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Abstract

Introduction

The automatic classification of lymphoma lesions in PET is a main topic of ongoing

research. An automatic algorithm would enable the swift evaluation of PET parameters, like

texture and heterogeneity markers, concerning their prognostic value for patients outcome

in large datasets. Moreover, the determination of the metabolic tumor volume would be facil-

itated. The aim of our study was the development and evaluation of an automatic algorithm

for segmentation and classification of lymphoma lesions in PET.

Methods

Pre-treatment PET scans from 60 Hodgkin lymphoma patients from the EuroNet-PHL-C1

trial were evaluated. A watershed algorithm was used for segmentation. For standardization

of the scan length, an automatic cropping algorithm was developed. All segmented volumes

were manually classified into one of 14 categories. The random forest method and a nested

cross-validation was used for automatic classification and evaluation.

Results

Overall, 853 volumes were segmented and classified. 203/246 tumor lesions and 554/607

non-tumor volumes were classified correctly by the automatic algorithm, corresponding to a

sensitivity, a specificity, a positive and a negative predictive value of 83%, 91%, 79% and

93%. In 44/60 (73%) patients, all tumor lesions were correctly classified. In ten out of the 16

patients with misclassified tumor lesions, only one false-negative tumor lesion occurred.

The automatic classification of focal gastrointestinal uptake, brown fat tissue and composed

volumes consisting of more than one tissue was challenging.
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Conclusion

Our algorithm, trained on a small number of patients and on PET information only, showed a

good performance and is suitable for automatic lymphoma classification.

Introduction

Fluorodeoxyglucose positron emission tomography (PET) is a well-established, sensitive

method for the assessment of Hodgkin lymphoma (HL) and glucose-avid Non-HL [1–4]. The

initial PET scan is important for exact staging and radiotherapy planning [5, 6].

Lymphoma represent a systemic disease in which multifocal involvement pattern is com-

mon [7, 8]. The precise detection of all initial lymphoma lesions is crucial for correct treatment

stratification [9, 10]. The differentiation between lymphoma uptake and non-tumor uptake in

PET can be challenging [11]. Reasons are the multifocal lymphoma involvement pattern with

large variability in terms of size, localization and tracer uptake, as well as the complex physio-

logical FDG distribution with variable uptake behavior, e.g. of the heart, the kidneys and the

skeleton. In addition, inflammatory foci, bone marrow activation and activated brown fat tis-

sue may hamper the PET evaluation. The assessment of PET scans of lymphoma patients is

feasible for experienced nuclear physicians but quite challenging for automatic algorithms.

The initial metabolic tumor volume was reported to be an independent prognostic factor in

lymphoma patients [12]. The prognostic value of further PET parameters, like texture and het-

erogeneity markers is subject of current research [13–17]. Large numbers of PET datasets are

required to evaluate the prognostic value of different parameters. Manual detection and seg-

mentation of lymphoma lesions is very time consuming and therefore not suitable for large

datasets. Algorithms have to be developed and tested, enabling the automatic segmentation of

lymphoma lesions. Moreover, an automatic classification of non-tumor lesions in different tis-

sue categories could support dosimetry calculations.

The aim of our study was to develop and evaluate an automatic algorithm for segmentation

and classification of lymphoma lesions in PET. In addition, we aimed at an optimized differen-

tiation of the various non-tumor tissues.

Methods

Patients

Our study included pre-treatment PET scans from HL patients from the EuroNet-PHL-C1

(C1) trial (EudraCT number NCT00433459) [18]. PET imaging was performed in multiple

PET centers, following the imaging recommendations of the C1 study protocol.

Ethical approval was granted by the ethics committee of the University of Leipzig (132/

19-ek). C1 study patients and/or their guardians gave written informed consent and acknowl-

edged transfer and storage of their imaging data on the Pediatric-Hodgkin-Network server

[19]. For our evaluation, all PET scans were completely anonymized. Thus, the ethics commit-

tee waived the requirement for additional informed consent.

Data preparation and transfer

In preparation of an evaluation regarding prognostic PET parameters for relapse, each initial

PET scan from the C1 study was anonymized and labeled with two attributes only. The first

attribute represented the PET result of the patient after two cycles of chemotherapy (“PET-
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positive” or “PET-negative”). The second attribute indicated whether a relapse occurred later

on or not (“relapse” or “non-relapse”). Thus, each anonymized PET scan could be assigned to

one of four subgroups (PET-positive relapse, PET-positive non-relapse, PET-negative relapse,

PET-negative non-relapse). All anonymized PET scans were transferred via secured data con-

nection from the Pediatric-Hodgkin-Network server to the Institute of Computer Science at

the Martin-Luther-University of Halle (Saale), Germany for further evaluation.

Preprocessing

For all PET scans, the intensity values were smoothed for denoising using a Gauss filter with σ
= 2.0. Thereafter, SUV values were calculated and coronal SUV projections were reconstructed

for visual plausibility check. From the valid scans, 15 PET scans from each subgroup, a total of

60 scans, were drawn randomly for this study.

Segmentation

First, all voxels with an SUV below 2.5 were excluded. Second, a watershed algorithm was used

for segmentation of the SUV dataset [20]. This algorithm uses the concept that individual vox-

els belong to certain catchment basins to define different volumes. Watersheds represent bor-

ders between these basins. To detect watersheds, the flooding of the topography is simulated.

The algorithm stops when all voxels are assigned to either one catchment area or a watershed.

Third, neighboring volumes were merged based on similar texture. Specifically, for each vol-

ume co-occurrence matrices were computed using a distance of one for all directions and the

average of the resulting contrast, entropy and inverse difference moment was determined.

Two volumes were merged if the absolute differences of their aggregated texture measures was

smaller than a threshold of two.

Volumes smaller than 2.0 ml were excluded from further analysis [12, 21].

Automatic cropping algorithm

For further standardization, each PET scan was cropped along the z-axis. An heuristic algo-

rithm was developed, cropping the PET scan at brain and urinary bladder level. An illustrated

description is given in the supplementary material. Segmented volumes were not considered

for further analysis if they overlapped the boundaries or laid outside.

Manual classification

All segmented volumes were manually classified by a nuclear physician with ten years of exper-

tise in HL evaluation. Each volume was assigned to one of the following 14 categories: tumor,

composed volumes of tumor and non-tumor tissue (T+NT), brain, skeleton, head-and-neck-

region, heart, right kidney, left kidney, liver, gastrointestinal tract, genital organs, urinary blad-

der, activated brown fat tissue and composed volumes consisting of more than one non-tumor

tissue (NT+NT).

Feature computation and normalization

In our study, 31 features were used for classification: 19 SUV-based features, six shape-based

features and six spatial location features (Table 1). These features had to be normalized to be

comparable between scans, since patients differed in their constitutions and PET scanner in

their resolutions. Our approach was to compute the features in the original PET scan and sub-

sequently transform them to a standardized size and scanner resolution.
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Automatic classification

For automatic classification of the segmented volumes, the random forest method [22] was

applied. A random forest consists of several hundred up to thousands of decision trees. Each

tree consists of a hierarchy of binary decisions. With every decision it was checked, if a specific

feature of the volume exceeded a cut-off value or not (e.g. Is the maximum SUV above 4.0?).

After navigating through the whole tree up to the leaf, the given volume was classified into the

category associated with this leaf. Each volume was classified using all decision trees. The final

classification result represented the majority vote of all trees.

A nested cross validation was used for training of the random forest. For ease of presenta-

tion, only an overview is given here, a detailed description can be found in the supplementary

material. The whole dataset was split into three parts: a training set, a validation set and a

test set. Using the training set, the random forest was trained. All decision trees of the forest

were trained independently. The validation set was used to find the best combination of hyper-

parameters. Hyperparameters in our study were: the maximum depth of each decision tree

and the number of selectable features for each decision. The trained random forest with the

best hyperparameter combination was applied to the test set. This procedure was repeated

until each part of the entire data set was once a test data set to derive an unbiased estimate of

the performance.

Performance evaluation

The results of the automatic cropping algorithm were evaluated visually. Nested cross valida-

tion with random data partitioning and ten repetitions was used for performance evaluation of

the automatic classification. The classification results were averaged across the ten repetitions

and subsequently rounded to integral numbers. For the binary decision between tumor and

non-tumor, T+NT volumes were considered tumor lesions since our aim was to include all

tumor lesions. Sensitivity, specificity, positive predictive value (PPV), negative predictive value

(NPV) and F1-score (F1 = 2 / (sensitivity-1 + PPV-1)) were calculated.

A flowchart of the methodical workflow is given in Fig 1.

Table 1. Features of the segmented volumes used for classification.

Features for Classification

SUV-based features Shape-based features Spatial location features

Maximum SUV Mean absolute deviation of SUV Area surface ratio Direction of major axis (x)

Minimium SUV Root mean squared of SUV Surface difference2 Direction of major axis (y)

Mean SUV Standard deviation of SUV Scaled surface area Direction of major axis (z)

Median SUV Skewness of SUV Scaled volume Location of centorid (x)

Range of SUV Coarseness of NGTDM Compactness Location of centorid (y)

Variance of SUV Contrast of NGTDM Maximum diameter Location of centorid (z)

Energy of SUV Busyness of NGTDM

Entropy of SUV Complexity of NGTDM

Kurtosis of SUV Outside difference1

Uniformity of SUV

1) Mean difference of SUV values between volume and surrounding.

2) Estimated average ratio of eucliden vs surface distance of surface voxel pairs.

Abbreviations: SUV—Standard uptake value, NGTDM—Neighboring gray tone difference matrix.

https://doi.org/10.1371/journal.pone.0267275.t001
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Results

Evaluation of the automatic cropping algorithm

The automatic cropping at brain level was successful in 50/60 patients. In nine out of the ten

patients with incorrect cropping, the brain was not included in the PET acquisition. As a

result, the scan was cropped at the salivary glands in six patients and at a tumor lesion in the

neck in three patients. In one patient, the PET scan was cropped at a tumor lesion in the neck

although the brain was visible. Due to incorrect cropping in the upper part of the scan, five

tumor lesions in the neck were excluded from further evaluation.

The automatic cropping at bladder level was successful in 57/60 patients. In one patient,

the scan was cropped above the bladder at the iliac crest, in one patient below the bladder at

the testicles and in one patient no lower boundary was defined. However no tumor lesion

got lost on the basis of incorrect cropping at the lower part of the scan. In two patients,

tumor lesions were excluded from further evaluation since they were located below bladder

level—inguinal lymph nodes in one patient and one skeletal lesion in the right femur in

another patient.

Segmentation

Overall, 853 segmented volumes were equal or larger than 2.0 ml and located completely

within the cropping boundaries and therefore considered for further evaluation.

Fig 1. Methodical workflow of the classification algorithm.

https://doi.org/10.1371/journal.pone.0267275.g001
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Manual classification

225 tumor lesions and 21 composed T+NT volumes were manually classified, an average of 4.1

tumor lesions per patient. Tumor lesions occurred in lymph nodes above and below the dia-

phragm in 59 and 17 patients, respectively. Extra-nodal lesions occurred in the lung, the skele-

ton, the liver and the spleen in eight, five, one and ten patients, respectively.

The other 607 volumes were non-tumor tissues, including six composed NT+NT volumes.

Most frequently, physiological skeletal uptake was segmented (n = 295), mainly located in spine

and pelvis. Tracer uptake in the kidneys was also frequently segmented (n = 134), occasionally

in multiple volumes per kidney due to uneven tracer distribution. 86 non-tumor volumes were

located in the head-and-neck-region, mostly in the salivary glands, the Waldeyer´s ring or the

vocal cord. Due to incorrect cropping, two urinary bladders were included in the further evalua-

tion. An overview of all manually classified volumes is shown in the last line of Table 2.

Automatic classification of tumor vs. non-tumor

Overall, 203/246 tumor lesions and 554/607 non-tumor volumes were classified correctly, cor-

responding to a sensitivity of 83%, a specificity of 91%, a PPV of 79%, a NPV of 93% and an

f1-score of 81%.

43 tumor lesions were misclassified. These lesions were mistakenly considered to be non-

tumor uptake, mainly in the skeleton (n = 17), the head-and-neck-region (n = 12) or the kidney

(n = 9). 53 non-tumor volumes were misclassified as tumor lesions. Most of these misclassified

lesions referred to non-malignant uptake in the gastrointestinal tract (n = 13), physiological

uptake in the skeleton (n = 9) or uptake in activated brown fat tissue (n = 7) (Table 2).

Automatic classification of non-tumor tissues

The most common non-tumor tissues (skeleton, kidneys and soft tissue in the head-and-neck-

region) were correctly classified in 94%, 90% and 94% of all cases. 77% of the heart volumes

Table 2. Confusion matrix of manual and automatic classification of the segmented volumes.

Manual Classification

T T+NT SK HN HT RK LK LI GI G BL BF NT+NT sum

Automatic Classification T 182 7 9 5 5 1 5 0 13 2 1 7 3 240

T+NT 4 10 0 0 0 0 0 0 0 0 0 0 2 16

SK 15 2 277 0 2 4 0 1 6 0 1 1 0 309

HN 11 1 4 81 0 0 0 0 0 0 0 1 0 98

HAT 1 0 0 0 24 0 0 0 0 0 0 0 0 25

RK 2 0 1 0 0 61 0 0 0 0 0 0 0 64

LK 6 1 1 0 0 0 60 0 0 0 0 1 0 69

LI 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GI 3 0 3 0 0 1 2 0 17 1 0 0 1 28

G 0 0 0 0 0 0 0 0 1 0 0 0 0 1

BL 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BF 1 0 0 0 0 0 0 0 0 0 0 2 0 3

NT+NT 0 0 0 0 0 0 0 0 0 0 0 0 0 0

sum 225 21 295 86 31 67 67 1 37 3 2 12 6 853

Abbreviations: T—Tumor, T+NT—Composed volume of tumor and non-tumor tissue, SK—Skeleton, HN—Head-and-neck-region, HT—Heart, RT- Right kidney, LK

—Left kidney, LI—Liver, GI—Gastrointestinal tract, G—Genital organs, BL—Urinary bladder, BF—Activated brown fat tissue, NT+NT—composed volumes of more

than one non-tumor tissue type (NT+NT).

https://doi.org/10.1371/journal.pone.0267275.t002
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were correctly classified. The automatic classification of gastrointestinal uptake, activated

brown fat tissue and composed NT+NT volumes was an issue. The rates for correct classifica-

tion were 46% (17/37), 17% (2/12) and 0% (0/6), respectively.

Results on patient level

In 44/60 (73%) patients, all tumor lesions were correctly classified. In ten out of the 16 patients

with misclassified tumor lesions, only one false-negative tumor lesion occurred. Misclassified

tumor lesions were located in all body regions: in six patients in the neck, in four patients in

the mediastinum and in six patients below the diaphragm. The algorithm missed splenic

involvement in one patient and skeletal involvement in five patients.

Non-tumor uptake misclassified as tumor was seen in 31/60 (52%) patients, mainly below

the diaphragm (n = 17). In 14/31 patients, only one non-tumor lesion was misclassified. In

seven patients, physiological skeletal uptake was considered to be tumor.

In 13/37 patients with cardiac uptake, the heart was part of a composed volume. In 18 out

of the other 24 patients (75%), the heart was correctly classified. In 3/6 patients with cardiac

misclassification, the heart was untypically configured since only the valve plane showed

increased tracer uptake Overall, in 22 patients all volumes were correctly classified. In nine

patients both, misclassified tumor and non-tumor lesions were seen. An example for each type

is shown in Figs 2 and 3.

Discussion

Our automatic algorithm for segmentation and classification of lymphoma lesions in initial

PET scans resulted in a sensitivity of 83% and a specificity of 91%. In 44 of our 60 patients, all

tumor lesions were classified correctly. In ten patients only one tumor lesion was misclassified

and in six patients more than one. Most frequently, tumor lesions were misclassified as non-

malignant uptake in the skeleton or the head-and-neck-region.

Tumor lesions were discriminated from eleven different non-tumor uptake categories,

including complex areas like salivary glands, skeleton and brown fat tissue. The classification

of non-tumor uptake provided sensitivities� 90% for the most common tissue types (skeleton,

kidneys and soft tissue in the head-and-neck-region). These three tissues together amount to

85% of the number of all non-tumor volumes.

The automatic heart classification is challenging [23] due to the variable uptake behavior.

In half of our patients with misclassified heart volumes an untypical cardiac uptake pattern

was seen. However, 77% of all heart volumes were classified correctly.

The classification of non-malignant gastrointestinal uptake was difficult. Due to its focal

appearance and variable localization, gastrointestinal uptake may appear like lymphoma

lesions. In our study, more than half of all gastrointestinal volumes were misclassified, one

third was mistakenly classified as tumor lesion.

Another critical category for automatic classification was activated brown fat tissue. Typi-

cally, it is characterized by multiple singular uptake areas mostly located in the neck and shoul-

der region. This area is also a preferred localization for lymphoma lesions. Thus, increased

uptake in the brown fat tissue hampers the detection of lymphoma uptake, for physicians but

especially for automatic algorithms.

Overall, in about half of our patients, at least one non-tumor volume was misclassified as

tumor lesion.

For our algorithm the following conditions were chosen:

First, an SUV threshold of 2.5 for lesion segmentation was applied. This sensitive threshold

[24, 25] was chosen to include all potential tumor lesions in our evaluation. Different
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Fig 2. Patient from the EuroNet-PHL-C1 study with an optimal automatic classification.

https://doi.org/10.1371/journal.pone.0267275.g002
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Fig 3. Patient from the EuroNet-PHL-C1 study with a suboptimal automatic classification and incorrect cropping at

the upper border.

https://doi.org/10.1371/journal.pone.0267275.g003
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segmentation thresholds were used by other authors: fixed thresholds of an SUV of 2.5 [12,

16], 3.0 [23] or 4.0 [26], or adaptive thresholds of 41%/42% of the SUVmax [11, 16, 26, 27] or

background-related thresholds [12, 16, 21].

Second, a watershed algorithm was chosen for segmentation. Watershed segmentation is

frequently used for tumor segmentation in PET imaging [20, 23].

Third, the z-axis of the PET scans was cropped for standardization of the scan length. Crop-

ping was important in our multicenter approach since different PET acquisition protocols

were used (e.g. skull base to mid-thigh, whole-body). As a result of automatic cropping, only

very few lesions got lost.

Fourth, volumes below a size of 2.0 ml were not considered for classification. This approach

was also applied by other authors and reduced the number of artifact-related lesions, prone to

misclassification [12, 21]. Moreover, a lower threshold on volume size was also used for staging

assessment in lymphoma trials [18, 28].

Fifth, a random forest was applied for classification of the segmented volumes. We used sev-

eral hundred of trees and 31 features for the random forest. Feature standardization was

achieved by transformation of the computed features to a standardized size and scanner reso-

lution avoiding inaccuracies introduced by resampling.

Sixth, all tissue types with an increased uptake were included in our evaluation to address

the situation in the daily routine. Overall, 14 different categories were used for classification.

Most published studies only differentiated between tumor and non-tumor lesions [12, 27],

while Hsu et al. [23] used a total of six classification categories.

Limitations

The main reason for incorrect automatic cropping was the absence of the brain on the PET

scan. Our cropping algorithm should be improved regarding this special situation.

Composed volumes consisting of more than one tissue category are a major issue for auto-

matic classification [23, 26]. In our study, 17/21 T+NT volumes and 5/6 NT+NT volumes were

classified as tumor lesions. Thus, for our algorithm, composed volumes appeared to resemble

tumor rather than non-tumor tissue, regardless of whether they contained tumor or not.

Although T+NT volumes were classified as tumor these volumes did not exclusively represent

tumor tissue. Thus, the assessment of tumor features could be skewed by the non-tumor parts.

Automatic splitting of composed volumes into the individual tissues is not yet possible [26]

but might be an option in the future. Manual splitting is a solution for individual cases but not

for the assessment of large datasets. A potential approach for automatic splitting might be the

organ segmentation in morphological imaging and the transfer of the segmented volume to

the PET scan.

Comparison with other algorithms

A comparison of our results with published data is complicated by differences in methodology,

tumor spread in included patients and inclusion of a varying number of non-tumor categories.

A similar methodology for lymphoma classification was published by Hsu et al. [23] using

also PET data only, a watershed algorithm and a random forest. The authors identified tumor

lesions with sensitivity of 84% and specificity of 92%. Compared to Hsu et al., we trained our

algorithm on PET scans from multiple centers, used an automatic cropping algorithm for scan

length normalization, included all tissue types with increased uptake in our classification and

had more tumor lesions per scan (four vs. one). Interestingly, in our more complex setting we

could confirm the very good performance of this methodology.
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Several authors used convolutional neural networks (CNN) for automatic segmentation

[11, 21] and/or classification [12, 27] of lymphoma lesions. Capobianco et al. [12] and Sibille

et al. [27] presented a sensitivity and specificity of 80% and 88%, and of 75% and 96% for lym-

phoma classification. Both CNN studies used information from PET and corresponding mor-

phological imaging. It should be noted that our algorithm achieved comparable results while

only PET imaging and a significantly lower number of manually classified scans was used.

Conclusion

Our algorithm, trained on a small number of scans and on PET information only, showed a

good performance and is suitable for automatic lymphoma classification. Compared to a

CNN, a lower number of data is required for sufficient training of our algorithm.

The future method of choice for automatic lymphoma classification is still unclear. Differ-

ent approaches should be developed and tested to find the optimal solution.
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S1 Fig. Automatic cropping algorithm. The aim of heuristic cropping was to detect the brain

and the urinary bladder as the cranial and caudal reference points. In most cases both show a

distinct physiological uptake and therefore are a viable targets. In a first step the 3D SUV

image (a) was projected onto the xz-plane (b), cropped to exclude extremities (c), and further

projected onto the z-axis to create a function of SUV maxima from cranial to caudal (d). In a

seconded step we smoothed the function and applied a peak detection to extract the first and

last significant peak (e). Those correlated in most cases with brain and bladder and served as

boundaries for cropping.

(TIF)

S1 File. Explanation of the nested cross validation.
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