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Abstract: In a tunneling boring machine (TBM), to obtain the attitude in real time is very important
for a driver. However, the current laser targeting system has a large delay before obtaining the
attitude. So, an adaptive-neuro-fuzzy-based information fusion method is proposed to predict the
attitude of a laser targeting system in real time. In the proposed method, a dual-rate information
fusion is used to fuse the information of a laser targeting system and a two-axis inclinometer, and
then obtain roll and pitch angles with a higher rate and provide a smoother attitude prediction.
Considering that a measurement error exists, the adaptive neuro-fuzzy inference system (ANFIS) is
proposed to model the measurement error, and then the ANFIS-based model is combined with the
dual-rate information fusion to achieve high performance. Experimental results show the ANFIS-
based information fusion can provide higher real-time performance and accuracy of the attitude
prediction. Experimental results also verify that the ANFIS-based information fusion can solve the
problem of the laser targeting system losing signals.

Keywords: tunnel boring machine (TBM); information fusion; ANFIS; Kalman filter; attitude prediction

1. Introduction

Tunnel boring machines (TBMs) have high work efficiency and safety and are widely
used to excavate tunnels, especially for subways, railways, and pipelines [1–5]. During
the excavation process, accurate attitude acquisition is very important for controlling
TBMs [6,7] and micro tunneling boring machines [8,9]. The attitude consists of three angles,
that is, yaw(γ), pitch(α), and roll(β) shown in Figure 1, which are detected by sensors
installed at limited observation points on a TBM. In the figure, v is the velocity of the TMB.
A driver is required to monitor the measured attitude in real time to tune the drive system
to ensure the TBM runs in the as-designed tunnel alignment.
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1. Introduction 
Tunnel boring machines (TBMs) have high work efficiency and safety and are widely 

used to excavate tunnels, especially for subways, railways, and pipelines [1–5]. During 
the excavation process, accurate attitude acquisition is very important for controlling 
TBMs [6,7] and micro tunneling boring machines [8,9]. The attitude consists of three an-
gles, that is, yaw(γ), pitch(α), and roll(β) shown in Figure 1, which are detected by sensors 
installed at limited observation points on a TBM. In the figure, v is the velocity of the TMB. 
A driver is required to monitor the measured attitude in real time to tune the drive system 
to ensure the TBM runs in the as-designed tunnel alignment. 

 
Figure 1. The yaw, pitch, and roll angles of a tunnel boring machine (TBM). 
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Figure 1. The yaw, pitch, and roll angles of a tunnel boring machine (TBM).

The tunnels for subways are more than tens of kilometers long, so the general exca-
vation process is that two TBMs work simultaneously in opposite directions towards one
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point to improve efficiency. In this situation, the accuracy of the TBM’s guidance system
is crucial to steer the TBM to run along the as-designed tunnel alignment and avoid big
deviations from the design.

Laser-based targeting systems [9–12] are widely applied to TBMs as guidance systems.
In a laser-based targeting system, a laser theodolite or a laser station needs to be installed in
the jacking shaft to detect the position and attitude of the TBM. From the station, the laser
beams are projected onto a target board mounted on a TBM, then the attitude angles can be
obtained by analyzing the laser spots on the target board. In addition, a two-axis gravity-
referenced inclinometer is used to help obtain the pitch and roll angles. The inclinometer
can achieve a high sampling rate, which is much higher than that of a laser-based targeting
system. However, inclinometers are vulnerable to the strong vibrations resulting from
complex geological conditions [13–15]. Laser-based targeting systems have high anti-
vibration ability but low sampling rate. So, it is feasible to fuse these two measurement
methods to predict the attitude accurately with a high sampling rate and anti-vibration
ability.

Many methods have been investigated to fuse the information of different sen-
sors [16–20]. D–S evidence theory is a promising and popular approach to data fusion,
which can deal with the uncertainty and inconsistency of multi-sensor data, and handle
the inevitable ambiguity and instability under noise or possible interference [21]. Similar
to the D–S evidence theory, the possibility theory and fuzzy set theory are good methods
to deal with imperfect data in the information fusion [22,23].

The Kalman filter [24–27] is one of the most widely used methods because of its
simplicity and effectiveness. A Kalman-based approach [27] could be used to estimate the
state and force of a rotating helicopter blade. There are many methods used to improve the
performance of the basic Kalman filter. For example, the extended Kalman filter (EKF) [28]
can be applied to nonlinear systems while the basic Kalman filter is suitable for linear
systems, and the unscented Kalman filter [29] achieved better performance than that of
the EKF at a comparative level of complexity. An adaptive cubature Kalman filter [30]
was proposed to solve the problem of an initial misalignment angle with uncertain noise
covariance matrices for the inertial navigation system. In most cases, the Kalman filter can
be used to filter noises during the information fusion, and in some cases, the Kalman filter
is used to fuse the information with different sampling rates. For multi-rate cases, dual-rate
Kalman filters [31,32] were developed to fuse the sensors with different rates and improve
measurement performance.

For some complex situations, adaptive methods [33–35] and neural networks [36] can
be used in the information fusion to improve the fusion effectiveness. For example, an
adaptive federated Kalman filter (FKF) with time-varying information sharing factors [34]
was proposed to improve the accuracy, robustness, and fault-tolerance ability of unmanned
ground vehicles (UGV). A progressive LiDAR adaptation-aided road detection (PLARD)
approach [35] was proposed to adapt LiDAR information into visual image-based road
detection. An ensemble convolutional neural network model [36] was proposed to solve the
problem of information losses during the information fusion. Hybrid fusion approaches
are a comprehensive scheme, which combine different fusion methods such as fuzzy
reasoning, D–S evidence theory, and neural networks to complete complex fusion tasks [37–
40]. An adaptive fuzzy extended Kalman filter [41] was developed for attitude estimation
with the outputs of strap-down IMU (gyroscopes and accelerometers) and strap-down
magnetometer.

This paper proposes an adaptive-neuro-fuzzy-based (ANFIS-based) information fu-
sion system to improve the attitude prediction accuracy of TBMs. Firstly, a dual-rate
information fusion is used to reduce the delay of signal sampling and then improve the
prediction accuracy of a TBM’s attitude. It is common for one of the fused sensors to have
a big error resulting in a bad fusion effect. In our experiments, the roll and pitch angles of a
laser targeting system and a two-axis inclinometer were fused, and the two-axis inclinome-
ter had a big measurement error. Secondly, adaptive neuro-fuzzy inference systems are



Sensors 2021, 21, 61 3 of 18

proposed to build the model of the measurement error. Although it can be corrected by
tuning the installation attitude, the measurement error cannot be eliminated because of the
installation error, the temperature variation, the complex TBM structure, and so on. The
measurement error from the two-axis inclinometer will reduce the fusion effect during the
information fusion, so the measurement error needs to be predicted and compensated for.
The neural networks and fuzzy inference systems are often combined with Kalman filters
to optimize the filtering process by building complexing system models [42–44]. Adaptive
neuro-fuzzy inference systems (ANFIS) [45,46] with the advantages of the neural networks
and fuzzy systems can realize both the modeling of the strong nonlinear system and a
real-time update of system parameters. Considering the laser targeting system has high
accuracy, the pitch angle obtained from the laser targeting system is used as a reference
signal to correct the measurement error of the two-axis inclinometer, and an ANFIS is
proposed to build the model of the measurement error and update the model according to
the real-time data. Finally, the compensated pitch angle is used for information fusion.

The main contribution of the paper is that an adaptive-neuro-fuzzy-based information
fusion is proposed to improve the attitude prediction accuracy of TBMs. Compared with the
traditional dual-rate information fusion, the ANFIS can be used to build the measurement
error model of the pitch angle by the two-axis inclinometer and thus be combined with the
traditional dual-rate information fusion to improve the prediction accuracy of the TBM’s
pitch angle. Another contribution of the paper is that ANFIS-based information fusion can
solve the problem of the laser targeting system losing its signals.

The paper is organized as follows: Section 2 presents the dual-rate information fusion
for the attitude prediction; Section 3 describes an ANFIS-based information fusion method.
Sections 4 and 5 give the experimental results and conclusions, respectively.

2. Information Fusion for the Attitude Prediction
2.1. Attitude Measurement of a TBM

Figure 2 shows the schematic diagram of the used laser targeting system, where α,
β, and γ are pitch, roll, and yaw angles, respectively. The TBM runs along the direction
of the velocity v. A robotic total station projects laser beams onto the laser target, and a
camera is used to generate the image of the target board to compute the attitude. When the
TBM moves, the robotic total station can track the laser target by tuning its attitude and
obtain the distance information according to the feedback laser beam. Computers connect
the robotic total station and the two-axis inclinometer to sample the position and attitude
information. By analyzing the image from the camera and combining the attitude of the
robotic total station, the attitude of the TBM can be obtained (please see Ref. [47] for the
details).
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Generally, the laser targeting system has high accuracy and anti-vibration ability when
it obtains the attitude. However, it is time-consuming to track the laser target, decouple,
and correct every attitude angle, so the laser targeting system has a low sampling rate.
Sometimes the laser beam is interrupted by some unexpected objects, which will result
in the loss of the attitude data. To meet the requirements of high accuracy and a high
sampling rate, the information fusion method is proposed in the paper.

The two-axis inclinometer has a very high sampling rate, which is much higher than
that of the laser targeting system. However, the two-axis inclinometer is vulnerable to the
vibration of the TBM and thus has low accuracy. In this section, the two-axis inclinometer
and laser targeting system are fused to take the advantages of the two measurement
methods.

2.2. Dual-Rate Information Fusion for the Attitude Prediction

Dual-rate information fusion is often used to fuse information with different rates [32,
48]. Figure 3 shows the scheme of the dual-rate sampling. Sensors 1 and 2 in Figure 3a
show sampling cases of the attitude angles by the laser targeting system and inclinometer.
The attitude angles sensed by the inclinometer (θ1) and the laser targeting system (θ2)
are shown in Figure 3b,c, respectively. The sampling period of θ1 is four times that of θ2.
The stairs shown in Figure 3c are longer than those in Figure 3c, which implies that the
angle needs to wait for a longer time to be updated, which is not beneficial for a driver to
achieve the real-time attitude information. The attitude angle by the inclinometer has a
high sampling rate and a low delay, but it is vulnerable to noises. By the following dual-rate
information fusion, the two angles can be integrated, and a smooth angle prediction can be
obtained to guide the driver to maneuver the TBM.

The state equation of every attitude angle is described as shown in Equations (1) and (2)

X(k + 1) = ΦX(k) + ΓW(k) (1)

Y(k + 1) = HX(k) + V(k) (2)

where k is the discrete time, and X(k) ∈ R is the state at time k. Φ and H are the state
transfer matrix and observation matrix, respectively. Γ is the noise matrix. W(k) and V(k)
are the input noises and measurement noises, respectively.

The Kalman filter is used to predict the new state by using Equation (3)

X̂(k + 1|k) = ΦX̂(k|k) (3)

where X̂(k + 1|k) is the prediction value of X(k + 1|k).
The prediction value of the covariance is obtained by Equation (4)

P(k + 1|k) = ΦP(k|k)ΦT + ΓQΓT (4)

where Q is the square error of input noises.
The gain matrix of the Kalman filter is shown in Equation (5)

K(k + 1) = P(k + 1|k)HT [HP(k + 1|k)HT + R]
−1

(5)

where R is the square error of measurement noises.
The state update is shown in Equation (6)

X̂(k + 1|k + 1) = X̂(k + 1|k) + K(k + 1)ε(k + 1) (6)

where ε(k + 1) = Y(k + 1)− HX̂(k + 1|k).
The covariance is updated by Equation (7)

P(k + 1|k + 1) = [In + K(k + 1)H]P(k + 1|k) (7)
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αL(k) and βL(k) are the pitch and roll angles sensed by the laser targeting system,
and αI(k) and β I(k) are the pitch and roll angles, respectively, sensed by the two-axis
inclinometer. The four variables can be filtered by the above Kalman filter separately, then
the input X(k) in Equation (1) is a one-dimensional vector for every variable. Because the
TBM moves slowly, Γ, Φ, and H can be set to 1.

Suppose that the input attitude angles are written as follows:

Xa(k) = [αL(k) αI(k)]

Xb(k) = [βL(k) β I(k)]

It is noticed that the αL(k) and βL(k) are updated every n periods, αI(k) and β I(k) are
updated every period T.

By using Equations (1)–(7), every element of Xa and Xb can be filtered. It is supposed
that the filtered angles are αL_ f (k), βL_ f (k)αI_ f (k), and β I_ f (k), respectively.

With the following fusion matrices, which are Equations (7) and (8), information
fusion can be completed.

K f a =

[
k f 1

1− k f 1

]
(8)

K f b =

[
k f 2

1− k f 2

]
(9)

where k f 1 ∈ [0, 1] and k f 2 ∈ [0, 1] are the fusion gains for pitch and roll angles, respectively.
By using XaK f a and XbK f b, the information fusion of the laser targeting system and

the two-axis inclinometer can be conducted and the results are Equations (10) and (11)

α(k + 1|k + 1) = k f 1αL_ f (k + 1|k + 1) + (1− k f 1)αI_ f (k + 1|k + 1) (10)

β(k + 1|k + 1) = k f 2βL_ f (k + 1|k + 1) + (1− k f 2)β I_ f (k + 1|k + 1) (11)

α(k + 1|k + 1) can be rewritten as α(k + 1). Based on the above information fusion,
the one-step prediction values of roll and pitch angles are obtained by the linear prediction
Equations (12) and (13)

α̂(k + 1) = α(k)+kp(α(k)− α(k− 1)) (12)

β̂(k + 1) = β(k)+kp(β(k)− β(k− 1)) (13)

where kp is equal to 1. kp can also be any positive proportional coefficient used to predict
the future angles at time (k+kp).

Fusion processes in Equations (10) and (11) require the attitude angles by the laser
targeting system and the inclinometer to be approach actual values. In fact, αL(k) and
βL(k) are much accurate than αI(k) and β I(k) at the sampling instants. αI(k) and β I(k) are
not very accurate with the influence of the vibration, the installation error, the temperature
change, and so on. So, the following ANFIS-based information fusion method is proposed
to improve the fusion effect.
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3. ANFIS-Based Information Fusion Method

In TBMs, laser targeting systems have high accuracy and anti-vibration ability and
are widely used. So, the attitude obtained by a laser targeting system can be considered to
be accurate. The two-axis inclinometer is used to obtain more high-frequency pitch and
roll angles. The two-axis inclinometer can act as a master sensor to provide the related
angles when the beams of the laser targeting system are not able to be tracked because of
sheltering, out of tolerance of roll angle, and so on.
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The attitude angles obtained by the two-axis inclinometer need to be corrected. The
roll angle has less influence on a TBM running along the as-designed tunnel alignment, so
the roll angle obtained by the two-axis inclinometer can be used to act as the master sensor
directly after being corrected.

The pitch angle is one of the most important angles to guide a driver to master the
TBM. The pitch angle obtained by the two-axis inclinometer is too complicated to be
corrected by simply tuning its installation attitude. Its influence factors are so complicated
that it is not feasible to model a simple linear model, and the changing influence factors
result in model uncertainty. The ANFIS can be used to build a strong nonlinear model and
update the model by tuning the system parameters in real time.

3.1. ANFIS-Based Information Fusion Method

Figure 4 shows the scheme of the ANFIS-based information fusion method. The
information fusion method includes two main portions: the dual-rate information fusion
and ANFIS. The dual-rate information fusion is used to fuse the pitch angles by the laser
targeting system and by the two-axis inclinometer, and the ANFIS is used to model the
measurement error to compensate for αI(k).
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Because the pitch angle obtained by the laser targeting system is more accurate than
that obtained by the two-axis inclinometer, the pitch error ea, which is obtained by the dif-
ference between αL and αI , can be estimated and used to compensate αI . According to our
experimental analysis, the most important source of the pitch error is the installation error,
and the pitch error changes with β I and is influenced by the environmental temperature
and other factors. So, the idea is to use ANFIS to model the function of ea about βL and use
the built model to estimate the pitch error in real time. Because βL can be replaced by β I
the built function is suitable to use βL to estimate ea. By using obtained samples, ANFIS
is trained to obtain the optimal estimate êa(k). The dataset [ea(k) β I(k)]

T is sampled and
stored in memory in real time. The new dataset combines the historical datasets to update
the parameters of the ANFIS model to adapt to changes of the model.

In the end, the compensated pitch angle αI_c can be used to fuse with αL. The detailed
fusion process is shown as follows.

αL(j) and αI(k) are obtained from the laser targeting system and the two-axis incli-
nometer, respectively. The relation between k and j is Equation (14)

k = m× j (14)
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where k, j and m are positive integers.
Assume the sampling period of the two-axis inclinometer is T, then that of the laser

targeting system is mT. From a driver’s view, the observation value of the laser targeting
system will remain within a period of mT and the result is shown in Figure 3. Then, αL(j)
can extend its values to have the same sampling period as αI(k) by Equation (15)

αL(m× j + i) = αL(j) (15)

where i = 1, 2, . . . , m−1.
By the dual-rate information fusion in Section 2, the pitch angle can be obtained by

Equation (10). However, αI(k) is not very accurate, so an ANFIS-based information fusion
method is proposed as follows.

Taking the pitch angle obtained by the laser targeting system as the reference, the
pitch error of αI(k) can be obtained by Equation (16)

ea(j) = αL(j)− αI(m× j) (16)

where ea(j) is the pitch error at time j.
By using a dataset E = [ea(j) βL(j)]T , the model of ea about βL is obtained by an

ANFIS and ea(k) can be predicted by Equation (17)

êa(k) = f (β I(k)) (17)

f (·) is the nonlinear function expressed by the ANFIS. By using the prediction êa(k),
αI(k) can be corrected by Equation (18)

αI_c(k) = αI(k) + êa(k) (18)

where αI_c(k) is the correction of αI(k).
By the dual-rate information fusion in Section 2, with αI_c(k + 1|k + 1) replacing

αI(k + 1|k + 1), the fused pitch angle in Equation (10) is revised as Equation (19)

α(k + 1|k + 1) = k f 1αL_ f (k + 1|k + 1) + (1− k f 1)αI_c_ f (k + 1|k + 1) (19)

where αI_c_ f (k + 1|k + 1) is the filtered αI_ f (k).
The final prediction output of the ANFIS-based information fusion can be obtained by

Equation (12).

3.2. Angle Correction by ANFIS

A structure of single-input single-output Takagi–Sugeno type fuzzy neural networks
shown in Figure 5 is used in the ANFIS. The whole system is divided into two parts: the
front networks and back networks.

The front networks are a Takagi–Sugeno type fuzzy inference system and are com-
posed of four layers as follows.

Layer 1 is the input layer. There is only one input used in the front network of the
ANFIS, which is the roll angle β I .

Layer 2 has the fuzzy variables that are used to compute the membership function of
every fuzzy element.
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Figure 5. The structure of the single-input single-output Takagi–Sugeno type fuzzy neural networks.

The fuzzy variables of the fuzzy inference system are {NB NM NS O PS PM PB}.
For every variable, the membership of every input is µi, and the Gaussian membership
function shown in Equation (20) is applied in the ANFIS

µi = e
(xi−ci)

σi (20)

where i = 1, 2, . . . , m1. m1 is the number of fuzzy variables. ci and σi are the center and
width of the ith membership function, respectively.

Layer 3 is the fuzzy rule layer used to compute the fitness of every rule. The following
rule shown in Equation (21) is used to compute the fitness of every rule

ρi = µ1µ2 · · · µm1 (21)

where i = 1, 2, . . . , m, m is the number of the rules, and ρi is the fitness of every rule.
Layer 4 is the normalization layer used to normalize ρi. The function is shown in

Equation (22)

ρi =
ρi

m
∑

i=1
ρi

(22)

where ρi is the normalization of ρi.
In the end, ρi is used in the back networks to compute the final output.
The back networks are composed of the following three neural network layers.
Layer 1 of the back networks is the input roll angle β I and a constant input ‘1′ is used

to generate the fixed bias of the ith note pi
10 at Layer 2.

Layer 2 has m notes corresponding to m rules. The output of the ith note is the function
of β I , which is described in Equation (23)

y1i = pi
10 + pi

11β I (23)
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where i = 1, 2, . . . , m.
Layer 3 is the output of the ANFIS and the output is the estimated pitch error in

Equation (24)

êa =
m

∑
j=1

ρjy1j (24)

pi
1m, ci, and σi need to be learned by the neural networks.

The cost function is Equation (25)

E =
1
2
(t1 − y1)

2 (25)

where t1 and y1 are the expected and actual outputs of the ANFIS, respectively. In the
applied ANFIS, y1 is equal to êa.

By using the ANFIS, the model of the measurement error of the pitch angle ea(k) about
the roll angle βL(k) can be built and updated. By using the generalization ability, βL(k) can
be substituted by β I(k) to obtain a higher rate estimation value êa(k).

4. Experimental Results

Experiments were conducted to verify the proposed ANFIS-based information fusion.
The laser targeting system is shown in Figure 6. The robotic total station projects beams
onto the laser target to obtain the attitude information, and the two-axis inclinometer is
used to obtain the roll and pitch angles, the attitude information from the two sensors can
be transmitted into the computer. The sampling periods of the laser targeting system and
the two-axis inclinometer are 2 min and 0.5 min, respectively.
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Figure 6. Laser targeting system used in the experiment.

Figure 7 shows the experimental results of the roll and pitch angles. From a driver’s
view, the pitch and roll angles will remain unchanged within sampling periods, which are
2 min and 0.5 min, respectively. From Figure 7, it can be seen that the pitch and roll angles
sampled from the laser targeting system have large delays, which will have a big influence
on the observation accuracy of the pitch and roll angles.
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4.1. Roll Angle Prediction

Figure 8 shows that the laser target system has a low sampling rate to obtain the
roll angle labeled as “observation”. The points labeled as “actual” are the values at the
sampling instants. Further experiments show that the two-axis inclinometer has a high
sampling rate. Because the roll angle does not require very high accuracy and the two-axis
inclinometer has a small influence on the roll angle direction, in the dual-rate information
fusion k f 2 is set for 0, which implies that the two-axis inclinometer is directly used to
obtain the roll angle at a high sampling rate instead of the dual-rate information fusion. A
traditional Kalman filter is used to smooth the roll angle and then the prediction method
in Equation (12) is used to obtain the roll angle at any next time. The prediction value of
the roll angle is labeled as “prediction”. Compared with the actual value, the observation
value has a big error when it is close to the next sampling time, but the prediction value is
very close to the actual value.
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4.2. Pitch Angle Prediction by the ANFIS-Based Information Fusion

The dual-rate information fusion method in Section 2 was used to predict the pitch
angle. The pitch angles sampled by the laser targeting system and by two-axis inclinometer
are shown in Figure 9. The pitch angle obtained by the laser targeting system has a high
accuracy with strong anti-vibration ability but a big delay, that obtained by the two-axis
inclinometer has a high sampling rate. However, the figure shows that there is a big error
between the two pitch angles, so the measurement error needs to be compensated for first
before fusing the two sensors.
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Figure 9. Observed pitch angles.

According to the experimental analysis, the main influence factor of the measurement
error is the installation error, and the measurement error is the nonlinear function of the
roll angle. The two-axis inclinometer has a simple structure, which is easy to installed, but
its correcting process is complex, and the perfect correct result is very difficult to obtain.
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So, this paper proposes to use an ANFIS to build the nonlinear model of the measurement
error. In the system, single-input single-output Takagi–Sugeno type fuzzy neural networks
are built and the curves of the membership function in the ANFIS are shown in Figure 10.
There are three fuzzy variables used, which are NM, O, and PM. With one input labeled as
“in1”, the corresponding memberships are mf1, mf2, and mf3, respectively.
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From the prediction result shown in Figure 11, it can be seen that the prediction error
is smaller than 0.01 degree. The predicted measurement error is used to compensate for
the inaccuracy of the two-axis inclinometer, which will improve the fusion accuracy of the
two sensors.
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Finally, the ANFIS-based information fusion method shown in Figure 4 is used to
predict the pitch angle. In this method, the dual-rate information fusion is used to improve
the real-time performance and prediction accuracy of the pitch angle, and the fusion gain
k f 1 is set for 0.02. The ANFIS is updated in real time to adapt the complex variation of
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the measurement error model. Based on the information fusion of the two sensors, the
prediction method in Equation (11) is used to predict the pitch angle in real time and the
result is shown in Figure 12. Data 1 and data 2 are the data at different times. The sampled
points by the laser targeting system labeled as “measured” are used to verify the prediction
effect. The results for data 1 and data 2 show that the observation value has a big delay and
then a large error near the next sampling point, but the ANFIS-based information fusion
can achieve a high sampling rate and a smooth pitch curve. The prediction value at the
sampling instant is close to the measured value near the next sampling point, which is
smaller than 0.01 degree and much better than the observed value. From the result, it can
be concluded that the proposed fusion method can obtain the pitch angle accurately.
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4.3. ANFIS-Based Information Fusion for Solving the Problem of Signal Losses

Sometimes the laser targeting system loses its signals because of sheltering, being out
of tolerance of the roll angle, and so on. The ANFIS-based information fusion can be used
to solve this problem. The data in Figure 13 were used to verify its ability to solve the
problem.
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It is supposed that the data from the laser targeting system are lost from 100 min to
112 min. The ANFIS-based information fusion is used to predict the pitch angle, and when
the laser targeting system loses its signals, k f 1 is set for 0, which implies that the information
from the laser targeting system is neglected. In this case, the parameter updating process
of the ANFIS stops, then the ANFIS works with fixed parameters.

The result shows that the prediction value by the proposed information fusion has
a maximum error of 0.001 degree compared with the measured value. So, the proposed
information fusion can solve the problem that the laser targeting system loses its signals.

In summary, the dual-rate information fusion method can realize the information fu-
sion of the laser targeting system and two-axis inclinometer, which can use the advantages
of the two sensors and obtain the accurate roll and pitch angles in real time. ANFIS-based
information fusion can obtain the accurate pitch angle based on the compensation of the
measurement error of the low accurate sensor and can solve the problem of the laser
targeting system losing its signals.

5. Conclusions

It is very important to obtain the attitude of a TBM in real time. However, the laser
targeting system takes a long period to sample the attitude. The inclinometer has a high
sampling rate, but it is easily influenced by vibration. To combine the advantages of the two
sensors, this paper proposes to use dual-rate information fusion to obtain high real-time
and high accurate pitch and roll angles.

The pitch angle has a big measurement error because of the installation error, the
temperature variation, the complex TBM structure, and so on, and it is very difficult to
be fully corrected: An ANFIS-based information fusion is proposed to predict the pitch
angle of TBMs. The ANFIS-based information fusion is mainly composed of the dual-rate
information fusion and an ANFIS. The dual-rate information fusion is used to improve the
sampling rate and measurement accuracy, and the ANFIS is used to compensate for the
measurement error of the low-accuracy sensor.
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Experiments were performed to verify the performance of the proposed information
fusion method. In the experiments, the pitch angle obtained by the two-axis inclinometer
had a big error, so the ANFIS was used to model the pitch error and compensate for the
pitch angle. The ANFIS realized the real-time update to adapt the environmental variation.
After the pitch angle sampled by the two-axis inclinometer was compensated for, the
dual-rate information fusion was used to fuse the two pitch angles.

Experimental results show that the dual-rate information fusion can realize the infor-
mation fusion of the laser targeting system and two-axis inclinometer, which can use the
advantages of the two sensors and obtain the accurate roll and pitch angles in real time.
The proposed ANFIS-based information fusion method can obtain a higher accuracy of the
pitch angle after compensating for the measurement error. The ANFIS-based information
fusion can solve the signal loss problem when the laser beams of the laser targeting system
are sheltered or the roll angle is out of tolerance.
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