No. of
patients

Treatment Prior response Median time
to resistance

Pattern of
progression

Median post-
progression survival

Wang et al.
(24)

Melanoma 36 Anti-PD-1 monotherapy, any line 11% CR, 89% PR 11.1m 78% single site 12.8m

Pires da
Silva et al.
(25)

Melanoma 12 Anti-PD-1 plus anti-CTLA-4, first line 50% PR, 33% SD, 17%,
pseudo-progression

9.6m Median of 5
progressing
lesions

Not reach, One-year
survival rate is 83%

Keynote
006* (26)

Melanoma 27 Anti-PD-1 monotherapy, anti-CTLA-4
monotherapy, first or second line

22% CR, 59% PR, 19%
SD

33.3m 60% single site,
20% double sites

NA

Gettinger
et al. (27)

NSCLC 26 Anti-PD-(L)1, anti–PD(L)1 plus anti-
CTLA4, anti–PD-1 plus erlotinib, any line

100% PR 10.4m 54% single site,
35% double sites

Not reach, three-year
survival rate is 70%

Shah et al.
(28)

NSCLC 33 Anti-PD-1 monotherapy, any line NA NA 67% single site NA
June 2021 | Volum
*26 patients completed two-year treatment of pembrolizumab, and 1 patient did not complete two-year treatment of pembrolizumab for achieving complete response. The time to
resistance was calculated from the end of pembrolizumab treatment. The pattern of progression of two patients were not available, so they are excluded to calculate the rate of oligo-
progression. NA, not available.
e 12 | Article 693609

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhou et al. AR to Immune Checkpoint Blockades
cohort with 164 tumor regions and found a great heterogeneity
of the immune infiltration status among different regions of the
same tumor in the same patient (40). The different immune
infiltration status also leads to different immune editing
levels (40).

After the initiation of ICBs, responders experienced genomic
contraction, loss of the tumor cells expressing specific
neoantigens, expansion of specific T cells targeting the
corresponding neoantigens, and upregulation of other
checkpoints (such as TIGIT, TIM-3, and VISTA), with the left
cancer clones more resistant to the activated immunity (41). Gu
et al. established a unique mouse system that utilized clonal
tracing and mathematical modeling to monitor the growth of
each cancer clone in response to ICBs, revealing that ICB-
resistant cancer clones pre-exist in the tumor mass and finally
result in AR (42). The smaller the tumor size, the more abundant
are the ICB-resistant clones (42). One of the identified resistant
clones had higher expression of genes involved in DNA
replication and sterol biosynthesis and lower expression of
those involved in ribosome biogenesis. The other resistant
clone had a higher expression of genes involved in interferon
response and lower expression of those involved in growth factor
binding. Both clones had higher expression of genes indicating
cytotoxic T cell dysfunction, while the MHC-I expression and the
sensitivity to IFN-g were normal (42). Additionally, Darwinian
natural selection can be exemplified by the dissociated responses
(43) to ICBs and the phenomenon that patients with prior PR are
more likely to acquire resistance to immunotherapy compared to
those with CR (Table 2).

The second type of resistance to immunotherapy is AR in
sensitive tumor cells, also called “homeostatic resistance” (29). It
is easy to understand that adaptive changes can occur within
tumor cells to help them survive the drug-induced massacre. In
Frontiers in Immunology | www.frontiersin.org 4
the field of target therapy for lung cancer, epidermal growth
factor receptor (EGFR) T790M mutation gradually emerges with
the initial mutation of 19del or L858R unchanged, thus leading to
AR to the first- or second-generation tyrosine kinase inhibitors
(TKIs) (44, 45). One example of this type of resistance for
immunotherapy is that tumor cells can upregulate PD-L1
under the pressure of the immune cell-secreted IFN-g (46).

It is difficult to study the underlying mechanisms of AR
following the two categories mentioned above, although they
are easy to understand. Regarding a specific mechanism
underlying AR (such as a certain gene mutation), researchers
have not been able to determine whether this trait pre-exists in
the tumor or is truly acquired at the individual cell level (high-
resolution technologies will fuel the related research, such as
single-cell RNA-seq (47) and spatial multi-omics (48)). It seems
that Darwinian natural selection has a greater contribution to AR
than homeostatic resistance (49, 50); however, the question
remains unanswered. Furthermore, the two categories
mentioned above do not completely fulfill the role of immune
cells, which is fundamental for anti-tumor immunity. Thus, we
classified the underlying mechanisms of AR to immunotherapy
into tumor intrinsic factors and extrinsic factors (Figure 2).

Tumor Intrinsic Mechanisms
Underlying AR
Neoantigen Depletion
High-quality neoantigens are crucial for the efficacy of ICBs (37),
and their depletion results in AR. Under the pressure of immune
elimination, cancer cells can escape immune attack through the
HLA loss of heterozygosity (LOH) or neoantigen depletion (40,
51). The neoantigen depletion is more pronounced in patients
with intense immune infiltration or with HLA intact than HLA
LOH (40). In a study (10) including four NSCLC patients with
FIGURE 1 | Two modes of acquired resistance to immunotherapy. In the Darwinian natural selection mode, immunotherapy resistant tumor cell clones pre-exist in
the tumor mass. They are present at the treatment initiation phase and resist the immune response. In the homeostatic resistance mode, resistant clones are not
present before the treatment initiation but emerge under the additional immune pressure it generates. Brown, yellow, and green cells denote different resistant tumor
cell clones and blue cells denote sensitive tumor cell clones.
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AR to ICBs, the comparison between pre-treatment and post-
treatment samples revealed that some predicted neoantigens
were lost in the post-treatment samples with no significant
differences in the expression of PD-L1, PD-1, CTLA-4, or
genetic aberrations related to immune responses. In addition,
the lost neoantigens have high affinity to MHC and TCR, which
can stimulate the T cells in vitro in the corresponding patients
(10). Similarly, another group (52) also identified the reduced
expression of high-immunoreactivity neoantigens in a metastatic
uterine leiomyosarcoma patient with AR to PD-1 blockade,
although the biallelic PTEN loss was also detected in the
treatment-resistant tumor, indicating that the same tumor can
resist immunotherapy through more than one mechanism.
Notably, tumor antigen depletion is also a usual resistance
mechanism in T cell transfer therapy (53, 54). However, it
remains elusive whether the depletion of neoantigens is a
consequence of Darwinian natural selection with the
neoantigen-expressing clones eradicated or is a biological
adaptation at an individual cancer cell level; the former seems
inevitable for cancer immunotherapy, the strategies of which are
inducing new immunogenicity, while the latter can be overcome
by the modulation of certain molecular events.

Defects in Antigen Presentation Machinery
Tumor antigens can only be recognized by the cytotoxic T
lymphocyte after combining with MHC-I and being presented
on the cancer cell surface (55), while the defects in this process
Frontiers in Immunology | www.frontiersin.org 5
result in AR. The effective antigen presentation machinery
depends on the normal functions of HLA-I, TAP, beta-2-
microglobulin (B2M), and other molecules (56). Under the
pressure of immune infiltration, cancer cells can evade
immune attacks through aberrations of antigen-presenting
genes; furthermore, the mutations of HLA genes are more
likely to occur in the TCR-binding domain (57, 58). In a study
(12) including four metastatic melanoma patients with AR to
pembrolizumab, homozygous B2M frame-shift deletion was
detected in a resistant tumor sample, with IHC validating the
loss of MHC class I heavy chain at the cancer cell outer-
membrane, even though diffuse intracellular staining indicated
continued production of MHC class I molecules, in line with the
transporting and stabilizing function of beta-2-microglobulin.
B2M and the location of MHC-I were normal in the pre-
treatment sample of this patient (12). The biallelic loss of B2M
(homozygous mutation or heterozygous mutation combined
with LOH) in the resistant tumor is also confirmed by other
groups (13, 59).

However, the efficacy of ICBs is heterogeneous among
patients with B2M LOH, for retaining a wide type allele of
B2M. In a study by Sade-Feldman et al. (59), B2M LOH was
detected in both the pre-treatment tumor and the post-treatment
tumor of Pat 99, while the beta-2-microglobulin protein was lost
only in the post-treatment sample, in line with the patient
acquiring resistance after a prior response. In Pat 25, B2M
LOH and beta-2-microglobulin protein loss were both detected
A B

FIGURE 2 | Tumor intrinsic and extrinsic mechanisms of acquired resistance to immunotherapy. (A) The left panel illustrates tumor intrinsic mechanisms of acquired
resistance, including neoantigen depletion, defects in antigen presentation machinery, interferon signaling deficiency or prolonged exposure, tumor-induced exclusion/
immunosuppression, and tumor cell plasticity. (B) The right panel illustrates tumor extrinsic mechanisms of acquired resistance, mainly through upregulating other immune
checkpoints, such as TIM-3, LAG-3, and VISTA.
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in the pre-treatment tumor and post-treatment tumor, with the
patient primarily resisting therapy (59). In a larger cohort, B2M
LOH was also detected in patients with response to ICBs (4/36,
11.1%), although it mainly occurred in patients resistant to ICBs
(20/69, 28.9%), with a significant difference (p = 0.03) (59).
Additionally, B2M LOH can predict a worse survival to
checkpoint blockade therapy (59). These phenomena indicate
that B2M LOH can increase the possibility of beta-2-
microglobulin loss, and the protein loss can result in resistance
to ICBs, while B2M LOH solely cannot. The retained wide type
allele of B2M may undergo epigenetic modification. Similarly,
the relationship between single allelic truncating B2M mutation
and AR remains elusive.

In contrast, some studies reported the inessential role of B2M
in ICBs immunotherapy. Three retrospective studies of patients
with colorectal carcinoma both found that a B2M mutation was
more likely to happen in the microsatellite instability-high (MSI-
H) patients and the B2M status was not associated with tumor
immune infiltration (60–62). Furthermore, Middha et al.
reported that B2M status was not associated with MHC-I
expression and the MSI-H patients with inactivating mutation
of B2M can still respond to ICBs, with the beta-2-microglobulin
loss validated by IHC (62). Based on a study of patients with
mismatch repair deficiency (d-MMR) and its supplementary
information (11), the mutation of B2M can also be detected in
patients with response to ICBs, though the IHC results were not
available. The probable explanation of these phenomena is that
the neoantigen-rich tumors (MSI-H or d-MMR) can present the
antigen, independent of beta-2-microglobulin or beta-2-
microglobulin, playing a different role in primary resistance
compared to AR. Rizvi et al. also reported a patient with
biallelic B2M mutation responding to anti-PD-1 therapy, with
IHC validating the beta-2-microglobulin loss (63). However,
detailed information was not available to evaluate the status of
MSI or MMR (63). The relationship between beta-2-
microglobulin, MHC-I, and cancer immune response needs
further exploration, especially in the MSI-H or d-MMR tumors.

HLA-I is another component of antigen presentation
machinery. There are limited reports about the contribution of
HLA-I mutation to the efficacy of ICBs for the high
polymorphism of the HLA loci (64), but it seems that there are
still some recurrent mutations that are positively selected to resist
immune attack (57, 64). The two studies (65, 66) contradicted
each other about whether LOH of HLA-I is associated with
response or resistance to ICBs, though it is widely accepted that
HLA LOH is a strategy of cancer cells to evade immune attack
(51) and the HLA-corrected TMB shows better predictive value
than TMB (67). In a case of T cell transfer therapy targeting
mutant KRAS (68), the patient progressed after the prior
response to the injected HLA-C*08:02–restricted tumor-
infiltrating lymphocytes. The resistant lesion was resected and
found to have lost the chromosome 6 haplotype encoding the
HLA-C*08:02 class I major histocompatibility complex (MHC)
molecule (68). However, high-grade evidence is still needed to
illustrate whether HLA-I LOH can result in AR to ICBs. Some
studies reported the relationship between transcriptional
downregulation of MHC class I molecule and resistance to
Frontiers in Immunology | www.frontiersin.org 6
immunotherapy. Paulson et al. (69) reported two patients with
AR to combined immunotherapy (T cell transfer combined with
ICBs). Comparison of the pre-treatment and post-treatment
tumor from the first patient revealed the transcriptional loss of
HLA-B with the injection of HLA-B restricted CD8+ T cells (69).
The resistant tumor from the second patient transcriptionally
downregulated HLA-A with the injection of HLA-A restricted
CD8+ T cells (69). Furthermore, the transcriptional loss of HLA-
I can be rescued by hypomethylating agents (69). Lee et al. (70)
reported that MHC class I downregulation was a hallmark of
resistance to PD-1 inhibitors and was associated with the
MITFlow/AXLhigh de-differentiated phenotype and cancer-
associated fibroblast signatures. In addition, the resistant
phenotype was driven by TGB-b (70). Mechanically, the
transcriptional loss of HLA-I can be mediated by PRC2 (71). It
is worth noting that some emerging factors can also affect the
antigen presentation machinery, such as HPV16 E5 (72), IL-8
(73), and autophagy (74). The relationship between these factors
and AR needs to be researched in the future.

Dual Effects of Interferon Signaling
IFN-g plays a pivotal role in ICB therapy, including directly
killing cancer cells (75), upregulating MHC-I (76), upregulating
PD-L1 (46), and other immune-modulating functions (77). The
intact IFN-g pathway includes IFNGR1, IFNGR2, JAK1, JAK2,
STAT1, and the downstream response elements, as well as
negative modulating elements such as SOCS-1 (77, 78). Gao
et al. found that melanoma tumors resistant to CTLA-4 inhibitor
contain genomic defects in IFN-g signaling genes and confirmed
that the knockdown of the IFNGR1 gene in B16/BL6 tumors
diminished the efficacy to CTLA-4 inhibitor (79). Similarly, the
biallelic JAK1/2 loss-of-function mutation leads to the defects of
IFN-g induced PD-L1 expression, resulting in primary resistance
to PD-1 blockades (80). In the study of four melanoma patients
with AR to pembrolizumab (12), the resistant tumors of two
patients were found to harbor JAK1 or JAK2 truncating mutation
combined with LOH, leading to the biallelic loss of function,
while no JAK1/2mutations were seen in the baseline tumors. On
the functional level, the JAK1/2 loss of function leads to the
defects of IFN-g induced growth arrest, MHC-I expression, and
PD-L1 expression (12). The findings were also validated by
another group (13). Moreover, the genomic analysis revealed
that the loss of tumor suppressor CDKN2A can enhance the
susceptibility of JAK2 loss, increasing the rate of AR (81).
However, Luo et al. reported the difference between JAK1 and
JAK2, with JAK1 deficiency being able to mediate resistance to
anti-PD-L1 immunotherapy while JAK2 could not (82),
consistent with a recent report that metastases with JAK2 loss-
of-function might be regressing under immunotherapy (83). As
for the LOH or heterozygous mutations of the IFN-g signaling
genes, retaining a wide type allele, the tumors are still under
effective immune attack (84, 85).

Although the defects of IFN-g signaling can drive AR, the
prolonged interferon signaling can also elicit resistance to ICBs
through multiple inhibitory pathways, such as upregulation of
IDO and other immune checkpoint ligands (86). IFN-g serves as
an essential element for cytotoxic T cell-dependent cancer
June 2021 | Volume 12 | Article 693609
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genome immunoediting (87). In the preclinical study (88), IFN-b
can increase the tumor infiltration of regulatory T cells via
NOS2, resulting in immunosuppression and AR. Besides, IFN-
b can coordinate with all-trans retinoic acid to upregulate CD38,
resulting in resistance via the adenosine receptor signaling (89).

Tumor-Induced Exclusion/Immunosuppression
The immune desert tumors are well-known to resist
immunotherapy due to the lack of pre-existing immune
elements (90). Spranger et al. first reported that the tumor-
intrinsic Wnt/b-catenin activation is the main cause of immune
desert (91). Besides, Peng et al. reported that loss of PTEN can
decrease the immune infiltration, thus promoting the formation
of immune desert (92). PTEN loss of function occurs via the
PI3K-Akt pathway (93). In the study of Peng et al. (92), PTEN
loss resulted in primary resistance in mice receiving adoptive cell
therapy, and PTEN loss positively correlated with primary
resistance in a patient cohort receiving anti-PD-1 therapy. As
for AR, George et al. reported a patient with metastatic uterine
leiomyosarcoma receiving anti-PD-1 monotherapy, the resistant
sample of which was detected with biallelic PTEN loss (52).
Trujillo et al. also reported biallelic PTEN loss as an AR
mechanism for a patient with melanoma receiving combined
immunotherapy of anti-PD-1 and anti-CTLA-4 (94). They also
reported a patient with melanoma receiving melanoma-peptide/
interleukin-12 vaccine, the resistant sample of which was
detected with b-catenin activation (94). In the cohort of
melanoma patients with AR to ICBs (95), PTEN loss was
detected in four patients and b-catenin activation was detected
in two patients, without overlap.

In addition to genetic changes, tumor cells can also induce
immunosuppression to resist immunotherapy via multiple
approaches. Under the pressure of ICBs-induced immune
activation, tumor cells can increase the infiltration of
regulatory T cells via IFN-b/NOS2 (88), recruit myeloid-
derived suppressor cells (MDSCs) via PD-L1-NLRP3-Wnt5a-
CXCR2 (96), and secrete CSF-1 to increase the level of tumor-
associated macrophages (TAMs) (97). However, it remains
elusive whether CSF-1 induced TAMs are immunoreactive or
immunosuppressive (16). The clinical trial of anti-CSF-1R
antibody largely failed (98). Intriguingly, TAMs can also steal
anti-PD-1 mAbs to alleviate efficacy (99). Kim et al. identified
two immune subtypes of triple-negative breast cancer, including
neutrophil-enriched (NES) and macrophage-enriched subtypes
(MES), and the MES-to-NES conversion can mediate acquired
ICBs resistance (100). Furthermore, tumor-derived bone
morphogenetic protein 7 (BMP7), a member of the TGF-b
superfamily, promotes resistance to immunotherapy (101).
Adenosine is considered an important immunosuppressive
cytokine (102). During the treatment of PD-1 inhibitors,
tumor cells can upregulate CD73 to increase adenosine
production, leading to AR (103). Moreover, the upregulation of
CD73 was validated in the resistant tumor from a melanoma
patient with initial CR to pembrolizumab, while CD73 was at a
relatively low level in the baseline tumor (103). Similarly, tumor
cells can also upregulate CD38 to promote adenosine
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production, leading to AR (89). Indoleamine 2,3 dioxygenase
(IDO) is the rate-limiting enzyme that catabolizes tryptophan
(Trp) into kynurenine (Kyn), controlling the function of T cells
(104). The upregulation of IDO in tumor cells can also induce
immunosuppression, resulting in resistance (105, 106).

Tumor Cell Plasticity Drives Acquired Resistance
Tumor cell plasticity represents the ability of tumor cells to
undergo phenotypic changes in response to environmental
stimuli without modifying their genome. The contribution of
tumor cell plasticity to the acquired anti-tumor therapy
resistance has been recognized recently (107, 108).

One important issue is transdifferentiation.Thetransdifferentiation
of non-small-cell lung cancer (NSCLC) to small-cell lung cancer
(SCLC) is considered to be one of the AR mechanisms to target
therapy (109). It is thought that this transdifferentiation depends
on the inactivation of RB1, without the dependency of EGFR
status or tyrosine kinase inhibitors use (109). There are indeed
several case reports about the ICBs induced transdifferentiation
of NSCLC to SCLC (110–112). There were five patients in total.
Four of them were treated with nivolumab and one with
pembrolizumab. After progression on ICB, three of them
received EC chemotherapy (etoposide-carboplatin) and all
responded. However, the ICBs induced transdifferentiation and
the underlying mechanisms data from large cohorts is yet to
be confirmed.

Another issue is the epithelial−mesenchymal transition
(EMT). EMT is thought to be associated with extensive anti-
tumor therapy resistance (107, 108, 113). Sehgal et al. found that
immunotherapy persister cells, which can resist CD8 T-cell
mediated killing, expressed Snai1 and stem cell antigen-1 (Sca-1),
and exhibited hybrid epithelial-mesenchymal features (114). SOX2,
another transcription factor associated with EMT, was reported to
promote resistance to ICBs (115). Additionally, Dongre et al. found
that quasi-mesenchymal cells can not only resist anti-CTLA-4
therapy but also protect epithelial cells from immune attack (116).
Tumor cell plasticity is a concept that easy to understand but hard to
research. The high-resolution technologies may help the related
research, such as single-cell RNA-seq (47) and spatial multi-
omics (48).

Tumor Extrinsic Mechanisms
Underlying AR
The main tumor extrinsic mechanism for AR is the upregulation
of other immune checkpoints, such as TIM-3, LAG-3, and
VISTA (117). With tumor progression, other immune
checkpoints are sequentially upregulated, with PD-1
upregulated as an early event, while LAG-3 and BTLA
upregulated as a late event (118). BTLA has two classical
inhibitory motifs, ITIM and ITSM, and an immune activating
motif Grb2 (119, 120). Ritthipichai et al. reported that
CD8+BTLA+ tumor- infiltrating lymphocytes exerted better
anti-tumor immunity than the BTLA- counterpart (120).
Therefore, the specific contribution of BTLA to AR needs
further exploration. Moreover, T cells with PD-1 high
expression are more severely exhausted and show poorer
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response to PD-1 inhibitors, while T cells with PD-1 moderate
expression can be saved by PD-1 inhibitors (118). Riaz et al.
found that multiple immune checkpoints were upregulated
during nivolumab treatment (41). Through mouse models with
AR to PD-1 inhibitors, Koyama et al. found that PD-1 inhibitors
were still bound to the T cells in drug-resistant specimens, but
TIM-3 upregulation resulted in drug resistance (121). In
addition, the anti-TIM-3 antibody was able to overcome the
drug resistance, but CTLA-4 and LAG-3 were upregulated
sequentially (121). Furthermore, they also reported two cases
of AR to PD-1 inhibitors, in which TIM-3 was upregulated (121).
Shayan et al. found that the PD-1 inhibitors induced TIM-3
upregulation was achieved through the PI3K-Akt pathway (122).
Recently, the TIM-3/Galectin-9 pathway has been shown to
induce primary resistance and AR to ICBs (123). In the
preclinical study, Huang et al. found that when one of these
three immune checkpoints, PD-1, LAG-3, and CTLA-4, was
inhibited, the other two were upregulated, thus limiting the
efficacy of the single inhibitor (124). In the cohort of NSCLC
patients with AR to ICBs (13), eight patients were able to obtain
matched samples before and after treatment, of which three
patients were detected with TIM-3 upregulation, five with LAG-3
upregulation. In addition, the three patients with TIM-3
upregulation also demonstrated a co-upregulation with LAG-3
(13). MHC-II is a ligand of LAG-3 (125). For the MHC-II
positive tumors, not only LAG-3 was upregulated in the
resistant specimens, but also FCRL6, another receptor of
MHC-II, was upregulated and suppressed the immune
function (126). FCRL6 might be an emerging immune
checkpoint (126). Furthermore, their group also found that the
upregulation of TIM-3 and LAG-3 was not associated with
primary resistance, but only with AR (126).

Gao et al. first reported the upregulation of VISTA in prostate
cancer patients after CTLA-4 inhibitor treatment (127). In the
cohort of melanoma patients with AR to ICBs (95), twelve
patients were able to obtain matched samples before and after
treatment, eight of which were detected with VISTA upregulation.

TIGIT was first identified by Yu et al. in 2009 as an immune
checkpoint rheostat that suppresses the activation of T cells
(128). TIGIT is mainly expressed on T cell subsets (including
Tregs and memory T cells) and NK cells (128, 129). Indeed, a
preclinical study showed that TIGIT blockade can prevent NK
cell exhaustion and elicit potent anti-tumor immunity (130). A
preliminary phase II clinical trial showed that the combination of
TIGIT blockade and anti-PD-L1 antibody has better objective
response rate (ORR) and median Progression Free Survival
(mPFS) than anti-PD-L1 antibody alone in the first line setting
(131). However, the specific contribution of TIGIT to AR is still
not clear. It is unknown whether the superiority of the
combination with TIGIT blockade can be translated into later
line settings, which means conquering the real AR to prior
immune checkpoints.

Although the upregulation of other immune checkpoints has
been considered the main tumor extrinsic mechanism to AR, some
other tumor extrinsic factors also potentially result in AR and need
further research, including tumor vasculature, systemic and tumoral
metabolic status, microbiome, and multiple cytokines.
Frontiers in Immunology | www.frontiersin.org 8
POTENTIAL STRATEGIES TO
OVERCOME AR

Understanding the clinical characteristics and underlying
mechanisms of AR is ultimately required for overcoming them.
As mentioned above, the mechanisms of AR are highly
diversified, including neoantigen depletion, defects in antigen
presentation machinery, aberrations of interferon signaling,
tumor-induced exclusion/immunosuppression, tumor cell
plasticity, and upregulation of other immune checkpoints.
Patients may resist ICBs through one of these mechanisms or a
combo of them. So, it is hard to find one strategy to fit all the
situations. The more executable strategy is to apply a set of
treatment modalities to patients with the same clinical
characteristics or resistance mechanisms (Table 3).

Strategies for Oligo-Progression
Since most patients with AR to ICBs develop oligo-progression
(Table 2), local therapy becomes the most available way to
overcome resistance. Radiotherapy can not only control the
local disease but also shows a synergistic effect on
immunotherapy (132, 133), thus being a preferred choice.
Local resection is another choice worthy of consideration that
has been proved safe for patients with advanced NSCLC after
ICB therapy (134, 135). Cryotherapy also seems feasible under
certain conditions (136). In the Keynote 006 study, three patients
received local resection and a second-course pembrolizumab
therapy after the single-site progression with initial complete
response, two of whom achieved a second-course complete
response while one achieved stable disease (26). In a
retrospective cohort of 26 patients with NSCLC, 15 patients
who received local therapy achieved better overall survival than
the total population (27).

Strategies for Neoantigen Depletion
Oncolytic virotherapy is an effective way to elicit new
immunogenicity for tumors lacking in neoantigen (137–140).
In the case reports of talimogene laherparepvec (T-VEC)
treatment to overcome AR to ICBs in melanoma patients,
three of six patients were evaluated as PR (141). Simultaneous
anti-PD-1 and vaccine therapy can also reverse resistance (142).
Furthermore, superantigens (SAgs) treatment emerges as a
promising strategy to elicit immunogenicity (143). The detailed
approaches to heat the cold tumor can be referred to in another
review (20).

Strategies for Defects in Antigen
Presentation Machinery
As for the defects in antigen presentation machinery, the coping
strategy is either repairing the defects or activating the anti-
tumor immunity independent of antigen presentation. However,
the current knowledge about both approaches is very lacking. NK
cell-based therapy might be an effective way to overcome this
type of resistance, for the MHC-I loss is an activating signal for
NK cell toxicity (144). RIG-I activation is also a promising
strategy (145). Kalbasi et al. reported that overexpression of
NLRC5 (nucleotide-binding oligomerization domain-like
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receptor family caspase recruitment domain containing 5) and
intratumoral delivery of BO-112, a potent nanoplexed version of
polyinosinic: polycytidylic acid (poly I: C), each restored MHC-I
expression (146).

Strategies for Aberrations of
Interferon Signaling
Defects in tumor-intrinsic interferon (IFN) signaling fail ICBs
against cancer, but these tumors still maintain sensitivity to the T
cell-based adoptive cell therapy (ACT). Kalbasi et al. reported
that ACT was effective against tumors with JAK2 loss (146). As
tumors with JAK1 loss show significant downregulation of
MHC-I, ACT combined with overexpression of NLRC5 or
intratumoral delivery of BO-112 was an effective approach
(146). As for the IFN-b induced resistance, IFN-b inhibition
might be an effective strategy.

Strategies for Tumor-Induced Exclusion/
Immunosuppression
Since tumor-induced exclusion/immunosuppression involves
the activation of multiple signaling pathways, pharmacological
inhibition would be effective in this regard, including pathways
of Wnt/b-catenin, PI3K-Akt, IFN-b/NOS2, CSF-1, TGF-b,
adenosine, and IDO. Additionally, microenvironment-targeting
combinations are also the future directions of cancer
immunotherapy and can be referred to in another review (147).

Strategies for Tumor Cell Plasticity
Epigenetic modulation is an effective approach to restrict tumor
cell plasticity, but concrete strategies need to be explored (148,
149). Targeting minimal residual disease (MRD) is worthy of
consideration for decreasing the tumor load to restrict plasticity
(150). Selective inhibition of the EMT program might also help
overcome AR to ICBs. Tsoi et al. found that melanoma can be
categorized into four subtypes following a differentiation trajectory
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with subtype-specific sensitivity to ferroptosis induction. This
presents a therapeutic approach to target the differentiation
plasticity to increase the efficacy of immunotherapy (151).
Besides, induction of ferroptosis has other immune-activating
functions (152, 153). The detailed strategies to target tumor cell
plasticity can be referred to in the other reviews (107, 108).

Strategies for Upregulation of Other
Immune Checkpoints
Theoretically, the sequential inhibition of other immune
checkpoint receptors such as TIM-3, LAG-3, and VISTA can
help overcome AR. Indeed, dozens of early-phase clinical trials
have been initiated to explore the clinical efficacy of these
checkpoint blockades with or without another checkpoint
blockade, which can be referred to in other reviews (154–156).
TIGIT is expressed on both T cells and NK cells and TIGIT
blockade can elicit NK cell-based anti-tumor immunity (128–
130), which might have specific significance for patients with AR
to T cell-based ICB therapy. Besides, a phase II clinical trial has
showed that TIGIT blockade can synergize with anti-PD-L1
antibody (131). The TIGIT blockade combinations are also
promising candidates to overcome AR. It should be noted that
the line of the designed therapy is important with regard to
overcoming AR. Even if a combination strategy shows superior
efficacy in the first-line setting, whether it can overcome AR to
prior immune checkpoint blockades (in the second-line setting
after prior ICB failure) is still unanswered. Above all, the
evidence from these clinical trials and real-world studies
is awaited.

Other Strategies
Since the guidelines or expert opinions about the treatment after
ICB failure are scarce, there are various approaches in clinical
practice to treat patients with AR to ICBs. Continuation of prior
ICB combined with other therapies, such as chemotherapy, anti-
TABLE 3 | The potential strategies to overcome acquired resistance.

Clinical characteristics or resistance mechanisms Potential strategies

Oligo-progression Continuous ICB plus local therapy (132–136)
Neoantigen depletion Oncolytic virotherapy such as T-VEC (137–141)

Continuous ICB plus vaccine (142)
Continuous ICB plus superantigens (143)

Defects in antigen presentation machinery NK cell-based therapy (144)
Continuous ICB plus RIG-I activation (145)
Continuous ICB plus overexpression of NLRC5 or intratumoral delivery of BO-112 (146)

Aberrations of interferon signaling T cell–based adoptive cell therapy (146)
Tumor-induced exclusion/immunosuppression Continuous ICB plus inhibition of the involved pathways, including Wnt/b-catenin, PI3K-Akt, IFN-b/

NOS2, CSF-1, TGF-b, adenosine, and IDO
Continuous ICB plus microenvironment-targeting strategies (147)

Tumor cell plasticity Continuous ICB plus epigenetic modulation (148, 149)
Continuous ICB plus MRD-targeting strategies (150)
Continuous ICB plus EMT inhibition
Continuous ICB plus ferroptosis induction (151–153)
Continuous ICB plus other plasticity-targeting strategies (107, 108)

Other immune checkpoints upregulation Continuous ICB plus inhibition of the upregulating checkpoints
Other strategies Continuous ICB plus chemotherapy, anti-angiogenesis therapy, radiotherapy, target therapy, or another

immune checkpoint inhibitor
Stop using ICB and to use later-line chemotherapy
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angiogenesis therapy, radiotherapy, target therapy, and another
immune checkpoint inhibitor, is frequently used. Another
approach usually used is by changing immunotherapy into
classical later-line modalities of chemotherapy. The evidence to
support these attempts is at its infancy and arises a core question
as to whether to stop using the prior ICBs. The INSIGNA study
(https://clinicaltrials.gov, NCT03793179) will preliminarily
answer the question about which is superior between prior ICB
plus chemotherapy and chemotherapy alone for the patients with
AR to ICBs.
DISCUSSION

With the increasing use of ICBs in clinical practice, a large
number of patients develop AR. However, the knowledge about
AR to ICBs is limited and poorly summarized. Through
reviewing the published papers associated with this term, we
clarified the principal elements of it. The definition of AR to ICBs
is inconsistent at present, but expert opinions are available for
this question. Oligo-progression is the main resistance pattern.
The underlying mechanisms of AR involve tumor intrinsic
factors and extrinsic factors. Neoantigen depletion can protect
tumor cells from immune attack, however, it is unclear whether
the depletion of neoantigens is a consequence of Darwinian
natural selection with the neoantigen-expressing clones being
eradicated or is a biological adaptation at an individual cancer
cell level. Antigen presentation deficiency can also protect tumor
cells from being recognized and killed by the immune cells,
which includes biallelic B2M mutation and HLA-I down-
regulation. IFN-g is a crucial mediator of anti-tumor
immunity. The defects in the IFNG pathway can lead to AR,
while the prolonged IFN-g exposure can also elicit resistance by
upregulating IDO and other immune checkpoint ligands. Under
the pressure of immune elimination, tumor cells can induce an
immunosuppressive microenvironment through the genetic
approaches (Wnt/b-catenin activation and PTEN loss) and the
non-genetic approaches (recruiting Treg, TAM, and MDSC and
upregulating IDO, adenosine, and TGF-b pathway). Tumor cell
plasticity preserves the great potential for AR. One important
issue is transdifferentiation from NSCLC cells to SCLC cells, the
other is the EMT program. The tumor extrinsic mechanisms of
AR are mainly through the upregulation of other immune
checkpoints, such as TIM-3, LAG-3, and VISTA. The potential
strategy to overcome AR is to apply a set of modalities to patients
Frontiers in Immunology | www.frontiersin.org 10
with the same clinical characteristics or resistance mechanisms.
Although not discussed in this review, monitoring resistance is
an important issue, and the circulating tumor DNA could be an
effective tool.

One of the future directions in this field is to explore the
mechanisms underlying AR to ICBs more comprehensively. New
tools, such as CRISPER screen, single-cell RNA sequencing, and
spatial multi-omics, will fuel the related research. It is worthy of
noting that many mechanisms of primary resistance to ICBs
have not been completely elucidated in the field of AR. For
example, gut microbiota and tumor metabolism have been
acknowledged to play important roles in primary resistance to
ICBs (157–159), while their contribution to AR is largely
unknown and thus needs future exploration. The other issue in
this field is that translational research is urgently needed to
extend patients’ survival. Through efforts to overcome AR,
immunotherapy can be a promising therapeutic modality for
curing cancer.
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