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Abstract

Age-related cardiac fibrosis contributes to the development of heart failure with preserved

ejection fraction which lacks ideal treatment. Transient receptor potential ankyrin 1 (TRPA1)

is an oxidative stress sensor and could attenuate age-related pathologies in invertebrates.

The present study aimed to test whether TRPA1 plays a role in age-related cardiac remodel-

ing and dysfunction. The cardiac function and pathology of 12-week-old (young) and 52-

week-old (older) Trpa1-/- mice and wild-type (WT) littermates were evaluated by echocardi-

ography and histologic analyses. The expression levels of 84 fibrosis-related genes in the

heart were measured by quantitative polymerase chain reaction array. Young Trpa1-/- and

WT mice had similar left ventricular wall thickness, volume, and systolic and diastolic func-

tion. Older Trpa1-/- mice had significantly increased left ventricular internal diameter and vol-

ume and impaired systolic (lower left ventricular ejection fraction) and diastolic (higher E/A

ratio and isovolumetric relaxation time) functions compared with older WT mice (P<0.05 or

P<0.01). Importantly, older Trpa1-/- mice had enhanced cardiac fibrosis than older WT mice

(P<0.05) while the two strains had similar degree of cardiac hypertrophy. Among the 84

fibrosis-related genes, Acta2, Inhbe, Ifng, and Ccl11 were significantly upregulated, while

Timp3, Stat6, and Ilk were significantly downregulated in the heart of older Trpa1-/- mice

compared with older WT mice. Taken together, we found that knocking out Trpa1 acceler-

ated age-related myocardial fibrosis, ventricular dilation, and cardiac dysfunction. These

findings suggest that TRPA1 may become a therapeutic target for preventing and/or treating

cardiac fibrosis and heart failure with preserved ejection fraction in the elderly.

Introduction

Heart failure is a leading cause of death worldwide and affects more than 10% of people over

80 years of age [1]. Age is an independent risk factor for heart failure, especially for heart fail-

ure with preserved ejection fraction (HFpEF). Patients with HFpEF have clinical manifesta-

tions of heart failure due to increased left ventricular filling pressure with normal left

ventricular ejection fraction (�50%). HFpEF is primarily a disease of the elderly, and the

majority of patients with HFpEF age 65 years and older [2]. Oxidative stress is gradually

enhanced in the aging heart [3]. Excessive reactive oxygen species (ROS) production in
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oxidative stress promotes age-related reactive fibrosis in the heart through modulating both

collagen synthesis and degradation [4]. Reactive fibrosis in the aging heart reduces ventricular

compliance and impairs ventricular filling during diastole, leading to the development of dia-

stolic dysfunction and HFpEF in the elderly [5]. Unlike heart failure with reduced ejection

fraction, HFpEF, which represents approximately 50% of heart failure cases, currently lacks

effective therapy [1].

Although oxidative stress plays a critical role in the development of cardiac fibrosis and

HFpEF, antioxidants failed to improve the outcome of patients with HFpEF [6]. This calls for

further studies on the regulation of ROS-induced cardiac fibrosis in aging. Transient receptor

potential ankyrin 1 (TRPA1) is a calcium-permeable cation channel receptor responsible for

detecting ROS overproduced in oxidative stress [7]. TRPA1 abundantly and functionally

expresses in the plasma membrane of fibroblasts and may be activated by ROS [8, 9]. After

activated by ROS, TRPA1 may inhibit ROS-induced apoptosis and ameliorate aging-related

pathologies in invertebrates, such as C. elegans [10–13]. However, the role of TRPA1 in age-

related disorders in mammals is largely unknown. A previous study demonstrates that TRPA1

receptors play a protective role in age-related endothelial dysfunction in mice by suppressing

oxidative stress [13], suggesting an anti-aging effect of TRPA1 in the cardiovascular system.

In the present study, we aimed to investigate the role of TRPA1 in age-related cardiac

remodeling and function in mice. We examined and compared the cardiac function and

pathology of young and aged Trpa1 gene knockout (Trpa1-/-) mice and their wild-type (WT)

littermates. In addition, the expression profiling of profibrotic and antifibrotic genes was mea-

sured to identify genetic signature involved in the fibrosis-regulatory effects of TRPA1.

Methods

Animals

Male and female Trpa1 heterozygous (Trpa1+/-) mice on the C57BL/6 genetic background

were purchased from The Jackson Laboratory (Bar Harbor, ME, USA) and were crossbred to

obtain homozygous Trpa1 gene knockout (Trpa1-/-) mice and their WT (Trpa1+/+) control lit-

termates [14]. Genotyping was performed by polymerase chain reaction (PCR) using genomic

DNA extracted from the mouse-tail tissue with the primers listed on the website of The Jack-

son Laboratory. Mice were housed under a 12h light/12h dark cycle with free access to normal

chow diet and drinking water. Twelve-week-old (young) and 52-week-old (older, equivalent

to 42.5 human years) male and female mice were used in the experiments. This study

was approved by the Institutional Animal Care and Use Committee of Michigan State

University.

Mouse echocardiography

Echocardiography was performed using an ultrasound imaging system (Vevo 2100; VisualSo-

nics, Toronto, Canada). Measurement and data analysis were performed blinded. Anesthesia

was induced in a chamber with 4–5% isoflurane and maintained at 1.5–2%. Mice were posi-

tioned supine on a heated platform to keep body temperature at 38˚C. Ultrasound gel was

applied to the prepared chest skin, then transthoracic echocardiogram was performed to assess

cardiac structure and function. Two-dimensional images of the parasternal long-axis view and

M-mode images of the short-axis view at the papillary muscle level were recorded. Transmitral

flow was also recorded in the apical four-chamber view with a Doppler probe. We measured

structural parameters, including left ventricular posterior wall thickness at end-diastole

(LVPWd) and end-systole (LVPWs), left ventricular anterior wall thickness at end-diastole

(LVAWd) and end-systole (LVAWs), left ventricular internal diameter at end-diastole
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(LVIDd) and end-systole (LVIDs), and left ventricular end-diastolic (LV Vol,d) and end-sys-

tolic (LV Vol,s) volume. We also calculated functional parameters, including left ventricular

ejection fraction (LVEF), left ventricular fractional shortening (LVFS), the ratio of early to late

diastolic filling (E/A), and isovolumetric relaxation time (IVRT).

Pathology

At the end of the experiments, mice were euthanized by deep anesthesia with isoflurane (5%)

to alleviate suffering, and then the hearts were harvested. The mouse hearts at the papillary

muscle level were fixed in 4% paraformaldehyde, dehydrated, embedded in paraffin, and sec-

tioned into 5μm-thick slides. Sections were stained with hematoxylin and eosin, and images

were captured using a microscopy (Nikon TE2000-U, Melville, NY, USA). The cardiomyocyte

size was determined by measuring the cross-sectional area using the ImageJ software (NIH).

We performed Picro-Sirius Red stain to quantify cardiac fibrosis and collagen deposition.

Quantitative polymerase chain reaction (PCR) arrays

The gene expression levels of 84 fibrosis-related genes were measured by quantitative PCR

array assays in 96-well plates using RT2 Profiler PCR Array (Mouse Fibrosis, Cat. no. 330231

PAMM-120ZR, Qiagen, Valencia, CA, USA) according to the manufacturer’s protocol. The

mRNA expression levels were calculated by the 2−ΔΔCT method.

Western blotting

Total proteins were extracted from the myocardial tissue and separated by electrophoresis

using a 10% sodium dodecyl sulfate polyacrylamide gel. The gel was then transferred to a poly-

vinylidene difluoride membrane (SLGP033RS, Millipore, Bedford, MA, USA). The membrane

was blocked with 5% bovine serum albumin for 1h and then incubated with anti-TRPA1

(1:1000 dilution, NB110-40763, Novus Biologicals, Littleton, CO, USA) or anti-GAPDH

(1:1000 dilution, GTX627408-01, GeneTex, Irvine, CA, USA) antibodies overnight. The mem-

brane was rinsed and then incubated with horseradish peroxidase-conjugated secondary anti-

bodies for 1h at room temperature. The protein bands in the blot were detected using an

enhanced chemiluminescence kit (Bio-Rad, Hercules, CA, USA) according to the manufactur-

er’s instructions. Relative density was measured using ImageJ software (NIH).

Statistical analysis

Data are presented as means ± SE and analyzed using GraphPad prism software (San Diego,

CA, USA). Comparisons among multiple groups were performed using two-way ANOVA

with post hoc Tukey honestly significant difference test. Comparisons between two groups

were performed with Student’s t-test. P values lower than 0.05 were considered statistically

significant.

Results

TRPA1 is upregulated in the heart of older mice

The protein expression of TRPA1 in the heart of 52-week-old (older) WT mice was signifi-

cantly increased compared to that in the heart of 12-week-old (young) mice (P<0.01, Fig 1).
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Knockout of Trpa1 enhances age-related left ventricular dilation and

dysfunction

Echocardiography was performed in 12-week-old (young) and 52-week-old (older) Trpa1-/-

and WT mice. Young Trpa1-/- and WT mice had similar left ventricular wall thickness, inter-

nal diameter, and volume (Fig 2A–2I). Older Trpa1-/- and WT mice had similar left ventricular

wall thickness (Fig 2A–2I) except that older Trpa1-/- mice had thinner LVAWs than older WT

mice (P<0.05, Fig 2E). Both older Trpa1-/- and WT mice had significantly larger left ventricu-

lar internal diameter and volume than their young congenic counterparts (P<0.05 or P<0.01,

Fig 2A–2I). In addition, older Trpa1-/- mice had significantly increased left ventricular internal

diameter and volume when compared with older WT mice (P<0.05 or P<0.01, Fig 2F, 2H and

2I). Left ventricular systolic and diastolic functions were similar between young Trpa1-/- and

Fig 1. The TRPA1 protein level in the heart from older mice is decreased. The protein levels of TRPA1 were

measured by Western blotting in the myocardial tissue from 12-week-old (young) and 52-week-old (older) wild-type

mice. Data are mean ± SE. n = 4 per group. ��P<0.01 vs. 12-week-old mice.

https://doi.org/10.1371/journal.pone.0274618.g001
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WT mice and were significantly impaired in their older congenic counterparts with lower

LVEF and LVFS and higher E/A ratio and LVRT (P<0.05 or P<0.01, Fig 2J–2M). Moreover,

older Trpa1-/- mice had significantly decreased systolic (lower LVEF and LVFS) and diastolic

(higher E/A ratio and LVRT) functions than older WT mice (P<0.05 or P<0.01, Fig 2J–2M).

Knockout of Trpa1 exacerbates age-related cardiac fibrosis

Representative heart sections show that older Trpa1-/- and WT mice had slightly hypertro-

phied hearts when compared with their young congenic counterparts and that older Trpa1-/-

mice had a dilated left ventricle when compared to older WT mice (Fig 3A). However, left ven-

tricular mass estimated by echocardiography was similar between young Trpa1-/- and WT

Fig 2. Knockout of Trpa1 enhances age-related left ventricular dilation and dysfunction. (A) Representative M-

mode echocardiograms of 12-week-old (young) and 52-week-old (older) Trpa1-/- mice and WT littermates. The left

ventricular posterior wall thickness at end-diastole (LVPWd) (B), left ventricular posterior wall thickness at end-systole

(LVPWs) (C), left ventricular anterior wall thickness at end-diastole (LVAWd) (D), left ventricular anterior wall

thickness at end-systole (LVAWs) (E), left ventricular internal dimension at end-diastole (LVIDd) (F), left ventricular

internal dimension at end-systole (LVIDs) (G), left ventricular volume at end-diastole (LV Vol, d) (H), left ventricular

volume at end-systole (LV Vol, s) (I), left ventricular ejection fraction (LVEF) (J), left ventricular fractional shortening

(LVFS) (K), mitral E/A ratio (L), and isovolumetric relaxation time (IVRT) (M) of 12-week-old and 52-week-old

Trpa1-/- mice and WT littermates were measured by echocardiography. Data are mean±SE of 10 mice in each older

mouse group and 6 mice in each young mouse group. �P<0.05, ��P<0.01 vs. 12-week-old congenic mice; #P<0.05,
##P<0.01 vs. 52-week-old WT mice.

https://doi.org/10.1371/journal.pone.0274618.g002
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mice and between older Trpa1-/- and WT mice (Fig 3D). The size of cardiomyocytes was larger

in older Trpa1-/- and WT mice than their young congenic counterparts (both P<0.01), while

the cardiomyocyte size was similar between older Trpa1-/- and WT mice (Fig 3B and 3E).

Older Trpa1-/- and WT mice had significant cardiac fibrosis when compared with their young

congenic counterparts (P<0.05 or P<0.01), and older Trpa1-/- mice had enhanced cardiac

fibrosis than older WT mice (P<0.05, Fig 3C and 3F).

Knockout of Trpa1 alters expression of fibrosis-related genes

We performed quantitative PCR array analyses of the mRNA expression of 84 fibrosis-related

genes in the myocardial tissue of 52-week-old older Trpa1-/- and WT mice. Among the 84

genes, only seven genes had significantly different expression levels in the heart between older

Fig 3. Knockout of Trpa1 exacerbates age-related cardiac fibrosis. Representative H&E-stained whole-heart cross-

sections (A) and H&E-stained (B) and Picrosirius red-stained (C) left ventricular sections of 12-week-old and

52-week-old Trpa1-/- mice and WT littermates. (D) Left ventricular mass was evaluated by echocardiography. Cross-

sectional area of cardiomyocytes (E) and collagen deposition fraction (F) were quantified based on H&E and PSR

staining, respectively. Data are mean±SE of 6 mice in each group. �P<0.05, ��P<0.01 vs. 12-week-old congenic mice;
#P<0.05 vs. 52-week-old WT mice.

https://doi.org/10.1371/journal.pone.0274618.g003
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WT and Trpa1-/- mice (Fig 4A). The expression levels of Acta2, Inhbe, Ifng, and Ccl11 were sig-

nificantly increased with fold changes of 3.1, 1.9, 1.9, and 1.5 (all P< 0.05), respectively, while

Timp3, Stat6, and Ilk were significantly decreased with fold changes of 0.3, 0.5, and 0.7

(P< 0.05 or P< 0.01), respectively, in the heart of older Trpa1-/- mice compared with WT

mice. The mRNA levels of Col1a2 and Col3a1, markers of collagen synthesis, in the myocardial

tissue were similar between older Trpa1-/- and WT mice (Fig 4B). Matrix metalloproteinases

(MMPs) are major enzymes responsible for degradation of collagen fibers. The mRNA levels

of matrix metalloproteinases, including Mmp1a, Mmp2, Mmp3, Mmp8, Mmp9, Mmp13, and

Mmp14, in the heart were similar between older Trpa1-/- and WT mice (Fig 4C).

Discussion

The present study aimed to determine the role of the TRPA1 channel in age-related changes of

cardiac structure and function. We found that knockout of Trpa1 exacerbated age-related

myocardial fibrosis, ventricular dilation, and cardiac dysfunction in 52-week-old older mice.

We also identified several genes which were involved in the exacerbated cardiac fibrosis due to

TRPA1 ablation. These findings suggest that TRPA1 may act as a brake on age-related cardiac

fibrosis, dilation, and dysfunction.

Fig 4. Knockout of Trpa1 alters expression of fibrosis-related genes. Differently expressed genes (A), gene

expression of collagens (B), and gene expression of matrix metalloproteinases (C) in the heart tissue 12-week-old and

52-week-old Trpa1-/- mice and WT littermates were measured by quantitative PCR array assays. Data are mean±SE of

3 samples in each group. �P< 0.05, ��P< 0.01 vs. 52-week-old WT mice.

https://doi.org/10.1371/journal.pone.0274618.g004
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There are two types of cardiac fibrosis: reparative and reactive fibrosis. Reparative fibrosis is

responsible for cardiac wound healing and repair after myocardial infarction, while reactive

fibrosis refers to interstitial fibrosis in response to aging or hypertension. Aging impairs repar-

ative fibrosis but enhances reactive fibrosis [4], and the enhanced reactive cardiac fibrosis in

aging contributes to the development of HFpEF in the elderly [4, 5]. Reparative fibrosis is

mainly due to activation of fibroblasts and increased synthesis of collagens, while age-related

reactive fibrosis is majorly caused by decreased degradation of collagens [4, 15]. Age-related

fibrosis is a reactive fibrotic response to oxidative stress [4]. ROS overproduced in oxidative

stress promotes collagen deposition in the aging heart [16]. TRPA1 as an oxidative stress sen-

sor has been shown to play important roles in pathophysiology of the cardiovascular system

[17]. However, its role in cardiovascular aging is largely unknown. Our pilot study found that

TRPA1 was upregulated in middle-aged mice at 52 weeks of age but was dramatically

decreased in aged mice at 104 weeks of age (data not shown). This finding suggests that the

upregulation of TRPA1 at middle age might be a compensation against age-related cardiac

fibrosis. The present study using a Trpa1-/- mouse model provides evidence that TRPA1 may

play a protective role in age-related myocardial fibrosis, ventricular dilation, and cardiac

dysfunction.

TRPA1 was reported previously to be involved in reparative fibrosis after myocardial

infarction and pressure overload-induced cardiac hypertrophy likely through regulating fibro-

blast activation [18]. Their results suggest that TRPA1 could activate fibroblasts and might

contribute to myocardial repair after infarction. Another study demonstrated that inhibition

of TRPA1 suppressed pressure overload-induced cardiac fibrosis in a mouse model by nega-

tively regulating Ca2+-dependent signal pathways [19]. Our results in the present study appear

to conflict with previous results. The possible reason for the conflict may be that the mecha-

nisms leading to cardiac fibrosis in cardiac repair after myocardial infarction, hypertension,

and aging are different. In contrast to cardiac repair after myocardial infarction and hyperten-

sive heart disease where fibroblast activity and collagen expression are markedly elevated,

increased collagen synthesis is not the main culprit of fibrosis in the aging myocardium [4]. In

fact, fibroblast activity and collagen synthesis are significantly impaired in the aging hearts,

rather, collagen buildup and subsequent cardiac fibrosis in the aging heart is due to attenua-

tion of matrix-degrading pathways [4]. Therefore, TRPA1 likely plays a protective role in age-

related cardiac fibrosis through inhibiting collagen deposition while may contribute to cardiac

fibrosis after myocardial infarction and in the setting of hypertension through activating

fibroblasts.

The underlying mechanism for the regulatory role of TRPA1 cardiac fibrosis remains elu-

sive. Hypertension is a common cause for cardiac fibrosis. Previous studies from our group

and others demonstrated that TRPA1 plays little role in blood pressure regulation [20–22].

Therefore, the enhanced cardiac fibrosis in older Trpa1-/- mice is unlikely due to changes in

blood pressure. In order to reveal the potential mechanism and genetic signature of the accel-

erated cardiac fibrosis in older Trpa1-/- mice, we performed quantitative PCR array analyses of

the mRNA expression of 84 fibrosis-related genes in the myocardial tissue. The mRNA levels

of Col1a2 and Col3a1 in the myocardial tissue were similar between older Trpa1-/- and WT

mice, suggesting comparable cardiac collagen synthesis in the two strains. In addition, the

mRNA levels of matrix metalloproteinases, enzymes responsible for degradation of collagen

fibers, in the heart were similar between older Trpa1-/- and WT mice. These results suggest

that the accelerated cardiac fibrosis in older Trpa1-/- is due to neither increased collagen syn-

thesis nor decreased collagen degradation. Among seven differentially expressed genes, Timp3
is most significantly decreased in the heart of older Trpa1-/- mice compared with WT mice.

TIMP3 is an extracellular protein mainly secreted by fibroblasts and is involved in the post-
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translational modification and stabilization of collagen fibers [23]. Previous studies demon-

strate that loss of Timp3 accelerates reactive interstitial cardiac fibrosis likely through lysyl

hydroxylase 1-mediated hydroxylation and stabilization of collagens [24, 25]. Loss of Timp3
also promotes age-related renal fibrosis [26]. Therefore, downregulation of TIMP3 might sta-

bilize extracellular collagen fibers and contribute to the accelerated cardiac fibrosis in older

Trpa1-/- mice. However, how TRPA1 regulates the expression of TIMP3 remains unclear. One

of the limitations of the present study is that the protein expression and activity of TIMP3

were not measured by immunoblotting, which will be validated in following mechanistic

studies.

Taken together, our work investigated the role of TRPA1 age-related changes of cardiac

structure and function. The findings indicate that knocking out Trpa1 accelerated myocardial

fibrosis, ventricular dilation, and cardiac dysfunction. Future studies will investigate whether

TRPA1 can become a therapeutic target for preventing and/or treating cardiac fibrosis and

HFpEF.
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