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Abstract
Premature ovarian insufficiency (POI) is a major cause of reduced female fertility and affects approximately 1% women under 
40 years of age. Recent advances emphasize the genetic heterogeneity of POI. Fanconi anemia (FA) genes, traditionally 
known for their essential roles in DNA repair and cytogenetic instability, have been demonstrated to be involved in meiosis 
and germ cell development. Here, we conducted whole-exome sequencing (WES) in 50 Han Chinese female patients with 
POI. Rare missense variants were identified in FANCA (Fanconi anemia complementation group A): c.1772G > A (p.R591Q) 
and c.3887A > G (p.E1296G). Both variants are heterozygous in the patients and very rare in the human population. In vitro 
functional studies further demonstrated that these two missense variants of FANCA exhibited reduced protein expression 
levels compared with the wild type, suggesting the partial loss of function. Moreover, mono-ubiquitination levels of FANCD2 
upon mitomycin C stimulation were significantly reduced in cells overexpressing FANCA variants. Furthermore, a loss-of-
function mutation of Fanca was generated in C57BL/6 mice for in vivo functional assay. Consistently, heterozygous mutated 
female mice (Fanca+/−) showed reduced fertility and declined numbers of follicles with aging when compared with the 
wild-type female mice. Collectively, our results suggest that heterozygous pathogenic variants in FANCA are implicated in 
non-syndromic POI in Han Chinese women, provide new insights into the molecular mechanisms of POI and highlight the 
contribution of FANCA variants in female subfertility.
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Introduction

Premature ovarian insufficiency (POI) is characterized 
by amenorrhea for more than 4 months and twice serum 
FSH > 25  IU/L (interval of more than 1  month) before 
40 years of age (Webber et al. 2016). POI usually leads to 
female subfertility and affects approximately 1% women 
under 40 years (Coulam et al. 1986). Genetic etiologies 
account for approximately 20–25% of POI patients, but 
recent advances emphasize genetic heterogeneity (Jiao 
et al. 2015). POI causative genes isolated in POI pedigrees 
are mainly enriched in DNA damage repair, homologous 
recombination and meiosis (Jiao et al. 2018), including 
CSB-PGBD3 (Qin et al. 2015), MCM8 (Bouali et al. 2017; 
Tenenbaum-Rakover et al. 2015), MCM9 (Fauchereau et al. 
2016; Wood-Trageser Michelle et al. 2014), MSH4 (Car-
losama et al. 2017), MSH5 (Guo et al. 2017) and STAG3 
(Caburet et al. 2014; Colombo et al. 2017; Le Quesne et al. 
2016). Nevertheless, the genetic architecture underlying spo-
radic POI remains complicated since either gene variants or 
inheritance patterns are quite different among individuals.

Fanconi anemia (FA) is a rare autosomal recessive dis-
ease diagnosed through progressive bone marrow failure 
(BMF) at childhood along with high incidence of cancer 
susceptibility (Ceccaldi et al. 2016). During the past dec-
ades, 22 FA genes with essential roles in DNA interstrand 
cross-link (ICL) repair have been cloned (Deans and West 
2011; Knipscheer et al. 2009). FANCA is most frequently 
mutated in FA, as bi-allelic mutations of FANCA account-
ing for 60‒70% of the cases (Neveling et al. 2009). Gener-
ally, the FA pathway is activated by ICL damage during 
the S phase. FANCA protein is one member of the FA core 
complex with ubiquitin E3 ligase activity, which induces 
the mono-ubiquitination of the FANCI/FANCD2 complex. 
DNA damage is further repaired by downstream proteins via 
homologous recombination (HR) mechanism to ensure the 
genome stability (Ceccaldi et al. 2016). Despite ICL repair, 
recent advances have emphasized the involvement of FA 
genes in fertility maintenance. Approximately half of female 
FA patients were reported to be infertile (Alter et al. 1991), 
and the mice with FA gene deficiency showed female subfer-
tility of different degrees (Tsui and Crismani 2019). Moreo-
ver, the essential roles of FA genes in double-strand break 
(DSB) repair during HR in meiosis have been characterized 
(Tsui and Crismani 2019). For example, BRCA2 (FANCD1) 
is required for localization of RAD51 and DMC to DSBs to 
initiate DSB repair in meiosis, and persistent DSBs were 
observed in Brca2-mutated mice (Jensen et al. 2010; Sharan 
et al. 2004). However, the mutation patterns of FA genes 
contributing to human infertility remain largely unknown.

To explore the candidate pathogenic genes of POI, 
whole-exome sequencing (WES) was conducted in 56 

Han Chinese women with POI from two centers in China. 
Two heterozygous rare missense variants in FANCA, 
c.1772G > A (p.R591Q) and c.3887A > G (p.E1296G), 
were identified in two sporadic POI cases. Further in vitro 
functional analysis demonstrated that both were partially 
loss-of-function missense variants. A heterozygous loss-
of-function model for mouse ortholog Fanca was utilized 
for in vivo functional assays, and the female mice showed 
remarkable subfertility and impaired follicle develop-
ment. Our experimental observations in humans and mice 
strongly suggest that heterozygous pathogenic FANCA 
variants can induce sporadic POI.

Materials and methods

Study participants, WES and data processing

56 Han Chinese women with POI were included in this 
study. The inclusion criteria consisted of primary or sec-
ondary amenorrhea for at least 4 months before 40 years of 
age, along with two measurements of abnormal serum FSH 
levels (> 25 IU/L). All the subjects with POI in this study 
had a normal 46,XX karyotype. Women with ovarian sur-
gery or radiotherapeutic or chemotherapeutic interventions 
were excluded. The processing of WES and data analysis 
were as previously described (Wang et al. 2019). Primers for 
amplification and Sanger sequencing of the variants identi-
fied by WES are shown in Table S1.

Plasmid construction and mutagenesis

The human full-length FANCA cDNA was synthesized 
(Shanghai Generay Biotech) and constructed into the 
pCMV-Myc vector (Takara). Site-directed mutagenesis 
was performed to generate two missense variants (R591Q, 
E1296G) of FANCA following the standard procedures of 
KOD-Plus-Mutagenesis kit (Toyobo). The plasmids were 
verified by Sanger sequencing before functional studies. The 
relevant primers are shown in Table S2.

Cell culture and transfection

U2OS cells were purchased from the Cell Bank of the Chi-
nese Academy of Sciences (Shanghai, China). U2OS cells 
were cultured in DMEM (Gibco) supplemented with 10% 
FBS (Gibco) and 1% penicillin–streptomycin–neomycin 
(PSN) antibiotic mixture (Gibco) at 37 °C with 5% CO2. 
To evaluate the transfection efficiency, FANCA plasmids 
were co-transfected with pEGFP-N2 vector (Clontech) into 
U2OS cells using Lipofectamine 3000 (Invitrogen) accord-
ing to the manufacturer’s instructions. In experiments evalu-
ating cell sensitivity to ICL damage, 2 μM mitomycin C 
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(MMC; Sigma) was added into the culture medium 24 h 
after transfection.

Western blotting

The experimental details were as previously described (Dou 
et al. 2019). The related antibodies included anti-FANCA 
(1:500 dilution, Abcam), anti-FANCD2 (1:2000 dilution, 
Abcam), anti-GFP (1:5000 dilution, Sigma), HRP labeled 
anti-β-actin (1:10,000, Proteintech Group) and HRP labeled 
goat anti-mouse/rabbit IgG (1:3000, DingGuo Bio).

Mouse model

All the animal studies were performed in C57BL/6 mice. 
The heterozygous Fanca loss-of-function mice (Fanca+/−) 
were generated using CRISPR-Cas9 technology at Univer-
sity of Science and Technology of China. Primers for mice 
genotype identification are shown in Table S3.

Mouse ovarian follicle counting

Ovary samples were fixed in 4% paraformaldehyde over-
night, embedded in paraffin and then sectioned into 5 μm 
thickness. One in every five sections was stained with 
hematoxylin and eosin (H&E) and counted. Only follicles 
with clearly visible nucleus and normal morphology were 
counted. Follicle classification was determined by Peders-
en’s system (Pedersen 1970). The results are reported as the 
average number of follicles counted in one ovary per female 
mouse.

Statistical analysis

Comparisons of quantitative data were performed by Stu-
dent’s t test. P < 0.05 was considered to be significantly 
different, and P < 0.01 was considered to be extremely 
significantly different. * represents P < 0.05, ** represents 
P < 0.01, and *** represents P < 0.001.

Results

Heterozygous rare variants of FANCA in sporadic 
cases with POI

We performed genetic analysis in 56 Han Chinese women 
with POI. To unravel the potential pathogenic variants in 
these cases, WES analysis was performed as previously 
described (Wang et al. 2019). As shown in Fig. S1, the data 
quality of variant calling and number of reads > 50 were 
assessed before genetic analysis. Then, genetic variants 
in the exonic and splicing regions were chosen, and the 
variants with minor allele frequencies > 0.001 according 
to the 1000 Genomes Project (1 KG) and ExAC Browser 
were excluded. Nonsynonymous variants predicted to be 
deleterious by all five bioinformatics tools including SIFT 
(Kumar et al. 2009), PolyPhen-2 (Adzhubei et al. 2010), 
MutationTaster (Schwarz et al. 2014), CADD (Kircher 
et al. 2014) and DANN (Quang et al. 2014) were taken as 
candidate pathogenic variants. In this study, the variants 
located in the novel genes, which are functionally related 
to ovary development but have not been reported as non-
syndromic POI causative genes (Jiao et al. 2015), were 
preferred.

To our interest, two heterozygous missense variants in 
FANCA were identified in two unrelated non-syndromic 
POI subjects. Subject F027 carrying FANCA c.1772G > A 
(p.R591Q) variant had normal puberty and was meno-
pausal at the age of 24. Subject L010 carrying FANCA 
c.3887A > G (p.E1296G) variant had primary amenorrhea. 
Moreover, no other rare variant in known POI causative or 
candidate genes was observed in these two cases.

The two FANCA variants were confirmed by Sanger 
sequencing (Fig. 1a). The FANCA c.1772G > A variant 
has an extremely low frequency in human population, and 
is highly evolutionarily conserved according to Phastcons 
and Phylop scores (Table 1) (Pollard et al. 2010). The 
FANCA c.3887A > G variant is a novel missense variant, 

Fig. 1   Identification of rare variants of FANCA in two patients with POI. a Heterozygous rare FANCA variants. The red arrows indicate the vari-
ant positions. b Schematic representations of the FANCA gene and FANCA protein. The red arrows indicate the variant positions
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which changes a residue located in the nucleic acid bind-
ing domain of FANCA (Table 1; Fig. 1b). Notably, these 
two FANCA variants are also classified to be likely patho-
genic following the American College of Medical Genet-
ics (ACMG) guidelines (Table 1) (Richards et al. 2015). 
These observations suggest that these two heterozygous 
missense variants in FANCA are possibly pathogenic.

FANCA variants reduced FANCA expression 
and impaired FANCD2 mono‑ubiquitination in vitro

In vitro functional assays were performed to further investi-
gate the biological effects of the two FANCA variants. The 
putative effects on FANCA protein expression were first 
investigated in the over-expression assays. U2OS cells were 
transfected with equal amounts of recombinant plasmids of 
wild-type and mutated FANCA, respectively. Western blot 
analysis revealed that the amounts of R591Q and E1296G 
altered proteins were nearly half of the wild-type FANCA 
(Fig. 2a), indicating that these two variants may affect pro-
tein expression levels. Furthermore, mono-ubiquitination 
levels of FANCD2 under DNA damage were investigated. 
In the absence of MMC, FANCD2 mono-ubiquitination 
levels were relatively low, and there was no obvious dif-
ference between wild-type and mutated FANCA. Upon 
MMC treatment, while the wild-type FANCA significantly 
increased FANCD2 mono-ubiquitination levels, both R591Q 
and E1296G altered proteins exhibited statistically reduced 
effects on FANCD2 mono-ubiquitination (Fig. 2b). These 
results suggest that under some environmental pressure, such 
as MMC treatment, FANCA altered proteins may be par-
tially loss of function. Remarkably, E1296G altered protein 
showed severer effects on FANCD2 mono-ubiquitination 
than R591Q, which was consistent with the severity of clini-
cal phenotypes in the affected cases.

Fanca+/− female mice showed decreased fertility 
and impaired follicle development

To investigate the in  vivo effect of FANCA on ovarian 
function, a mouse model carrying a heterozygous loss-of-
function mutation (c.3585insA; p.E1195Efs*6) of Fanca 
in C57BL/6 background was utilized (Fig. S2a, S2b). Both 
mRNA and protein expression levels of Fanca in the ovary 
of the mutated mice were almost half of the wild-type con-
trol, and no Fanca truncate protein was detected in mutated 
mice (Fig. S2c, S2d).

The breeding assays were performed by mating 
Fanca+/− female mice with wild-type males from sexual 
maturity to 6 months. By comparison with the wild-type 
female mice whose average number of litters was 3.6, 
Fanca+/− female mice exhibited obvious subfertility with 
phenotypic variation among individuals: 6 mice never gave Ta
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a birth in the mating period, whereas the other 4 mice lit-
tered 1–5 times, respectively (Fig. 3a). The first litter age of 
the Fanca+/− females which had given births was much later 
than that of the wild type (Fig. 3b). Consistently, the number 
of pups per litter was reduced in Fanca+/− females (Fig. 3c).

To investigate whether the subfertility of Fanca+/− female 
mice was due to ovarian dysfunction, anatomy analysis of 
female reproductive system was performed. There was no 
apparent difference in morphology and size of the uteruses 
and ovaries between Fanca+/− and wild-type mice (Fig. 
S3). H&E staining also indicated that the morphology of 
ovaries in Fanca+/− mice was normal, and all types of fol-
licles could be found (Fig. 4, left panel). However, follicle 
counting revealed a decreasing pattern of follicle numbers 
with aging (Fig. 4, right panel). The number of primordial 

follicles in Fanca+/− mice decreased by approximately 
20‒40% compared to that in wild-type mice before sexual 
maturity (14 days and 30 days). At the same time, the num-
bers of both primary and secondary follicles in the ovaries 
of Fanca+/− mice were significantly less than that in wild 
type. After sexual maturity (8 weeks), the number of antral 
follicles in the ovaries of Fanca+/− mice reduced to nearly 
half of that of the wild type. This decreased pattern of antral 
follicles in Fanca+/− mice continued till 6 months. Mean-
while, massive atretic follicles appeared in the ovaries of 
Fanca+/− mice by comparison with the wild type (Fig. S4). 
Altogether, the histological analysis strongly suggests that 
partial loss of function of Fanca in mice impaired normal 
follicle development, leading to partial ovarian dysfunction 
and subfertility, which resembles POI phenotype in humans.

Fig. 2   Reduced expression levels and activities of the rare FANCA 
variants. a Western blot analysis of the protein expression levels of 
wild-type FANCA and two altered proteins (R591Q and E1296G). 
An equal amount of indicated FANCA expression plasmids was co-
transfected with pEGFP-N2 into U2OS cells. The densitometric units 
of altered FANCA proteins were normalized to that of the wild-type 
FANCA. Values are expressed as mean ± SD, N = 4. GFP was used to 
evaluate the transfection efficiency, and β-actin was used as a load-

ing control. b Western blot analysis of mono-ubiquitinated FANCD2 
in U2OS cells transfected with indicated FANCA expression plasmids 
with or without MMC (2 μM) treatment for 24 h. The densitometric 
units show the ratios of mono-ubiquitinated FANCD2 to unubiquit-
inated FANCD2, normalized to that of cells transfected with empty 
vector without MMC treatment. Values are expressed as mean ± SD, 
N = 4. β-Actin was used as a loading control. MMC, mitomycin C. 
*P < 0.05; **P < 0.01; ***P < 0.001

Fig. 3   Fanca+/− female mice manifested decreased fertility. a Number 
of litter sizes, b first litter ages, and c number of pups per litter in 
wild-type and Fanca+/− female mice. Each female mouse mated with 
wild-type male mouse, respectively, from sexual maturity (6 weeks) 

to 6 months. “×” represents the average, horizontal lines represent the 
median, upper and lower edges of the box represent the up and down 
four digits, and the upper and lower bars represent the maximum and 
minimum values. No outlier was detected
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Discussion

The reduced fertility in approximately half FA female 
patients strongly suggests the contribution of the FA path-
way in human fertility. Ovary is one of the organs that is 
most susceptible to unrepaired DNA damage induced by 
either genetic variations or environmental factors (Oktem 
and Oktay 2007). More recently, emerging evidence has 
shown that some pathogenic variants in several FA genes 
lead to human infertility without development of FA pheno-
types. Different compound heterozygous BRCA2 mutations 

have been recently identified to cause ovary dysgenesis or 
non-syndromic POI (Qin et al. 2019; Weinberg-Shukron 
et  al. 2018). Similarly, different bi-allelic mutations in 
FANCM were suspected in independent studies as being 
the causes for early menopause (Catucci et al. 2018), non-
syndromic POI (Fouquet et al. 2017), and non-obstructive 
azoospermia (Kasak et al. 2018; Yin et al. 2019). Moreover, 
the genome-wide association studies (GWAS) in European 
ancestry populations suggest that FANCC is a high risk 
locus of polycystic ovary syndrome (Hayes et al. 2015), and 
FANCI is implicated in age at menopause (Stolk et al. 2012).

Fig. 4   The numbers of follicles decreased in the ovaries of Fanca+/− 
female mice. Representative images of H&E staining of mouse ova-
ries at ages of 14 days, 30 days, 8 weeks and 6 months. Scale bars 

represent 500  μm. The numbers of primordial, primary, second-
ary and antral follicles were counted and expressed as mean ± SD. 
*P < 0.05; **P < 0.01; ***P < 0.001
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A variety of bi-allelic pathogenic variants in FANCA 
have been identified in FA patients, several of which mani-
fested POI as part of their phenotypes (Kimble et al. 2018). 
Furthermore, a nonsynonymous variant rs2239359 in the 
FANCA gene was found to be associated with POI in Korean 
women through GWAS study (Pyun et al. 2014). Herein, we 
first reported two pathogenic FANCA variants in non-syndro-
mic POI patients through WES analysis. To our interest, the 
novel missense mutation of FANCA (c.3887A > G) was iden-
tified in patient L010 with primary amenorrhea and another 
rare missense mutation (c.1772G > A) was in the second 
amenorrhea case F027. Consistent results were gained in 
the functional study: the FANCA c.3887A > G variant exhib-
ited a severer effect on FANCA expression and activity than 
the c.1772G > A variant. All these findings suggest a geno-
type–phenotype correlation for FANCA pathogenic variants 
in female fertility.

On the other hand, independent studies have indicated 
that different inheritance patterns of DNA repair genes can 
lead to phenotypic variability. Heterozygous mutations of 
BRCA2, BRIP1 (FANCJ) and PALB2 (FANCN) are not suf-
ficient to develop FA phenotypes, but they are associated 
with a dramatic increased risk for breast, ovarian and other 
cancers (Berwick et al. 2007; Catucci et al. 2014; Seal et al. 
2006). Bi-allelic mutations in ERCC6 (excision repair cross-
complementing 6), a family member of ERCC4 (FANCQ), 
lead to Cockayne syndrome (CS, OMIM #133540) char-
acterized by severe growth and developmental retardation, 
progressive neurological dysfunction and symptoms of pre-
mature aging (Falik-Zaccai et al. 2008), while heterozygous 
pathogenic variants result in non-syndromic POI (Qin et al. 
2015). Our present study indicated FANCA as another good 
example of DNA repair gene with genetic pleiotropy. Fur-
ther mechanistic studies elucidating the contribution of each 
FANCA variant to ovarian functions are awaited to provide 
important evidence for accurate diagnosis in clinic. The 
phenotypes of sporadic POI are highly variable in clinic, 
probably due to different environmental factors, genetic 
background as well as different pathogenic variants.

Additional evidence demonstrating the relationship 
between FA genes and fertility comes from homozygous 
recessive mouse models of FA genes. Most of these mice 
show severely reduced female fertility accompanied by 
different phenotypes, such as smaller ovary sizes, reduced 
numbers of germ cells and follicles, decreased litter sizes 
or even complete sterility (Tsui and Crismani 2019). 
Among those, two types of Fanca knockout mice were 
constructed by gene targeting approaches and exhibited 
declined female fertility at different degrees. The first 
Fanca-deficient strain with a deletion of exons 4‒7 was 
constructed in 129Ola, C57BL/6 and FVB mixed strain, 
showing severe infertility before 20 weeks and almost 
no follicles in ovaries (Cheng et  al. 2000). Another 

Fanca-deficient strain with a deletion of exons 1‒6 was 
constructed in two mouse strains, and it was found that the 
loss of Fanca exhibited reduced litter sizes in 129S6 strain, 
but infertility with almost all PGCs lost in fetal ovaries in 
C57BL/6 strain (Wong et al. 2003).

These observations from different models and groups 
prompt our attention to the fact that the fertility phenotypes 
in different mice strains carrying different Fanca mutants are 
variable. It might partially explain the fact that no obvious 
differences between heterozygous Fanca-null and wild-type 
mice was observed in previous two Fanca mutants, but we 
found that heterozygous loss-of-function mutation of Fanca 
in C57BL/6 mice could affect female fertility. Furthermore, 
a truncated Fanca mRNA transcript was detected in the 
Fanca-deficient mice (Wong et al. 2003), so it is reasonable 
to doubt that a partial Fanca protein might be existing to par-
tially complement wild-type Fanca function. To further con-
firm our finding in Fanca+/− mice, we thoroughly recorded 
follicle development in mice of different ages. Histologi-
cal analysis indicates that a remarkable increasing number 
of the follicles in the ovaries of Fanca+/− mice could not 
develop normally or further undergo atresia by comparison 
with that in wild-type mice, which explains the decreased 
female fertility in Fanca+/− mice. Taken together, we raised 
the hypothesis that the differences in Fanca mutation and 
genetic background of mouse strains might contribute to the 
phenotypic variations in mouse models, and the ovary func-
tion might be correlated to the expression levels of Fanca 
and its altered transcripts.

The diverse roles of FA genes in DSB repair during HR 
have been discovered more recently (Alavattam et al. 2016). 
FANCA is responsible for the nucleus localization of the FA 
core complex (Garcia-Higuera et al. 2000) and promotes 
DNA DSB repair by catalyzing single-strand annealing 
and strand exchange (Benitez et al. 2018). Fancd2 failed 
to accumulate on meiotic chromosomes in Fanca knockout 
cells (Alavattam et al. 2016), indicating that the function of 
FANCA in meiosis is related to the activation of FANCD2. 
In our study, we also observed that two FANCA variants 
found in POI patients exhibited reduced activities in regulat-
ing mono-ubiquitination of FANCD2, which may affect the 
DNA damage repair efficiency and correctness of oocytes 
in the process of meiosis. The “memory” of meiotic defects 
before the diplotene arrest may guide oocytes with unre-
paired DNA damage undergoing apoptotic pathways during 
follicular development (Qiao et al. 2018), which is consistent 
with our observations of decreased numbers of follicles in 
each developmental stages and boomed numbers of atresia 
follicles with aging in heterozygous Fanca-mutated mice. In 
addition, an accelerated ovary aging related to the decline 
in follicle number in women carrying BRCA1 (FANCS) and 
BRCA2 germline mutations has been recently reported (Lin 
et al. 2017).
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In summary, our findings in human subjects and mice 
suggest that heterozygous pathogenic variants in FANCA 
could affect female fertility, providing novel insights into 
the molecular diagnosis of female subfertility and genetic 
counseling for women who are at a risk for POI.

Web resources

The URLs for the data presented herein are as follows:
1000 Genomes Project, http://brows​er.1000g​enome​s.org
CADD, http://cadd.gs.washi​ngton​.edu
DANN, http://cbcl.ics.uci.edu/publi​c_data/DANN
ExAC Browser, http://exac.broad​insti​tute.org
GenBank, http://www.ncbi.nlm.nih.gov/genba​nk
gnomAD browser, http://gnoma​d.broad​insti​tute.org
MutationTaster, http://www.mutat​ionta​ster.org
OMIM, http://www.omim.org
PolyPhen-2, http://genet​ics.bwh.harva​rd.edu/pph2/
SIFT, http://sift.bii.a-star.edu.sg
UCSC Genome Browser, http://genom​e.ucsc.edu.
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