
Frontiers in Oncology | www.frontiersin.org

Edited by:
Yong-Mi Kim,

Children’s Hospital of Los Angeles,
United States

Reviewed by:
Danuta Januszkiewicz-Lewandowska,

Poznan University of Medical
Sciences, Poland

Adel Abaskharon Guirgis,
University of Sadat City, Egypt

*Correspondence:
Silvia Jiménez-Morales
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jmejia@inmegen.gob.mx

Specialty section:
This article was submitted to

Pediatric Oncology,
a section of the journal
Frontiers in Oncology

Received: 20 August 2021
Accepted: 12 October 2021

Published: 05 November 2021

ORIGINAL RESEARCH
published: 05 November 2021

doi: 10.3389/fonc.2021.762063
Association Analysis Between the
Functional Single Nucleotide Variants
in miR-146a, miR-196a-2, miR-499a,
and miR-612 With Acute
Lymphoblastic Leukemia
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Vilma Carolina Bekker-Méndez3, Elva Jiménez-Hernández4, Aurora Medina-Sanson5,
Irma Olarte-Carrillo6, Adolfo Martı́nez-Tovar6, Janet Flores-Lujano1, Julian Ramı́rez-Bello7,
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Luis Ramiro Garcı́a-López25, Gabriela Adriana Cruz-Ojeda26, Arturo Emilio Godoy-Esquivel27,
Iris Contreras-Hernández28, Abraham Medina-Hernández29,
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Pediatria, Hospital Juárez de México, Mexico City, Mexico, 13 Servicio de Oncologı́a, Hospital Pediátrico de Moctezuma,
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Background: Acute lymphoblastic leukemia (ALL) is characterized by an abnormal
proliferation of immature lymphocytes, in whose development involves both
environmental and genetic factors. It is well known that single nucleotide
polymorphisms (SNPs) in coding and noncoding genes contribute to the susceptibility
to ALL. This study aims to determine whether SNPs inmiR-146a,miR-196a-2,miR-499a,
and miR-612 genes are associated with the risk to ALL in pediatric Mexican population.

Methods: A multicenter case-control study was carried out including patients with de
novo diagnosis of ALL and healthy subjects as control group. The DNA samples were
obtained from saliva and peripheral blood, and the genotyping of rs2910164,
rs12803915, rs11614913, and rs3746444 was performed using the 5′exonuclease
technique. Gene-gene interaction was evaluated by the multifactor dimensionality
reduction (MDR) software.

Results:miR-499a rs3746444 showed significant differences among cases and controls.
The rs3746444G allele was found as a risk factor to ALL (OR, 1.6 [95% CI, 1.05–2.5]; p =
0.028). The homozygous GG genotype of rs3746444 confers higher risk to ALL than the
AA genotype (OR, 5.3 [95% CI, 1.23–23.4]; p = 0.01). Moreover, GG genotype highly
increases the risk to ALL in male group (OR, 17.6 [95% CI, 1.04–298.9]; p = 0.00393). In
addition, an association in a gender-dependent manner among SNPs located in miR-
146a and miR-196a-2 genes and ALL susceptibility was found.

Conclusion: Our findings suggest that SNP located in miR-499a, miR-146a, and miR-
196a-2 genes confer risk to ALL in Mexican children. Experimental analysis to decipher
the role of these SNPs in human hematopoiesis could improve our understanding of the
molecular mechanism underlying the development of ALL.
Keywords: acute lymphoblastic leukemia, mir-146a, mir-196a-2, miR-499a, miR-612, association study, Mexican
population, single nucleotide polymorphism
INTRODUCTION

Acute lymphoblastic leukemia (ALL) is the most common
pediatric hematological malignancy around the world,
representing over 80% of all cases under 18 years old (1). This
2

entity is highly prevalent in Mexican population, which displays
one of the highest rate of relapse and death in comparison with
other ethnic groups even after using chemotherapeutic
approaches implemented in developed countries (2, 3).
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ALL emerges by an abnormal proliferation of immature
lymphocytes and their progenitors that replace the
hematopoietic elements in the bone marrow and other
lymphoid organs. So far, most of the causes of ALL are
undeciphered; however, it is well known that an interaction
within environmental and genetic factors is needed to develop
this malignancy (4–6). Among the identified risk genetic factors
to suffer ALL are the single nucleotide polymorphisms (SNP),
both, in coding and no coding genes (6–9). No coding genes
comprises around 98% of the human-transcribed genome, which
is mainly represented by microRNAs (miRNAs) and long
noncoding RNAs (lncRNAs) that play a relevant role in LLA
and other types of cancer (10). miRNAs are small endogenous
RNAs of 19–25 nucleotides that function as posttranscriptional
regulators silencing specific mRNAs. miRNAs interact with their
targeted mRNAs by complementary base pairing, most of them
in the 3′-untranslated region (UTR) of the target mRNA,
although interplay in the 5′UTR region has also been
documented. Targeted coding mRNAs by specific miRNAs
could be either in complete or incomplete fashion (11).
Experimental evidences have revealed that miRNA dysfunction
contributes to the establishment of diverse human diseases, since
miRNA-mRNA-specific interaction makes fine-scale
adjustments to protein outputs (8, 12, 13). It has been
identified that several SNP located into miRNA gene sequences
are closely responsive for their abnormal function by modifying
pri-miRNA transcription, pri-miRNA/pre-miRNA processing,
or by disrupting miRNA-mRNA interactions (14, 15). The
rs2910164 G/C in miR-146a gene has been reported as an
alterer of the gene expression, then its targeted mRNAs, which
are involved in fundamental biological processes (cell
differentiation, hematopoyesis, and innate and adaptive
immunity, etc.) (16, 17). The rs2910164 has been associated
with many types of cancer and several immune-mediated
diseases (18–20); however, its association with ALL has shown
controversial results (9, 17, 21). Another functional miR-SNP is
rs3746444, which results from an A-to-G substitution in the seed
region of miR-499a, was reported as significantly associated with
an increased susceptibility to several human conditions,
including cancer (19, 22). To know whether rs2910164 G/C in
miR-146a, rs11614913 T/C in miR-196a-2, rs3746444 A/G in
miR-499a, and rs12803915 G/A in miR-612 are associated with
ALL in Mexican children, we performed a case control study.
MATERIAL AND METHODS

Subjects
As part of the Mexican Interinstitutional Group for the
Identification of the Causes of Childhood Leukemia
(MIGICCL), we conducted a case-controls study from August
1, 2014, to July 31, 2016. Participants were younger than 18 years,
residents of the Metropolitan Area of Mexico City, and recruited
from public hospitals and health institutions from Mexico City,
Mexico as was described previously by Medina-Sanzon et al. (6).
ALL diagnosis was established by either a hematologist or an
Frontiers in Oncology | www.frontiersin.org 3
oncologist according to clinical characteristics, and bone marrow
(BM) aspirate data. Gender, age at diagnosis, white blood cell
count (WBC), immunophenotype, and risk classification group
were registered from the patients’ medical records. We used the
National Cancer Institute (NCI) risk criteria for ALL case
stratification as follows: (a) standard risk: 1–9.99 years of age
or WBC <50 × 10^9/L, and (b) high risk: ≤1 or ≥10 years of age
and/or WBC ≥50 × 10^9/L. Patients included in the study were
treated with chemotherapy, none of them received HSCT
therapy. Relapse was considered when ≥5% leukemic blasts
were detected in BM sample during the first 36 months after
having achieved complete remission (CR). Early mortality was
defined as the patient’s death during the first 24 months. Cases
with Down syndrome were excluded from the analysis. All
institutional committees of Ethics, Research, and Biosecurity of
the participant institutions approved this study. Written
informed consent was obtained from all participants and the
children’s parents. Patients ≥8 years old gave their assent (when
possible) to be included in the present study. Cases and controls
were selected according to criteria described in a previous study
(6). Briefly, controls were recruited from second-level hospitals
of the same health institution that referred the children with ALL
to the third-level care hospitals. Control children were recruited
from the departments of ambulatory surgery, pediatrics, and
ophthalmology; orthopedic outpatient clinics; and the
emergency room of the referred hospitals and have no
leukemia, hematological diseases, allergies, infections, and
congenital malformations. A set of adult patients was included
to test the associated SNP miR-499a_ rs3746444. The group of
adult patients and controls is described in the Material and
Methods section in the Supplementary Material.

DNA Extraction, SNP Selection,
and Genotyping
Genomic DNA from saliva or peripheral blood was obtained
according to the ORAGENE Purification Kit (DNA Genotek
Inc., Kanata, ON, Canada) and the Gentra Kit (Gentra Systems
Inc., Minneapolis, MN, USA) according to the manufacturer’s
instructions. DNA purity and concentration were determined by
sypectrofotometry (Nanodrop-1000). The rs2910164 (miR-
146a), rs11614913 (miR-196a-2), rs3746444 (miR-499a), and
rs12803915 (miR-612) were selected base on previous
association studies in ALL and other malignancies (8, 9, 13, 17,
21, 23–26). Genotyping was performed using the 5′exonuclease
technique and TaqMan MGB chemistry in a QuantStudio 5
system according to the manufacturer’s instructions (Thermo
Fisher, Foster City, CA, USA). TaqMan probes used were
C:15946974_10 (rs2910164), C:31185852_10 (rs11614913), C:
_2142612_40 (rs3746444), and C:32062363_10 (rs12803915).
PCR reaction contained 25 ng of genomic DNA, 2.5 µl of
TaqMan master mix, 0.0625 µl of 40× assay mix, and ddH2O
up to a final volume of 5 µl. The PCR protocol included
denaturing at 95°C for 10 min, followed by 40 cycles of
denaturing at 95°C for 15 s, and annealing and extension at
60°C for 1 min. Genotypes were assigned automatically by
measuring the allele-specific fluorescence by using QuantStudio
November 2021 | Volume 11 | Article 762063
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Design and Analysis software 5 for allelic discrimination
(Applied Biosystems, Foster City, CA, USA). The overall
genotype call rate was over 98.0% and 100% concordance of a
subset of randomly repeated samples during the genotyping.

Statistical Analyses
Hardy-Weinberg Equilibrium (HWE) test was performed using
the FINETTI program (http://ihg.gsf.de/cgicbin/hw/hwa1.pl).
Alleles and genotype frequencies were compared among
groups by using Chi-square and Fisher’s exact tests (when
appropriate) implemented in the STATCALC program (Epi
Info v.6.02 software, Centers for Disease Control and
Prevention, Atlanta, GA). By comparing cases and controls, all
SNPs were evaluated under the codominant, dominant, and
recessive genetic models using the FINETTI program.
Bonferroni correction test was applied. The multifactor
dimensionality reduction (MDR) software (V 3.0.2) was used
to evaluate gene-gene interactions (27). All p-values ≤ 0.05 were
considered statistically significant.
RESULTS

Features of Studied Subjects
The present work included 678 subjects from Mexico City, of
which, 423 were children with ALL, and 255 children non-ALL.
The ALL children were followed up for at least 3 years (3–7) after
initial diagnosis. Males were more frequent than females either in
cases (57.9% vs. 42.1%, respectively) nor controls (54.7% v/s
45.2%, respectively), but differences were not statistically
significant (p = 0.43). The proportion of children under 10
years old were higher in both groups, and a significant
difference was detected among cases (62.2%) and controls
(71.1%) (p = 0.02). Median age of ALL children was 9.09 (0–
18) and 6.4 (0–17) of the control group. Overall, 68.3% had >90%
blast in bone marrow; 91.2%, 6.9%, and 1.9% were pre-B, cell-T,
and biphenotype, respectively. Available clinical data are shown
in Table 1.
Association Study
Except for miR-146a, the genotypes of miR-196a-2, miR-499a,
and miR-612 were in HWE in the control population. The
association analysis between miRNA SNPs and ALL are
described in Table 2 and Supplementary Table S1. Case-
control analysis including all children showed a significant
association among miR-499a rs374644 with ALL (Table 2).
miR-499a rs3746444G alelle observed an OR of 1.6 (95% CI,
1.008–2.5), p = 0.028. However, this significance did not remain
after Bonferroni correction test. To note, under codominant
model analysis AA vs. GG, statistical significance was found:
OR, 5.3 (95% CI, 1.23–23.4); p = 0.01 (Table 1). Stratification
analysis by gender observed that miR-499a rs3746444G is
associated with ALL in a gender-dependent manner, being a
risk factor to males (OR, 2.46 [95% CI, 1.31–4.60]; p = 0.0037)
but no to girls (p = 0.95) (Table 3). Moreover, in comparison
with AA genotype, GG genotype highly increases the risk to ALL
Frontiers in Oncology | www.frontiersin.org 4
(OR, 17.6 [95% CI, 1.04–298.9]; p = 0.00393) in males. Data are
shown in Table 3.

miR-146a rs2910164, miR-196a-2 rs11614913, and miR-612
rs12803915 association analysis including all children with ALL
showed differences among cases and controls but were not
statistically significant (Supplementary Table S1). The analysis
stratified by gender revealed that homozygote genotype for the
minor allele CC of miR-146a rs2910164 was differentially
distributed among male ALL cases and male controls (OR, 4.3
(1.60–11.61); p = 0.02). Meanwhile, miR-196a-2 rs11619413 was
associated with ALL in female (C vs. T: OR, 1.54 [95% CI, 1.08–
2.2]; p = 0.015) (Supplementary Table S2).

Association Between miR-146a, miR-196a-2,
miR-499a, and miR-612 SNPs With
Clinical Characteristics
To know whether the studied SNPs were associated with clinical
and biological ALL features, we performed the case-control
analysis into the patients group stratified by gender, age group,
immunophenotype, NCI-risk classification, relapse, death, and
TABLE 1 | Clinical characteristics of patients with acute lymphoblastic leukemia.

Features Cases (n = 423)

n %

Gender
Male 245 57.9
Female 178 42.1

Age group (years)
<1 9 2.1
1–9 258 61.0
≥10 156 36.9

Age at diagnosis (years)
Median (min–max) 7.9 (0–18)

BM blast at diagnosis (%)
<90 135 31.7
≥90 288 68.3
Median (min–max) 85.3 (20–100)

Inmunophenotype
Pre-B Cell 386 91.2
Cell-T 29 6.9
Biphenotype 8 1.9

NCI risk classification
Standard risk 214 50.6
High risk 209 49.4

Relapse
No 346 81.8
Yes 77 18.2

Relapse site
Isolated BM 52 67.5
Isolated CNS 17 22.1
BM and CNS 2 2.6
BM and CNS and eye 1 1.3
CNS and eyes 1 1.3
BM and testis 3 3.9
Ovary 1 1.3

Death
No 364 86.0
Yes 59 14.0
Novembe
r 2021 | Volume 11 | Article 76
WBC, whole blood cell count; BM, bone marrow; NCI, National Cancer Institute; CNS,
central nervous system.
2063

http://ihg.gsf.de/cgicbin/hw/hwa1.pl
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
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hereditary cancer family history (Supplementary Table S3).
Significant differences among gender and age were found in
the distribution of the miR-196a-2 rs11614913C allele (p = 0.02,
p = 0.02, respectively). Additionally, analysis comparing infants
versus children older than 1 year was performed. Supplementary
Table S3 shows the results grouping the patients by age groups:
<1 year; 1–9.9 and ≥10 years, considering that it has been
reported that adolescents with ALL also have a dismal
prognosis in comparison with children below this age and is
considered an important prognostic factor. Regarding
immunophenotype, NCI risk classification, relapse, death, and
hereditary family history, no significant differences were
observed (Supplementary Table S3). Furthermore, we
conducted survival analyses between the SNPs analyzed and
the overall survival of pediatric patients with ALL, but no
significant associations were observed neither including all
cases nor after stratifying by child’s sex and age groups.

Gene-Gene Interaction Analysis
To know whether gene-gene interactions among miR-146a, miR-
196a-2, miR-499a, and miR-612 SNPs predict the risk to ALL, a
MDR analysis was performed by including cases and controls
having complete genotyping data of all evaluated SNPs. No SNP
Frontiers in Oncology | www.frontiersin.org 5
was identified as the best factor model. The multilocus model with
maximum crossvalidation consistency (CVC) and minimum
prediction error is displayed in Supplementary Table S4. Four-
locus genotype combinations associated with the risk of ALL, as
well as their distribution among cases (left) and controls (right) is
summarizes in Figure 1A. This analysis gave evidence of epistasis
or gene-gene interaction (Figures 1B, C). Entropy data showed
that rs3746444 had the larger effect on the susceptibility to develop
ALL (0.59%) followed by rs2910164 (0.49%). Week synergy among
miR-196a-2 and miR-612 was observed (orange line) (Figure 1B).
Redundancy was observed among all SNPs (blue and green lines)
(Figures 1B, C). To note, gene-gene gender interaction observed a
strong synergy (red line) among miR-196a-2 and gender
(Supplementary Figure S1).
DISCUSSION

Mountain evidence reveals that miRNAs are relevant in the gene
regulation contributing to the establishment of human diseases and
modifying their treatment response of the patients. For instance, by
using miRanda, TargetScan, and miRTarget2, it is predicted that
AKT2 is a potential target of miR-612, which has been reported as
TABLE 2 | Association analysis among miR-499 rs3746444 and acute lymphoblastic leukemia.

Children OR [CI], p-value Adults OR [CI], p-value All OR [CI], p-value

Control
(%)

Cases n
(%)

Control n
(%)

Cases n
(%)

Control n
(%)

Cases n
(%)

N 255 416 180 71 435 489
Genotypes
AA 229 (89.8) 362 (87.0) 157 (87.2) 59 (83.1) 386 (88.7) 421 (86.1)
AG 24 (9.4) 39 (9.3) 23 (12.8) 9 (12.7) 47 (10.8) 48 (9.8)
GG 2 (0.8) 17 (4.8) 0 (0) 3 (4.2) 2 (0.5) 20 (4.1)
Alelles 1.6 [1.05–2.5],

0.028*
1.7 [0.87–3.34],

0.11
1.58 [1.1–2.2], 0.01*

A 482 (94.5) 763 (91.4) 337 (93.6) 127 (89.4) 819 (94.1) 824 (91.0)
G 28 (5.5) 73 (8.8) 23 (6.4) 15 (10.6) 51 (5.9) 88 (9.0)
Codominant 5.3 [1.23–23.4],

0.01*
18.5 [0.94–364],

0.005
9.16 [2.1–39.4],

0.00033*
AA vs. GG
November 2021 | Volu
OR, odds ratio; CI, confidence interval. *Statistically significant.
TABLE 3 | Association analysis among miR-499 rs3746444 and acute lymphoblastic leukemia in children stratified by gender.

Male OR [CI], p-value Female OR [CI], p-value

Control (%) Cases n (%) Control n (%) Cases n (%)

N 255 416 180 71
Genotypes
AA 126 (89.8) 207 (87.0) 103 (87.2) 155 (83.1)
AG 13 (9.4) 25 (9.3) 9 (12.8) 14 (12.7)
GG 0 (0.8) 14 (4.8) 2 (0) 3 (4.2)
Alelles 2.46 [1.31–4.60], 0.0037* 1.021 [0.49–2.09], 0.95
A 482 (94.5) 763 (91.4) 337 (93.6) 127 (89.4)
G 28 (5.5) 73 (8.8) 23 (6.4) 15 (10.6)
Codominant 17.6, [1.04–298.9], 0.00393* 0.99 [0.16 6.06], 0.99
AA vs. GG
OR, odds ratio; CI, confidence interval. *Statistically significant. Genotyping >98%.
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FIGURE 1 | Multifactor dimensionality reduction (MDR) analysis. (A) Four-locus MDR model. Genotype combinations with high risk (shaded dark grey) and low risk
(shaded light grey) for acute lymphoblastic leukemia (ALL) and their distribution in cases (left bar) and controls (right bar). The patterns of high (shaded and low-risk
cells, which differ across each of the different multi locus dimension, means that the influence each genotype on the ALL risk is dependent on the genotypes a each
of the other three loci. (B) Interaction entropy graph for gene-gene interaction and ALL risk. Graph shows the percent of the entropy in case-control removed by
each factor (boxes) and by each pair-wise combination of attributes (lines). Positive value and orange line indicate low degree of synergy and negative values and
blue and green lines mean redundancy. Gold line means independency. (C) The dendrogram graphic shows the presence, strength, and nature of epistatic effects.
The shorter the line connecting two attributes the stronger the interaction. Strength of interaction goes from left to right (gray line).
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significantly upregulated in ALL patients. AKT2 expression in
lymphocytes correlates negatively with sensitive to glucocorticoids,
and patients have poor prognosis (28–30). For its part,miR-146a has
been involved in megakaryopoiesis by activating innate immunity
targets TIRAP and TRAF6 (31). In addition, experimental data have
shown that SNPs in miRNAs could affect cell differentiation,
proliferation, and apoptosis conducting cancer development. The
SNPs rs2910164 in miR146a, rs11614913 in miR-196a-2, rs3746444
in miR-499a, and rs12803915 in miR-612 are among the most
studied SNPs in cancer. In a case-control study, we did no find
association among rs12803915 ofmiR-612 but to rs3746444 ofmiR-
499a with ALL, as well as, in a gender-dependent manner rs2910164
ofmiR146a, and rs11614913 ofmiR-196a-2 were associated with the
risk to this disease.

To date, only three studies have explored the association
amongmiR-499a rs3746444 and ALL. Our results are in line with
the findings of de Souza et al., who studied 100 pediatric ALL
patients, and 180 healthy individuals from Brazilian-amazon
reported that miR499a_rs3746444 increases 17-fold the risk of
development of ALL (26). We found that the mutant
homozygote rs3746444GG genotype was associated with a 1.6-
fold increase in the risk of developing ALL. However, our data
are in contrast to those published previously by Gutierrez-
Camino et al., who including 213 B-cell ALL pediatric patients
and 387 controls from Spain, found a protective role of the G
allele on the risk of ALL (8) and by Hasani et al., studying 75
children diagnosed with ALL and 115 children from Iran with no
history of any type of cancer (23). To note, we explored whether
miR-499a rs3746444 has in adults with ALL the same effect as we
observed in children by genotyping 71 patients >18 years old
with clinical diagnosis of ALL and 180 healthy adults (1:1 female/
male). Samples from ALL adults were obtained from the biobank
of the Servicio de Hematologıá, Hospital General de México.
Adult control group was obtained from the DNA biobank of the
laboratorio de Investigation, Hospital Juárez de México. miR-
499a rs3746444A allele frequency was very similar among
children and adults (cases and controls) and notably, miR-499a
rs3746444G allele was not detected in no-ALL adults (0%).
However, differences among adult cases and adult controls or
between children and adults were not statistically significant
(Table 2). Our study is the first to investigate the role of
rs3746444 in the susceptibility to ALL in adults, which has
been associated with common adulthood cancer types (22, 32).
The rs3746444 is located in pre-mir-499 gene resulting changes
of an A:U to a G:U pairing and mismatching that reduces the
stability of the pre-miR-499 secondary structure (33) and this
SNP, located in the seed region of miR-499a could alter the
targeted genes. In fact, Yang et al. (34) reported that this SNP
potentially recognizes 573 new target genes and lost 5,392
Frontiers in Oncology | www.frontiersin.org 7
original target genes. Several of these genes are involved in
biological processes as cell proliferation and migration (35).

It is known thatmir146a plays anti-inflammatory functions, has
roles as tumor suppressor and commonly shows altered expression
levels in human leukemia (32–38). Data from ALL Jurkat cells have
shown that miR-146a can promote growth of leukemia cells by
regulating the expression anti-apoptosis factor Bcl-xL and altering
the expression of diverse genes involved in T-cell differentiation
(37–39). Recent papers have given evidence that rs2910164 in
miR146 can modify the expression of nuclear factor (NF-ĸB)
through reducing IRAK1 and TRAF gene expression thus,
driving inflammation and leukemia progression in myeloid cells
(40). Stickel et al. (41) observed that patients with the miR-146a
polymorphism rs2910164 display higher major histocompatibility
complex class II (MHCII) molecule levels on monocytes. In
addition, experimental evidences have shown that the rs2910164
in human allogeneic hematopoietic cell transplantation (allo-HCT)
recipients significantly increases the risk for acute severe acute
graft-versus-host disease in patients with hematological
malignancies (41). The G to C polymorphism rs2910164 in
miR146a changes the G:U pair to a C:U mismatch in the stem
structure of miR-146a precursor, resulting in a reduced level of
mature miR146a (36). To note, we found thatmiR-146a rs2910164
GG genotype confer risk to ALL in male. This SNP is widely
associated with cancer, but association studies in ALL have reveled
conflicting results. On one hand, it has been reported that miR-
146a rs2910164 is associated with childhood ALL susceptibility in
Asian population, including Iranian, Chinese, and Taiwanese (17,
23, 25). On the other hand, studies in Thailand, India, and China
failed to replicate these results (9, 21, 42). No published study has
reported an association among ALL and rs2910164 in a gene-
dependent manner, and considering the higher prevalence of ALL
in male than female, these findings should be deeply explored.

Regarding rs11614913 C/T, in the 3p mature miRNA region of
miR-196a2, leads to a variation from G:T to G:C in the stem region
of the miR-196a2 precursor. Comparing the minimum free energy
for optimal secondary structures of the SNP rs11614913 in pre-
miR196a2 found that this SNP had no dramatic effect on its
secondary structure (43); however, Hoffman et al. (44) already
show that rs11614913C may affect the processing of pre-miRNA,
modify both, its expression level and function, then alters its
interactions with its targeted genes. In fact, various studies have
observed a correlation among abnormal expression of miR-196a2
and genes involved in cancer (45, 46). Studies in several types of
cancer suggest that the common rs11614913 variant may play a role
in the development of malignancies in an ethnic-dependent
manner (43, 47, 48). For instance, a meta-analysis including
41,673 cases and 49,570 controls from 111 studies revealed that
mir-196a-2 rs11614913 T allele was significantly associated with
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cancer risk only in Asians but not Caucasians (47). As for
hematological malignancies, association data are scarce. Findings
in Non-Hodgkin’s lymphoma suggest that the miR-196a-2
polymorphism may increase the risk of the disease by altering the
expression of mature miR-196a (48). In ALL, two studies have
published that rs11614913C allele contributes to an increased risk
of this disease in Thailand, and China, but another one found no
association results in Taiwanese ALL cases (13, 24, 49). Comparing
the minimum free energy for optimal secondary structures of the
SNP rs11614913 in pre-miR196a-2 found no dramatic effect on its
secondary structure (47). We found an association among this SNP
with ALL risk in females, but whether this SNP is playing a role in
ALL susceptibility remains unknown.

Regarding rs12803915 in mir-612, experimental studies reveal
that rs12803915 SNP affects mature mir-612 expression in a cell-
type-specific manner. As example, Kim et al. observed that
rs12803915A allele increases and decreases mature mir-612
expression in prostate cancer and colon cancer cell lines,
respectively (50). In ALL, two studies have explored this SNP (8,
51). On one hand, the rs12803915 in mir-612 was associated with
ALL in patients from Spain (8). On the other hand, in 100 B-ALL
cases and 105 controls from Iran, no associationwas observed (51).

To know whether there is a gene-gene interaction among the
evaluated SNPs in the risk to ALL, we employed a MDR analysis.
We observed that miR-499a is the main casual factor for ALL, a
strong redundancy interaction effect of this SNP andmiR-196a-2
and miR-146a on ALL risk, and a low synergism with miR-612;
thus, this analysis gave evidence of epistasis. Both genes have
already been shown to be associated with cancer risk in various
populations, but no data regarding their interaction has been
published. To note, both SNPs have been found as susceptibility
factors to ALL in a Spanish population (8).

The discrepancies on the association findings among the
present work and other populations may be related to the sample
selection, and the genetic background of the populations, since the
linkage disequilibrium complex structure of the populations could
mask the causal SNP (51). In addition, differences in the genetic
background of cases and control could bias the association results.
To note, our control group and a subset of the ALL cases belong to
a genotyped cohort using 32 informative ancestry markers. As we
published previously, ALL cases and controls are Mexican-Mestizo
(6). However, to clarify the effect of miRNA polymorphism on ALL
risk, studies including patients from different ethnicities and larger
sample sizes are needed. Experimental analysis could also add data
to decipher the role of miR-499 in ALL.

In conclusion, our analysis revealed that miR-499 rs3746444
confers risk to ALL and there is a gender-dependent association
among miR-146a and miR-196a-2 and ALL in Mexican children.
Studies are needed to evaluate the potential molecular mechanisms
underlying the contribution of these SNPs in ALL susceptibility.
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