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Abstract: We aim to compare the relative heritability contributed by variants of behavior-related
environmental phenotypes and elucidate the role of these factors in the conundrum of “missing
heritability” of type 2 diabetes. Methods: We used Linkage-Disequilibrium Adjusted Kinships
(LDAK) and LDAK-Thin models to calculate the relative heritability of each variant and compare the
relative heritability for each phenotype. Biological analysis was carried out for the phenotype whose
variants made a significant contribution. Potential hub genes were prioritized based on topological
parameters of the protein-protein interaction network. We included 16 behavior-related phenotypes
and 2607 valid variants. In the LDAK model, we found the variants of alcohol consumption and
caffeine intake were identified as contributing higher relative heritability than that of the random
variants. Compared with the relative expected heritability contributed by the variants associated
with type 2 diabetes, the relative expected heritability contributed by the variants associated with
these two phenotypes was higher. In the LDAK-Thin model, the relative heritability of variants of
11 phenotypes was statistically higher than random variants. Biological function analysis showed
the same distributions among type 2 diabetes and alcohol consumption. We eventually screened
out 31 hub genes interacting intensively, four of which were validated and showed the upregulated
expression pattern in blood samples seen in type 2 diabetes cases. Conclusion: We found that alcohol
consumption contributed higher relative heritability. Hub genes may influence the onset of type 2
diabetes by a mediating effect or a pleiotropic effect. Our results provide new insight to reveal the
role of behavior-related factors in the conundrum of “missing heritability” of type 2 diabetes.

Keywords: type 2 diabetes; indirect genetic effects; heritability; behavior-related phenotypes

1. Introduction

Type 2 diabetes mellitus (type 2 diabetes) is a complex disease induced by a combina-
tion of environmental and genetic factors. Previous studies have shown that overweight,
smoking, sedentary lifestyle and education are common risk factors of type 2 diabetes [1–4].
Meanwhile, genome-wide association studies (GWAS) have identified more than 500 sus-
ceptibility loci that demonstrated a robust association with type 2 diabetes [5]. In contrast to
the tremendous stride in GWAS research, the conundrum of “missing heritability” in type
2 diabetes has progressed slowly and arduously. Genome-wide chip heritability analysis
explained 19% of type 2 diabetes risk on a liability scale, which is much smaller when
compared to heritability estimates expected from the observed trait concordance within
families [6,7]. Although there are several hypotheses regarding rare variants, structural
variants and gene–environment interactions for the missing heritability [8–10], the limited
incremental value in heritability estimated by GWAS so far suggests that the genetic predic-
tion of complex diseases on a population basis will be challenging. There is still a long way
to go to fully understand the etiology of type 2 diabetes before getting it under control.
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An important controversial assumption about heritability is the idea that the genetic
influence on trait development can be separated from the environmental context [10]. In
addition to the direct effect of genetics, part of the effect of genetic factors is mediated by en-
vironmental factors. Baud et al. found social genetic effects (SGE, effects of an individual’s
genotypes on others’ phenotype, also called indirect genetic effects) can explain up to 29%
of phenotypic variance, and for several traits, their contribution exceeded that of direct ge-
netic effects (effects of an individual’s genotypes on its own phenotype) [11]. Undoubtedly,
ignoring SGE can severely bias estimates of direct genetic effects (heritability) [11]. Xia
et al. used a linear mixing model to estimate the indirect heritability between partners, and
found evidence of indirect genetic effects between partners in about 50% of phenotypes [12].
The genetic nurturing effect proposed by Kong et al. is a manifestation of the social genetic
effect within the family. Using results from a meta-analysis of educational attainment, they
found the polygenic score computed for the non-transmitted alleles of 21,637 probands
with at least one parent genotyped had an estimated effect on the educational attainment of
the proband, that is 29.9% (p = 1.6 × 10−14) of that of the transmitted polygenic score [13].
The evidence above suggests that genetic factors can affect individual phenotypes through
their contributions to the environment.

Another controversy about missing heritability is that there is currently much debate
regarding the best model for how heritability varies across the genome. It has been shown
that the LDAK model leads to estimates of common single-nucleotide polymorphism (SNP)
heritability, on average, 43% (s.d. 3%) higher than those obtained from the widely used
software Genome-wide Complex Trait Analysis (GCTA) and 25% (s.d. 2%) higher than
those from the recently proposed extension LD and minor allele frequency (MAF) stratified
multi-component GCTA (GCTA-LDMS) across 19 traits [14]. In terms of the rationality of
the hypothesis, it is more realistic to employ the LDAK model, where expected heritability
varies with both linkage disequilibrium (LD) and MAF [15,16]. In addition, considering the
computational burden, the simplified LDAK-Thin model is also an alternative, which is a
one-parameter model, and can be incorporated in any existing method simply by changing
which predictors are included in the regression and how these are standardized [15].

In this study, we compared the heritability contribution of environmental phenotypes,
especially behavior-related environmental phenotypes that have a genetic basis, with that
of type 2 diabetes by using heritability estimation models to estimate the relative expected
heritability tagged by each variant. The susceptibility variants of candidate environmental
phenotypes were further characterized by functional annotation and protein–protein in-
teraction (PPI) analysis to identify the potential key genes of type 2 diabetes. Our work is
a new attempt to provide information and evidence to elucidate the genetic mechanisms
underlying the missing heritability of type 2 diabetes and promote the development of
comprehensive prevention for type 2 diabetes.

2. Results
2.1. Overview of Behavior-Related Phenotypes

Based on the results of the literature review and the results of Yuan et al., we eventu-
ally included 16 behavior-related phenotypes, including educational attainment, lifetime
smoking index, alcohol consumption, coffee intake, caffeine intake, breakfast skipping,
morningness, insomnia, sleep duration, short sleep, daytime napping, restless leg syn-
drome, moderate to vigorous physical activity, strenuous sports, vigorous physical activity
and accelerometer. The union of variants for type 2 diabetes and the phenotype that
both appear simultaneously in the tagging file is defined as the valid variant set for the
consequent analysis. A total of 2607 valid variants were included in the analysis. The mean
minimum allele frequency (MAF) was 0.28 (s.d. 0.14), and 149 variants were rare variants
(MAF < 0.05). The results of traditional epidemiological studies on behavior-related pheno-
types of type 2 diabetes and the information of susceptibility variants for each phenotype
included in the analysis are shown in Tables 1 and 2, and Figure 1.
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Table 1. Information on type 2 diabetes related behavioral phenotypic susceptibility variants.

Factors PMID Year Case Control Unit

Alcohol consumption 30643251 2019 941,280 NA Drinks/week
Coffee consumption 31046077 2019 375,833 NA NA

Caffeine intake 21490707 2011 47,341 NA mg/d
Breakfast skipping 31190057 2019 193,860 NA NA

Lifetime smoking index 31689377 2019 462,690 NA SD
Daytime napping 31409809 2019 452,071 NA Events

Sleep duration 30846698 2019 446,118 NA Hours/d
Short sleep 30846698 2019 106,192 305,742 Events
Long sleep 30846698 2019 34,184 305,742 Events
Insomnia 30804565 2019 397,972 933,038 Events

Morningness 30696823 2019 372,765 278,530 Events
Restless leg syndrome 29029846 2017 15,126 95,725 Events
Moderate to vigorous

physical activity 29899525 2018 377,234 NA SD

Strenuous sports 29899525 2018 124,842 225,650 ≥2–3 vs.
0 day/weeks

Vigorous physical 29899525 2018 98,060 162,995 ≥3 vs.
0 day/weeks

Accelerometer 29899525 2018 91,084 NA NA
Educational attainment 30038396 2018 1,131,881 NA SD

NA, missing value; SD, standard deviation.

Table 2. Distribution of susceptibility variants for behavior-related phenotypes in type 2 diabetes.

Behavior-Related
Phenotypes

Variants
Reported in
Literature

Variants in
Tagging File

Valid Variants
Analyzed

MAF
(s.d.)

EAF
(s.d.)

Type 2 diabetes 403 363 363 0.25(0.14) 0.48(0.28)
Educational attainment 1272 1263 1624 0.27(0.14) 0.46(0.26)
Lifetime smoking index 126 126 489 0.31(0.12) 0.49(0.22)
Alcohol consumption 99 98 460 0.27(0.14) 0.44(0.27)
Coffee consumption 15 14 376 0.25(0.14) 0.39(0.26)
Breakfast skipping 6 6 369 0.21(0.08) 0.50(0.31)

Caffeine intake 2 2 365 0.34(0.07) 0.34(0.04)
Morningness 351 342 703 0.30(0.13) 0.46(0.23)

Insomnia 248 244 606 0.30(0.13) 0.49(0.24)
Sleep duration 78 77 440 0.29(0.13) 0.52(0.25)

Daytime napping 37 36 399 0.34(0.12) 0.57(0.20)
Short sleep 27 26 389 0.29(0.11) 0.50(0.25)

Restless leg syndrome 20 20 383 0.28(0.13) 0.51(0.27)
Moderate to vigorous

physical activity 9 9 371 0.26(0.16) 0.47(0.29)

Strenuous sports 6 6 369 0.26(0.16) 0.53(0.28)
Vigorous physical 5 5 368 0.34(0.14) 0.34(0.14)

Accelerometer 2 2 365 0.29(0.03) 0.72(0.10)
Total 2674 2607 2607 0.28(0.14) 0.47(0.25)

MAF, Minor Allele Frequency; EAF, Effect Allele Frequency.

2.2. Estimation of Relative Expected Heritability by LDAK

The relative expected heritability estimated of all 2607 variants estimated by SumHer
under the LDAK model assumption was 19.5, which was not higher than that of simulated
sampling. All variants of behavior-related phenotypes accounted for 83.39% of the total
phenotypic heritability. Educational attainment contributed the most, at 76.43% of the
total phenotypic heritability. The heritability contributed by the susceptibility variants
was significantly correlated with the number of variants (correlation coefficient = 0.90,
p < 0.001), as seen in Table 3. The results of simulation sampling showed that the relative
heritability of the susceptibility variants of caffeine intake and alcohol consumption was
significantly higher than that of random variants. In caffeine intake, the average heritability
of the total variants was 0.01 and the average heritability of phenotypic variants was
0.04, while the attribution heritability of phenotypic variants was 2.43% and the relative
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heritability of phenotypic variants was 4.51 times. The corresponding parameters for
alcohol consumption were 0.01, 0.02, 37.45% and 2.24 times, respectively. The relative
heritability of phenotypic variants of skipping breakfast, coffee consumption and strenuous
sports were also more than 2 times that of type 2 diabetes variants, while it was not
statistically significant compared with simulation sampling.
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Figure 1. An overview of behavioral related phenotypes’ susceptibility variants for type 2 dia-
betes mellitus.

Table 3. Estimated of relative expected heritability by LDAK.

Phenotypes

Expected Heritability

Estimation Simulation
(s.d.)

¯
h

2

total
¯
h

2

pheno
AHPV RHPV

Type 2 diabetes 3.2 - 0.01 - - -
Caffeine intake * 3.3 3.3(0.0) 0.01 0.04 2.43 4.51

Alcohol consumption * 5.2 4.3(0.3) 0.01 0.02 37.45 2.24
Breakfast skipping 3.4 3.3(0.1) 0.01 0.02 4.06 2.56

Coffee consumption 3.5 3.4(0.1) 0.01 0.02 7.73 2.34
Strenuous sports 3.3 3.3(0.1) 0.01 0.02 3.26 2.04

Moderate to vigorous
physical activity 3.3 3.3(0.1) 0.01 0.01 2.33 1.08

Educational attainment 13.7 16.2(1.2) 0.01 0.01 76.43 0.93
Insomnia 5.2 5.7(0.4) 0.01 0.01 37.45 0.89

Morningness 4.8 6.6(0.6) 0.01 0.00 32.01 0.50
Lifetime smoking index 3.7 4.5(0.4) 0.01 0.00 13.42 0.45

Short sleep 3.3 3.5(0.1) 0.01 0.00 2.53 0.36
Sleep duration 3.4 4.1(0.3) 0.01 0.00 0.30 0.22

Vigorous physical 3.2 3.3(0.1) 0.01 0.00 4.53 0.22
Restless leg syndrome 3.3 3.4(0.1) 0.01 0.00 0.88 0.16

Daytime napping 3.2 3.6(0.2) 0.01 0.00 0.00 0.00
Accelerometer 3.2 3.3(0.1) 0.01 0.00 0.00 0.00

Total 19.5 26.7(1.6) 0.0075 0.0072 83.39 0.81
* indicated that the estimation was significantly higher than the simulation sampling results at the significance
level of α = 0.05. AHPV, Attribution Heritability of Phenotypic Variants; RHPV, Relative heritability of pheno-
typic variants.

2.3. Estimation of Relative Expected Heritability by LDAK-Thin

The relative expected heritability estimated of all 2607 variants estimated by SumHer
under the LDAK-Thin model assumption was 671.3, which was significantly higher than
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that of simulated sampling. All variants of behavior-related phenotypes accounted for
86.88% of total phenotypic heritability. Educational attainment contributed the most, at
79.48% of the total phenotypic heritability. The heritability contributed by the susceptibility
variants was significantly correlated with the number of variants (correlation coefficient = 0.91,
p < 0.001), as seen in Table 4. Compared to the simulation sampling, the relative heritability
of variants of 11 phenotypes, including insomnia, educational attainment, lifetime smoking
index, alcohol consumption, coffee consumption, daytime napping, sleep duration, short
sleep, morningness, moderate to vigorous physical activity and vigorous physical activity,
was statistically higher than the random variants. Among the phenotypes with significant
differences, the relative heritability of phenotypic variants of all phenotypes was higher
than that of type 2 diabetes, except alcohol consumption. The relative heritability of
phenotypic variants for short sleep was the highest, which was 1.36 times that of type 2
diabetes, which accounted for 8.87% of the total phenotypic heritability.

Table 4. Estimation of relative expected heritability by LDAK-Thin.

Phenotypes

Expected Heritability

Estimation Simulation
(s.d.)

¯
h

2

total
¯
h

2

pheno
AHPV RHPV

type 2 diabetes 88.1 - 0.24 - - -
Short sleep * 96.7 91.4(1.1) 0.25 0.33 8.87 1.36

Daytime napping * 99.7 92.5(1.1) 0.25 0.32 11.64 1.33
Strenuous sports 89.9 88.9(0.5) 0.24 0.31 2.05 1.27

Coffee consumption * 91.7 89.3(0.7) 0.24 0.28 3.90 1.13
Educational attainment * 429.3 245.9(8.0) 0.26 0.27 79.48 1.11

Insomnia * 151.2 118.4(3.4) 0.25 0.26 41.73 1.07
Caffeine intake 88.6 88.4(0.3) 0.24 0.26 0.58 1.06
Sleep duration * 107.1 97.9(1.8) 0.24 0.25 17.73 1.02

Lifetime smoking index * 118.9 104.1(1.8) 0.24 0.24 25.91 1.01
Morningness * 171.7 130.2(3.4) 0.24 0.25 48.68 1.01

Moderate to vigorous
physical activity * 90.1 88.8(0.6) 0.24 0.24 2.17 1.01

Alcohol consumption * 109.7 99.9(1.9) 0.24 0.22 19.70 0.92
Breakfast skipping 89.1 88.8(0.4) 0.24 0.16 1.07 0.65
Vigorous physical 89.0 88.8(0.4) 0.24 0.18 1.01 0.74

Restless leg syndrome 90.4 92.7(0.9) 0.24 0.12 2.59 0.48
Accelerometer 88.1 88.3(0.3) 0.24 0.00 0.00 0.00

Total 671.3 324.4(9.0) 0.2575 0.2599 86.88 1.07
* indicated that the estimation was significantly higher than the simulation sampling results at the significance
level of α = 0.05. AHPV, Attribution Heritability of Phenotypic Variants; RHPV, Relative heritability of pheno-
typic variants.

2.4. Biological Function Analysis

As the variants of alcohol consumption were identified to contribute higher relative
heritability than that of the random variants in two heritability models, we then performed
the functional annotation, enrichment analysis and protein interaction network analysis
for the targeted phenotypes (Tables S1 and S2).

For 98 susceptibility variants associated with alcohol consumption, 7 of them (7.14%)
were missense mutations, 1 (1.02%) was a synonymous mutation (rs17029090), 14 (14.29%)
were in the untranslated region (UTR) and 66 (67.35%) were mutations in the intronic
region. The regulatory element functional annotation results revealed six transcription
factor binding sites and two CpG sites. Fourteen variants had Combined Annotation–
Dependent Depletion (CADD) scores greater than 12.37, suggesting that they might be
deleterious mutations (Table S3). The Chi-Squared test showed no significant difference
between the distributions for the functional category and RegulomeDB ranking among
type 2 diabetes and alcohol consumption (Tables S4 and S5).
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KEGG pathway enrichment analysis was performed on 55 genes annotated by sus-
ceptibility variants of alcohol consumption (Table S6). Under the false discovery rate
at the 0.05 level, the study found that the genes were significantly enriched in glycol-
ysis/gluconeogenesis (hsa00010), tyrosine metabolism (hsa00350), fatty acid degrada-
tion (hsa00071), retinol metabolism (hsa00830), metabolism of xenobiotics by cytochrome
P450 (hsa00980), drug metabolism-cytochrome P450 (hsa00982), chemical carcinogenesis
(hsa05204) and propanoate metabolism (hsa00640).

2.5. Screening of Hub Genes

Based on the closeness, edge percolated component (EPC), and maximum neigh-
borhood component (MNC) stress of the protein interaction network formed by genes
annotated from variants associated with alcohol consumption and type 2 diabetes, the
genes in the protein interaction network were sorted (Table S7). We eventually screened
out 31 hub genes interacting intensively (p < 0.001), as seen in Figure 2, of which 2 genes
(GCKR and TCF4) were identified simultaneously by the susceptibility variants of alcohol
consumption and type 2 diabetes (Table S8).
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GCKR is highly expressed in the liver. CAMD2 and RPTOR were identified by the
susceptibility variants of alcohol consumption only, of which CAMD2 is highly expressed
in brain-related tissues (Figure S1).

2.6. Significant Upregulation of RPTOR

Among the hub genes screened, four genes (NEUROG3, TCF7L2, MAP2K5 and RPTOR)
were validated as showing the upregulated expression pattern in blood samples in type 2
diabetes cases (Figure 3).
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in periodontitis.

3. Discussion

This study provides new insight into the association between type 2 diabetes and
alcohol consumption. In this study, we found the variants of alcohol consumption were
identified as contributing higher relative heritability than that of the random variants in
two heritability models. In the LDAK model, the relative expected heritability contributed
by the variants associated with these two phenotypes was twice as much as the relative ex-
pected heritability contributed by the variants associated with type 2 diabetes, while in the
LDAK-Thin model, the relative expected heritability contributed by the variants associated
with these two phenotypes was less than the relative expected heritability contributed by
the variants associated with type 2 diabetes. Such inconsistencies in the relative expected
heritability of each variant may be due to differences in the weights assigned to the variants
in model assumptions. Boyle et al. believed that the heritability of a typical complex
phenotype is driven by a large number of variations in the regulatory element region [17].
Liu et al. found that the distribution of heritability in each variant showed tissue specificity,
with genes with related functions (e.g., neuronal function in schizophrenia and immune
function in Crohn’s disease) contributing slightly more to heritability than random genes,
while genes not expressed in related cell types did not contribute to heritability [18]. Yet,
the specific assumptions of which model is more reasonable still need to be further ex-
plored at the level of biological mechanisms. Biological function analysis showed the same
distributions for the functional category and RegulomeDB ranking among type 2 diabetes
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and alcohol consumption. Based on the topological parameters of the protein interaction
network, we eventually prioritize an intensively interactive hub 31 genes, of which two
hub genes (CAMD2 and RPTOR) were annotated by the variants of alcohol consumption
only. Our study provided a comprehensive approach to delineate the potential causal
genes and biological processes involved in type 2 diabetes pathogenesis and proposed new
insight into revealing the role of behavior-related environmental factors in the conundrum
of “missing heritability” of type 2 diabetes.

Systematic reviews have found a U-shaped association between alcohol consumption
and type 2 diabetes [19,20]. Moderate alcohol consumption also has a protective effect on
blood glucose management. Initiating moderate wine intake, especially red wine, among
well-controlled diabetics as part of a healthy diet is apparently safe and modestly decreases
cardiometabolic risk. In particular, only alcohol dehydrogenase allele [ADH1B*1] carriers
significantly benefited from the effect of both wines on glycemic control compared with
persons homozygous for ADH1B*2 [21]. We found that the ADH1B gene is a missense
mutation annotated by the variant rs1229984 associated with alcohol consumption, which
implied that it may be a key gene in the biological mechanism of alcohol consumption and
type 2 diabetes. However, this gene was not tagged as a hub gene in our study, possibly
because the number of genes annotated by variants of type 2 diabetes exceeded that of
alcohol consumption, thus it may be diluted by type 2 diabetes-related genes.

Among the hub genes identified, we particularly highlighted those annotated by alco-
hol consumption variants, because these genes may influence the onset of type 2 diabetes
by a mediating effect or a pleiotropic effect, which is of significance for the comprehen-
sive prevention of type 2 diabetes. GCKR, a hub gene identified simultaneously by the
susceptibility variants of alcohol consumption and type 2 diabetes, has densely interacted
with type 2 diabetes-related genes such as FTO and SLC2A2. GCKR is the susceptibility
gene candidate of maturity-onset diabetes of the young (MODY), whose protein product
binds non-covalently to form an inactive complex with the enzyme to regulate glucokinase
in liver and pancreatic islet cells. Previous studies have found that polymorphisms in
GCKR (rs780094) are associated with non-alcoholic fatty liver disease in multiple popu-
lations [22–24]. Evidence of an association between this variant and type 2 diabetes or
metabolic risk has also been detected [25,26]. An exome-chip association analysis for
circulating FGF21 levels in Chinese individuals found that the common missense variant of
GCKR, rs1260326 (p.Pro446Leu), may influence FGF21 expression via its ability to increase
glucokinase (GCK) activity [27]. This can lead to enhanced FGF21 expression via elevated
fatty acid synthesis, which is recognized as an important metabolic regulator of glucose
homeostasis [27,28]. CAMD2 and RPTOR were specifically alcohol consumption annotat-
ing genes. CADM2 variants influence a wide range of both psychological and metabolic
traits, suggesting common biological mechanisms across phenotypes via the regulation
of CADM2 expression levels in adipose tissue [29]. RPTOR encodes a component of a
signaling pathway that regulates cell growth in response to nutrient and insulin levels.
Its encoded protein forms a stoichiometric complex with the mTOR kinase, of which the
dysregulation of signaling is implicated in pathologies that include diabetes, cancer and
neurodegeneration [30]. Regarding the indirect effect of genetic factors, our study calcu-
lated the heritability contribution of each phenotype and explored the biological function of
the potential mechanism. Such a new method identified genes related to the onset of type
2 diabetes, and the function of these pleiotropic genes needs to be verified in subsequent
analyses using primary individual-level data or experimental evidence.

There are some limitations in this study. Firstly, due to the limitation of computational
resources, only two simple heritability models were considered, and the models weighted
by functional annotation were ignored. Since the estimated heritability in this study is
the relative expected heritability rather than the absolute heritability, the results between
models were not comparable to a certain extent. Although we applied the relative heri-
tability of phenotypic variants, the results of some phenotypes were not consistent. The
hypothesis relating to which model is more reasonable still needs to be further explored.
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In particular, whether this phenomenon exists in more complex heritability models also
needs to be followed up. In addition, the extrapolation of the conclusions in non-European
ancestry needs to be further verified as there are systematic differences not only in gene
frequency among different populations, but also in their behavior and lifestyle, such as
drinking culture. Further studies on a larger scale are needed to verify the reliability of the
conclusions in other populations.

Previous studies identified hub genes of type 2 diabetes based on the direct genetic
effect, while recent studies found that the majority of phenotypic variance is driven by
genes that are not directly related to the phenotypes [18]. Therefore, indirect effects of
genetic factors, especially those mediated by modifiable phenotypes such as behavior-
related phenotypes, should be considered in etiological studies and intervention strategies
for chronic diseases such as type 2 diabetes.

4. Materials and Methods
4.1. Identification for Candidate Environmental Phenotypes Associated with Type 2 Diabetes

Behavior-related environmental phenotypes found to be potentially causally asso-
ciated with type 2 diabetes were identified as candidate phenotypes based on previ-
ous traditional epidemiological literature reports and Mendelian randomization stud-
ies. The literature was searched in the PubMed database, and the search strategies were
as follows: ((((((((((meta-analysis [Publication Type]) OR meta-analysis [Title/Abstract])
OR meta-analysis [Title/Abstract]) OR meta-analysis [Title/Abstract]) OR meta-analysis
[Title/Abstract]) OR SystematicReview [Publication Type]) OR systematic review [Ti-
tle/Abstract])) AND ((Risk Factors [MeSH Terms]) OR risk factor [Title/Abstract])) AND
(((Diabetes Mellitus, Type 2 [MeSH Terms]) OR Type 2 diabetes [Title/Abstract]) OR
Type 2 diabetes mellitus [Title/Abstract]))“. In addition, we also refer to the wide-angled
Mendelian randomization study of Yuan et al. [31]. Phenotypes in the categories of “lifestyle
and sleep-related factors” and “education” were selected, and the phenotypes whose vari-
ants were from European ancestry were recorded as candidate phenotypes.

4.2. The Data Source

Genetic variants information of type 2 diabetes was acquired from Mahajan et al. ’s
work [32]. In this study, GWAS results from 32 studies for 898,130 individuals (74,124 T2D cases
and 824,006 controls) of European ancestry were aggregated. Imputation was implemented
using the Haplotype Reference Consortium reference panel. Association summary statis-
tics from sex-combined analyses for each variant across all studies were aggregated using
fixed-effect meta-analyses with an inverse-variance weighting of log-ORs and corrected for
residual inflation by means of genomic control. In total, 403 independent association signals
were detected by conditional analyses at each of the genome-wide-significant risk loci for
type 2 diabetes (except at the major histocompatibility complex (MHC) region). Summary-
level data are available at the DIAGRAM consortium (http://diagram-consortium.org/,
accessed on 13 November 2020) and Accelerating Medicines Partnership type 2 diabetes
(http://www.type2diabetesgenetics.org/, accessed on 13 November 2020). The infor-
mation of susceptibility variants of candidate phenotypes is shown in Table 1. Detailed
definitions of each phenotype are shown in Supplementary Table.

4.3. LDAK Model

The LDAK model [14] is an improved model to overcome the equity-weighted defects
for GCTA, which weighted the variants based on the relationships between the expected
heritability of an SNP and minor allele frequency (MAF), levels of linkage disequilibrium
(LD) with other SNPs and genotype certainty. When estimating heritability, the LDAK
Model assumes:

E[h2
j ] ∝ [ fi(1− fi)]

1+α ×vj × rj (1)

where E[h2
j ] is the expected heritability contribution of SNPj and fj is its (observed) MAF.

The parameter α determines the assumed relationship between heritability and MAF. In

http://diagram-consortium.org/
http://www.type2diabetesgenetics.org/
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human genetics, it is commonly assumed that heritability does not depend on MAF, which
is achieved by setting α = –1; however, we consider alternative relationships. The SNP
weights v1, . . . . . . , vm are computed based on local levels of LD; vj tends to be higher for
SNPs in regions of low LD, and thus the LDAK Model assumes that these SNPs contribute
more than those in high-LD regions. Finally, rj ∈ [0,1] is an information score measuring
genotype certainty; the LDAK Model expects that higher-quality SNPs contribute more
than lower-quality ones.

4.4. LDAK-Thin Model

The LDAK-Thin model [15] is a simplification of the LDAK model. The model assumes
vj is either 0 or 1, that is, not all variants contribute to the heritability based on the
LDAK model.

4.5. Model Implementation

We applied SumHer (http://dougspeed.com/sumher/, accessed on 13 January 2021) [33]
to estimate each variant’s expected heritability contribution. The reference panel used to
calculate the tagging file was derived from the genotypes of 404 non-Finnish Europeans
provided by the 1000 Genome Project. Considering the small sample size, only autosomal
variants with MAF ≥ 0.01 were considered. Data preprocessing was completed with
PLINK1.9 (https://www.cog-genomics.org/plink/1.9/, accessed on 13 January 2021) [34].
SumHer analysies are completed using the default parameters, and a detailed code can be
found in http://dougspeed.com/reference-panel/, accessed on 13 January 2021.

4.6. Estimation and Comparison of Expected Heritability

To estimate and compare the relative expected heritability, we define three variants set
in the tagging file: G1 was generated as the set of significant susceptibility variants for type
2 diabetes; G2 was generated as the union of type 2 diabetes and the set of each behavior-
related phenotypic susceptibility variants. Simulation sampling is conducted because all
estimations calculated from tagging file were point estimated without a confidence interval.
We hoped to build a null distribution of the heritability of random variants. This allowed us
to distinguish the contribution of phenotypic variants from the null distribution of random
variants at the significance level of α = 0.05. Therefore, the random variant set G3 was
generated. G3 was defined as the union of type 2 diabetes and the random susceptibility
variants. The set size of G3 was equal to that of G2, which could control spurious inflation
caused by increasing the number of variants. The calculation procedure for G3 is the exactly
same as that for G2. The sum of expected relative heritability contributed to by variants
in G1 and G2 was calculated, respectively. We simulated random sampling progress to
generate 100 G3 sets to the significance of G2 at the level of α = 0.05. For each phenotype,
we also calculated indexes as follows:

Average heritability of total variants

h
2
total =

h2
G2

nG2

(2)

Average heritability of phenotypic variants

h
2
pheno =

h2
G2 − h2

G1

nG2 − nG1

(3)

Attribution heritability of phenotypic variants

AHPV =
h2

G2 − h2
G1

h2
G2

× 100% (4)

http://dougspeed.com/sumher/
https://www.cog-genomics.org/plink/1.9/
http://dougspeed.com/reference-panel/
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Relative heritability of phenotypic variants

RHPV =

h2
G2−h2

G1
nG2−nG1

h2
G1

nG1

(5)

h2
Gi and nGi (i = 1, 2, 3) were the expected relative heritability and set size of G1, G2

and G3.

4.7. Biological Function Analysis
4.7.1. Functional Annotation

Susceptibility variants were annotated by SNPNexus (https://www.snp-nexus.org/
v4/, accessed on 8 February 2021) [35]. SNPNexus is a web-based annotation tool devel-
oped by Claude Chelala et.al. The latest version was updated in December 2019. CADD
scores greater than 12.37 were considered high probability of a harmful mutation [36].
Potential regulatory functions were annotated by RegulumeDB [37]. We also explored
the expression of hub genes in the dataset Genotype-Tissue Expression (GTEx) [38] using
FUMA [39].

4.7.2. KEGG Pathway Enrichment Analysis

To clarify the biological mechanism behind the potential pathogenic genes of type 2
diabetes behavior-related phenotypes, we conducted pathway enrichment analysis on the
susceptibility variants of type 2 diabetes in Kyoto Encyclopedia of Genes and Genomes
(KEGG) dataset [40] behavior-related phenotypes annotated by GRCH37/HG19. An
over-represented analysis was used to test whether potential pathogenic genes of behavior-
related phenotypes of type 2 diabetes were significantly enriched in the above pathways.
The data targeted by over-representative analysis is a group of genes of interest. The
statistical principle is the hypergeometric distribution test, and the p-value is calculated by
Fisher’s exact probability method [41]. The p-value in the target pathway (KI) is calculated
as follows:

P(Ki) = 1−∑

(
M
n

)(
N−M
n−m

)
(

N
n

) (6)

Among them, N is the total number of genes studied, N is the total number of potential
pathogenic genes for behavior-related phenotypes of type 2 diabetes, M is the total number
of genes in pathway Ki and M is the total number of potential pathogenic genes for
behavior-related phenotypes of type 2 diabetes in pathway Ki. Subsequently, the Benjamini
and Hochberg method was used to correct the multiple tests, and the significance level of
pathway analysis was defined as the false discovery rate (FDR) < 0.05.

4.7.3. Protein Interaction Network Analysis

Based on the “guilt-by-association” principle, protein–protein interaction (PPI) analy-
sis identifies a set of genes whose downstream products (proteins) are associated with each
other. These identified genes combine to influence disease. In this study, protein interaction
network analysis was completed by String (https://string-db.org/, accessed on 8 Febru-
ary 2021) [42]. String is a database of known and predicted protein–protein interactions
designed to collect, score and integrate all publicly available sources of protein–protein
interaction information, and to supplement the information by calculating the predictions.
The visualization of the network was completed by Cytoscape 3.7.0 [43].

4.7.4. Screening of Hub Genes

The acquisition of hub proteins and subnetworks in the complex differential protein
interaction network is particularly important for the search of the mechanism of life
activities. Therefore, in this study, the Cytohubba module [44] was used to sequence the

https://www.snp-nexus.org/v4/
https://www.snp-nexus.org/v4/
https://string-db.org/
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genes in the network and screen the hub genes. Cytohubba can predict and explore key
nodes and subnetworks in a given network through several topological algorithms. We
used four global topology analysis methods, including the Edge Percolated Component
(EPC), Maximum Neighborhood Component (MNC) and centralities based on shortest
paths including closeness and stress to prioritize genes in the network. Hub genes were
defined as the shared top 25% of genes sorted by each method.

4.7.5. Expression Analysis of Hub Gene in Blood Samples

To evaluate whether the hub genes identified are differentially expressed, we used
publicly available expression dataset GSE184050 from the Gene Expression Omnibus (https:
//www.ncbi.nlm.nih.gov/geo/, accessed on 29 September 2021) database. GSE184050
compared changes in gene expression using two longitudinally collected blood samples
from subjects who transitioned to type 2 diabetes between the time points against those
who did not with a novel analytical network approach. A total of 116 individual samples
(50 from type 2 diabetes cases and 66 from healthy controls) were submitted to the analysis.
RNA was extracted, amplified, reverse transcribed, labelled and sequenced with Illumina
HiSeq 2000 (Illumina, Inc., San Diego, CA, USA).

5. Conclusions

We found that alcohol consumption contributed higher relative heritability and even-
tually screened out 31 hub genes candidate of the development of type 2 diabetes. Hub
genes may influence the onset of type 2 diabetes by a mediating effect or a pleiotropic effect.
Our results provided new insight into revealing the role of behavior-related factors in the
conundrum of the “missing heritability” of type 2 diabetes.
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.3390/ijms222212318/s1.
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