
Hindawi Publishing Corporation
Oxidative Medicine and Cellular Longevity
Volume 2012, Article ID 932838, 16 pages
doi:10.1155/2012/932838

Review Article

Redox Homeostasis in Pancreatic β Cells
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We reviewed mechanisms that determine reactive oxygen species (redox) homeostasis, redox information signaling and
metabolic/regulatory function of autocrine insulin signaling in pancreatic β cells, and consequences of oxidative stress and
dysregulation of redox/information signaling for their dysfunction. We emphasize the role of mitochondrion in β cell molecular
physiology and pathology, including the antioxidant role of mitochondrial uncoupling protein UCP2. Since in pancreatic β
cells pyruvate cannot be easily diverted towards lactate dehydrogenase for lactate formation, the respiration and oxidative
phosphorylation intensity are governed by the availability of glucose, leading to a certain ATP/ADP ratio, whereas in other cell
types, cell demand dictates respiration/metabolism rates. Moreover, we examine the possibility that type 2 diabetes mellitus
might be considered as an inevitable result of progressive self-accelerating oxidative stress and concomitantly dysregulated
information signaling in peripheral tissues as well as in pancreatic β cells. It is because the redox signaling is inherent to the
insulin receptor signaling mechanism and its impairment leads to the oxidative and nitrosative stress. Also emerging concepts,
admiting participation of redox signaling even in glucose sensing and insulin release in pancreatic β cells, fit in this view. For
example, NADPH has been firmly established to be a modulator of glucose-stimulated insulin release.

1. Why to Deal with Redox Homeostasis in
Pancreatic β Cells

Due to its complex health and economic sequels as well
as steadily increasing prevalence, type 2 diabetes mellitus
(T2DM) represents one of the serious burdens of the 21th
century. Its pathogenesis is complex and different factors may
prevail in individual cases. The typical feature of progressed
T2DM is insulin resistance as well as β cell dysfunction
[1, 2]. Excellent recent reviews cover gathered knowledge
of all aspects of pancreatic β cell biology, development,
molecular physiology, and medical aspects [1–19]. A great
progress has been achieved in understanding molecular
mechanism of physiological phenomena [1–5], etiology of
T2DM and medical aspects or treatment [6–9], microscopic
anatomy of human islets of Langerhans [10], and their in
vivo imaging [11], as well as in understanding β cell biology,
specifically longevity and development and differentiation
of β cells [13–19]. This paper attempts to focus on aspects
that determine β cell dysfunction and possess a common

denominator in oxidative stress origin and/or dysregulated
information signaling, while emphasizing dysregulated redox
signaling. The impact is striking, since redox signaling is
the inherent part of β cell physiology and contributes to,
for example, insulin secretion. We left out of scope β
cell development, cell cycle, longevity and differentiation,
attempts to produce β cells from stem cells, and extensive
description of pathophysiology. We had a chance only to
touch a topic of information signaling and its dysregulation
as it substantiates a subject for another extensive review. Due
to the same reason, we leave also the themes of nitrosative
stress and lipotoxicity which are, however, closely related to
the oxidative stress. In turn, we focus more closely on some
recent emerging aspects, such as possible signal modulat-
ing role of mitochondrial uncoupling protein UCP2 [20],
reviewing and emphasizing the role of mitochondrion in β
cell molecular physiology as well as pathology. Likewise, we
focus on action of insulin itself on the β cell, that is, autocrine
insulin secretion and its link to the redox homeostasis. We
strictly distinguish mitochondrial and cytosolic sources of
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reactive oxygen species (ROS) and their antioxidant defense,
and when possible, we distinguish also mitochondrial versus
cytosolic redox regulations.

Why to deal with redox homeostasis in pancreatic β
cells at all? Are not the above described emerging aspects
of β cell biology superior to our focus? The answer lies in
the necessity to establish, whether T2DM is the inevitable
result of progressive self-accelerating oxidative stress [21,
22] and concomitant progressively dysregulated information
signaling, including redox signaling that both lead to diabetic
complications. This view becomes even more skeptical, when
one realizes that redox signaling manifested by transient
ROS burst at least locally is an inherent part of numerous
molecular mechanisms, some of which will be reviewed here.
Thus redox signaling is inherent to mechanism of insulin
receptor signaling and emerging concepts admit its role even
during glucose sensing and insulin release in pancreatic β
cells [4]. For example, the role of NADPH has been already
firmly established in modulation of insulin release. One may
consider NADPH as antioxidant since it is an important
metabolite usually shifting redox homeostasis towards the
reduced state. However, when used by NADPH oxidases to
produce ROS, it becames an evil of the pro-oxidant side. It
is not surprising that H2O2 is another such key molecule
and in further description we shall recognize many more
metabolites and proteins with the Janus angel/devil double
face.

2. Mitochondrial Generation and
Scavenging of Reactive Oxygen Species
(ROS) in Pancreatic β Cells

2.1. Mitochondrial ROS Sources. Likewise in other cell types,
mitochondrial respiratory chain is the main source of
superoxide (O2

•−, and its conjugated acid-hydroperoxyl
radical, HO2

•, pKa 4.9) in mitochondrion of pancreatic β
cells [21]. Specifically, Complex I, an H+-pumping NADH:
quinone oxidoreductase, produces maximum superoxide
only when both electron transport and H+ pumping are
retarded [22, 23]. H+ pumping may be attenuated by highly
established electrochemical gradient of protons at IMM
(termed proton motive force, Δp, when expressed in mV
units) or inhibited by oxidative stress-related mutations of
ND5 subunit (or other mitochondrion-coded subunits) [22].
Intermediate O2

•− formation results from fully reduced
flavin as reported for isolated Complex I [24–26]. Binding
of rotenone and similar inhibitors in proximity to the Q-
site (a ubiquinone binding site) highly retards electron
transport throughout the peripheral arm of Complex I.
This was originally ascribed to the formation of longer-lived
semiquinone species having a higher probability of reacting
with oxygen which thus would form O2

•− [27]. Detailed
mechanism of O2

•− formation within Complex I and its
relation to H+-pumping have yet to be established. It is well
recognized, however, that nearly all Complex I-produced
O2

•− is released to the matrix compartment [27]. Complex
III, a ubiquinol-cytochrome c reductase, contributes to O2

•−

generation by autooxidation of the ubisemi-quinone anion

radical (UQ•−) within so-called Q cycle [21, 27, 28], while
it releases O2

•− about equally to both sides of the inner
mitochondrial membrane (IMM) [28, 29].

A fast electron flux via the whole respiratory chain at
a high substrate pressure (NADH/NAD+ ratio) produces
more O2

•− than under conditions, when slower flux occurs
at the same relative retardation (same oxidation/reduction
states). Hence, in intact respiratory chain, mostly effectors
that retard cytochrome c turnover between Complex III
and IV (cytochrome c oxidase), slow down Q cycle or Q
migration between Complex I and III, accelerate superoxide
production [30].

2.2. Mild Uncoupling Attenuates Mitochondrial ROS Gen-
eration. The oxidative phosphorylation (OXPHOS) termi-
nating at ATP synthase (Complex V) is driven by the
proton motive force, Δp, formed by the respiratory chain
H+ pumping at Complex I, III, and IV. The IMM part
of ATP synthase, so-called FOATPase, thus consumes the
adequate portion of Δp in non-dormant mitochondrion in
a state, historically termed state-3. In vivo cell mitochondrial
respiration is governed by the metabolic state and/or avail-
ability of substrates, and one can recognize various states-
3 differing by distinct respiration rates, depending on the
substrate load. A state-4, never existing in cells, is then
given by zero ATP synthesis, hence by zero H+ backflux
via the FOATPase. Respiration and H+ pumping at state-4
is given only by the other protonophores, either of protein
character or by the native H+ permeability of IMM. As
in mitochondrion Δp is predominantly in a form of IMM
electrical potential, it is valid that ΔΨm is maximum at state-
4 at the maximum substrate load. The H+ backflux excluding
FOATPase is termed an H+ leak. Also other proteins may
contribute to the H+ leak, such as the ADP/ATP carrier.
A short-cut of proton circuit within IMM is also known
as uncoupling and can be physiologically provided also
by mitochondrial uncoupling proteins (UCPs) [20, 31–34].
When UCP-mediated protonophore activity plus IMM H+

leak does not overwhelm the FOATPase protonophoric activ-
ity, ATP synthesis, hence OXPHOS, still takes place. Such a
mild uncoupling (mild in contrast to a complete uncoupling
by agents termed uncouplers) is, however, beneficial in
terms of lowering mitochondrial O2

•− formation. The O2
•−

formation in both Complex I [22] and Complex III [27–
29, 35] is diminished by mild uncoupling. Due to a relative
predominance of mitochondrial ROS source within the cell,
one can predict that even accumulated oxidative stress might
be attenuated by mild uncoupling. Note, however, that
oxidative stress originating from irreversible changes due to
mutated subunits encoded by mitochondrial DNA (mtDNA)
cannot be improved by mild uncoupling [22]. An example
is given by certain mutations of ND5 subunit of Complex
I (ensuring H+ pumping in intact wt form) that inhibit
H+ pumping and lead to increased O2

•− formation. Such a
block is not withdrawn by uncoupling [22]. In conclusion,
the retardation of H+ pumping which accelerates Complex I
O2

•− formation rater initiates further turn of a vicious spiral
of self-accelerated oxidative stress.
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2.3. Uncoupling Protein UCP2 Attenuates Mitochondrial ROS
Generation. Among five UCP isoforms, UCP2 was identified
in pancreatic β cells and it has been deduced that UCP2 exerts
an important antioxidant role in β cells while preventing
excessive superoxide formation within the respiratory chain
[20]. There are still, however, controversies, on how UCP2-
mediated uncoupling is initiated, since mutually incompati-
ble models for the uncoupling mechanism of UCP2 (or other
UCPs) have been developed [36–39]. In fact, the functional
roles of UCP2 that were originally suggested—including the
attenuation of ROS production [40–42], regulation of GSIS
[42–44] (see Section 3.1), and regulation of Ca2+ levels in
mitochondria [45–47]—are in dispute. We have previously
documented the fatty acid (FA) cycling model [39] using
reconstituted UCPs into liposomes [37, 38, 48–53] and black
lipid membranes [54–57] and demonstrated that transport
of polyunsaturated FAs (PUFAs), including hydroperoxy FAs
[52] is faster [51, 56, 57]. According to the FA cycling model,
FA anions are the true substrates transported by UCP2 and
other UCPs [53, 57]. After protonation on the trans-side
of the IMM, protonated FAs are internalized into the lipid
bilayer core and subsequently flip to the cis-side of IMM and
thus carry a proton across the membrane [38]. Opposing
models have postulated a pathway that requires only protons,
for which FAs are enhancers of basal H+ transport [36,
40]. Lipid peroxidation products, for example, 4-hydroxy-2-
nonenal, may also act as enhancers of proton transport by
chemical modification of UCPs [58]; however, recently, we
have provided an evidence that they do so only when FAs are
present (Pohl E, Jabůrek M, et al., unpublished).

In pancreatic β cells it has been observed that the
UCP2-mediated mild uncoupling decreases the yield of
ATP from glucose [43, 59]. Further studies suggested
superoxide activation of UCP2-mediated uncoupling on
the basis of observation of elevated ΔΨm in islets treated
with a superoxide dismutase (SOD) mimetic manganese
[III] tetrakis (4-benzoic acid) porphyrin (MnTBAP) or
overexpressing MnSOD, absent in islets from UCP2 KO
mice [60]. Upon presumed inhibition of UCP2-mediated
uncoupling by Genipin, ΔΨm increased in wt islets but
not in UCP2 KO islets [61]. UCP2 overexpression in INS-
1 cells attenuated IL1β-induced ROS formation [62]. With
UCP2 silencing, a mild uncoupling in mitochondria isolated
from INS-1E cells was linked to UCP2, while accounting
for up to 30% of H+ leak [63]. UCP2-mediated uncoupling
was detectable also in intact INS-1E cells as compared to
those silenced for UCP2 [64]. In turn, Galetti et al. could
not demonstrate any effect of UCP2 overexpression on
mitochondrial coupling in INS-1 cells, neither after oleate
addition [65]. Chronic absence of UCP2 in UCP2 KO mice
of three highly congenic strain backgrounds caused oxidative
stress reflected by decreased GSH/GSSG ratio in blood or
examined tissues while their islets had elevated levels of
antioxidant enzymes and increased nitrotyrosine content
[66]. Pancreatic β cells from UCP2 KO mice had chronically
higher ROS when compared to wt mice, as estimated
by dihydro-dichlorofluorescein diacetate fluorescent probe
(CM-H2DCFDA, further abbreviated DCF) [67]. Mice with
selective knock-out of UCP2 in pancreatic β cells (UCP2BKO

mice) exhibited somewhat increased glucose-induced ΔΨm

[20]. UCP2BKO mice had also elevated intracellular ROS
levels as determined by DCF [20]. These results comply
with the antioxidant function of UCP2-mediated mild
uncoupling. UCP2 may also modulate redox signaling, if
could be effectively switched on and off.

2.4. Mitochondrial Superoxide Dismutases and Glutathione
Peroxidases. O2

•− in the matrix is converted to H2O2 by
matrix MnSOD [68], while O2

•− released to the intramem-
brane space (IMS) is partly dismuted by IMS CuZnSOD
[69, 70]. Any residual O2

•− which diffuses into the cytosol is
similarly converted by the cytosolic CuZnSOD. If any mito-
chondrial O2

•− can reach the extracellular space, it is then
detoxified by extracellular CuZnSOD (SOD3). Once H2O2 is
produced, it can easily penetrate through membranes, thanks
to its uncharged property and poor reactivity. H2O2 can
be degraded by peroxisomal catalase (rare in mitochondria
with exception of the heart) and by three isoforms of
selenium-dependent glutathione peroxidases (GPX) which,
with a cofactor glutathione, convert H2O2 to water and
also convert free FAOOHs to their corresponding hydroxy
acids (FAOH). The fourth isoform, GPX4, specifically acts
on hydroperoxy groups of peroxidized phospholipid side
chains and on cholesterol hydroperoxides [71, 72]. Resulted
GSSG is reduced to GSH by glutathione reductase with
NADPH as a cofactor. Mitochondria have their own GSH
pools independent of the cytosolic GSH pool. Both key
mitochondrial ROS detoxifying enzymes MnSOD and GPX
were demonstrated to be essential not only for balancing
redox homeostasis but also for insulin secretion [73, 74].

3. Mitochondrial Redox Homeostasis
and Glucose-Stimulated Insulin Secretion
(GSIS)

3.1. Tuned Oxidative Phosphorylation (OXPHOS) as Deter-
minant of Glucose-Stimulated Insulin Secretion (GSIS) but
Also Mitochondrial ROS Generation. The intimately specific
feature of pancreatic β cells lies in glucose sensing through
the oxidative phosphorylation [75–79]. Respiration and
OXPHOS rates, leading to a certain ATP/ADP ratio, are
governed by the availability of glucose, whereas in most
other cell types, cell demand dictates respiration/metabolism
rates and the ATP/ADP ratio. It is because of a specific
enzyme/regulation pattern of β cells. At first, unlike in
numerous other cell types, pyruvate cannot be diverted
towards lactate dehydrogenase for lactate formation in β
cells. Consequently, glucose cannot be metabolized by anaer-
obic glycolysis, which provides so-called Warburg phenotype
in cancer cells and under physiological cell responses to
hypoxia and other adaptations [80, 81]. Thus nearly 100%
of glucose is metabolized by OXPHOS in β cells (likewise
in hepatocytes and numerous differentiated OXPHOS cells).
The pattern of pyruvate dehydrogenase kinase genes is surely
responsible for this. Thus, β cell PDK1 and PDK3 are
“constitutively blocked” [82], and PDK2 is “inefficient” so
that it does not phosphorylate PDH E1α subunit of pyruvate
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dehydrogenase (PDH), hence does not inhibit its activity. At
low basal glucose, PDH is 90% active, whereas at maximum
glucose PDH is inhibited only by 22% [82]. Also hexokinase
IV (glucokinase) in β cells is not inhibited by glucose-6-
phosphate like in for example, skeletal muscle cells [83].
The lack of such a feedback inhibition of glycolysis directly
connects glycolysis to pyruvate. Finally, the human glucose
transporter GLUT1 or rodent GLUT2 are not dependent on
insulin [84, 85], so glucose in β cell cytosol is proportional to
bloodstream glucose [86]. This is perfect setting for a sensor.

Consequently, glucose metabolism in β cells is finely
adjusted to the blood glucose levels [87]. At starvation with
∼3 mM glucose levels, β cell respiration is relatively low,
as well as the intensity of ATP synthesis, corresponding
to the established state-3[Glc = 3 mM] [88–90]. The ΔΨm is
still lower than would be at state-4 with 3 mM glucose.
Increasing glucose intake into β cells may increase up to
OXPHOS-saturating ∼12 to 15 mM glucose, when max-
imum OXPHOS takes places with the established state-
3max, maximum respiration and maximum ΔΨm [90]. The
resulting increased ATP/ADP ratio in the cell cytosol initiates
closure of plasma membrane ATP-sensitive K+ channels
[1, 91, 92], leading to plasma membrane depolarization
and opening of voltage-sensitive Ca2+ channels [1, 93].
Increased cytosolic Ca2+ initiates insulin granule exocytosis
[3, 94–96]. The above description represents a simplified
schema of glucose-stimulated insulin secretion (GSIS). It has
been hypothesized that β cells maintain a relatively high
[ATP]/[ADP] value even in low glucose and that glucose
metabolism leads to dramatically decreased free ADP with
only modestly increased ATP [97]. If a high [ATP]/[ADP]
ratio exists even at low glucose levels, as a result, the total
adenine nucleotide concentration is unchanged during a
glucose-induced elevation.

GSIS was also reported to be modulated or accelerated
by other metabolic pathways related to mitochondria, such
as phosphocreatine shuttle, additional Ca2+ signaling due
to glutamate metabolism [98, 99], citrate export [100],
phosphoenolpyruvate [101], and pyruvate cycling [102, 103].
A common denominator in these modulations is NADPH,
the role of which on insulin secretion has yet to be
established. Overall, GSIS possesses also a component due to
the autocrine function of insulin (see Sections 3.3 and 5.2).

3.2. ROS Generation Dependence on Glucose. For cells not
completely depleted of glucose we hypothesize (Figure 1)
that the release of superoxide to the mitochondrial matrix
upon the GSIS onset is diminished with regard to release
rates at lower glucose concentrations. GSIS should simulta-
neously result in a decrease of the mitochondrial oxidative
stress. The incremental increase of electron flow through
the respiratory chain is not high at ∼3 mM glucose, and its
raise due to a further glucose intake is relatively lower when
compared with the effect of H+ backflow via the FO part
of ATP synthase that elevates respiration (classic respiratory
control for isolated mitochondria). Thus the effect of
elevated OXPHOS intensity prevails and ROS production
is attenuated. This should be valid also for decrease of
mitochondrial ROS formation with decreasing ADP, hence

increasing ATP [97] and has been experimentally observed
[104]. In turn, at extensive glucose depletion, the effect of
substrate load (a directly proportional increase in superoxide
formation, e.g., on Complex I, with increasing NADH or
respiration) should overcome the suppressing role of H+

returning via FOATPase at higher intensity of OXPHOS.
Hence, experimentally, results of increasing mitochondrial
ROS upon GSIS might be observed using DCF [105] or other
means [106, 107] as well as increasing reducing equivalents
[108].

Since H2O2 of mitochondrial origin may readily access
cytosol, one may report on mitochondrial ROS contribution,
when measuring cytosolic ROS sensitive to mitochondrial
inhibitors [105]. As explained above, a various extent of glu-
cose depletion may provide distinct outcome in ROS assays,
which are further dependent on the employed probe. Thus
using dihydroethidium fluorescent monitoring in primary
rat β cells, Martens et al. have found that unlike in non β cells,
oxidative stress diminishes with increasing glucose upon
GSIS [109]. ROS decrease monitored by DCF in isolated
Langerhans islets upon GSIS has also been indicated [110].
Other laboratories have reported increases in ROS upon
GSIS [105–107]. Note, that insulin secretion in INS1 cells
was also induced by exogenous H2O2 and diethyl maleate
[111], or by mono-oleoyl-glycerol [112] which both elevate
intracellular H2O2.

3.3. Autocrine Insulin and Mitochondrial ROS Generation.
Autocrine insulin has acute (4 hour) effects on GSIS in
healthy humans [113]. Studies of Poderoso group have
pointed out an emerging role of mitochondrial NO synthase
(mtNOS) activated upon insulin signaling via the Akt-
2/protein-kinase-B-mediated phosphorylation in skeletal
muscle [114]. Released nitric oxide, a freely permeable
radical, NO•, having a half-life of 1 to 10 s, causes a
mild oxidative and nitrosative stress but also transiently
diminishes respiration. In skeletal muscle and liver NO• can
facilitate conversion of glucose to glycogen. Experimentally,
it has been proven by a sustained insulin dosage that
the insulin-Akt-2-mtNOS pathway mediates NO• burst in
skeletal muscle [114]. Also, nitric oxide donors increase
glucose uptake in primary human skeletal muscle cells
[115]. Signaling via phosphatidylinositol-3-kinase (PI3K)
(and hence downstream Akt-2 signaling) was responsible
for insulin receptor activation by nonpeptidyl mimetic L-
783,281 which inhibited GSIS as well as basal insulin
secretion in human islets of Langerhans [116]. Also a direct
observation in isolated mitochondria that insulin signaling
regulates mitochondrial function in β cells has been reported
[117].

Since pancreatic β cells contain a functional insulin
receptor [117–120], an acute autocrine insulin signaling may
lead to the similar acute effects as in skeletal muscle and
liver, besides chronic positive effects on stimulation of β cell
proliferation [118], hence being beneficial for regulation of
adult β cell mass. Transgenic mice lacking insulin receptor
in pancreatic β cells (βIRKO mice) exhibited increased
apoptosis, decreased proliferation, and reduced β cell mass
[119]. The insulin receptor has also been found essential
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Figure 1: Mitochondrial superoxide formation should decrease upon a sudden glucose increase. Schemas depict the basic proton circuit
within the inner mitochondrial membrane at low and high glucose, while higher rates, and therefore higher respiration rates, are depicted
by thicker arrows. Thus the right schema depicts situation at a sudden glucose intake when state-3 respiration is maximum, as well as
ATP synthesis, and hence also H+ backflux through the FO part of ATP synthase. Under these conditions superoxide formation within the
respiratory chain complexes I and III is low (depicted by smaller fonts) and should be lower than at low glucose (left schema) at slower
coupled respiration rate, where much higher superoxide should be formed (depicted by bigger fonts).

for islet compensatory growth response to insulin resistance
[120]. There are two arms of autocrine insulin signaling
via insulin receptor, the Raf-1 kinase arm and the Akt
kinase arm. Insulin stimulates primary β cell proliferation
via Raf-1 kinase and suppresses apoptosis. The Akt arm
increases β cell mass and improves glucose tolerance. A
signalosome complex of glucokinase, pro-apoptotic protein,
Bcl-2-associated death promoter, BADS, and protein kinase
A has been reduced in βIRKO mice, thus linking a lack of
autocrine insulin with development of type 2 diabetes [117].

If mtNOS is indeed activated upon insulin signaling in
β cells, the predicted outcome may substantiate different
roles than in skeletal muscle cells and hepatocytes, just due
to impossibility to switch to a partial aerobic glycolysis and
provide a spectrum of anaplerotic pathways. The released
NO• may transiently inhibit Complex I and cytochrome c
oxidase. NO• may also reacting with superoxide, thus form-
ing peroxynitrite which can further act against otherwise
diminishing mitochondrial superoxide production.

4. Key Players Contributing to Cytosolic ROS
Homeostasis in Pancreatic β Cells

4.1. Cytosolic ROS Sources in Pancreatic β Cells. Among the
cytosolic ROS sources in pancreatic β cells, a family of
NADPH oxidases (NOX) is the most important as the major
plasma membrane or cytosolic superoxide sources. They
catalyze the one-electron reduction of oxygen to generate
O2

•−, while utilizing NADPH as electron donor. Isoforms
NOX1, NOX2, and NOX4 may play a significant role in β cells
[121, 122], hypothetically related to GSIS regulation and cell
integrity [123]. Decreased NOX2 expression may contribute
to regulatory mechanisms diminishing ROS upon high
levels of metabolism [123]. NOX enzymes are composed
by six hetero-subunits, which must associate, usually in
a stimulus-dependent manner [124], with exception of
constitutively assembled NOX4. Malic enzyme conversion of

malate to pyruvate [125] or mitochondrial shuttles [100–
103] may provide NADPH for NOX enzymes, since there
is a relatively low pentose phosphate pathway activity in
β cells. The catalytic core is formed by the two integral
membrane protein subunits gp91phox and one p22phox plus
by flavocytochrome b558. Additional subunits, p67phox,
p47phox, p40phox, and the small GTPase Rac, are located
in the cytosol during the resting state and upon activation
assemble with the core [124]. Enzyme activation is initi-
ated by p47phox phosphorylation through various protein
kinases, such as protein kinase C (PKC) [124, 126, 127]. The
upregulation of gp91phox and p22phox was demonstrated
in β cells from rodent models of type 2 diabetes [128].
Another ROS source may be provided by cytochrome 450
enzymes such as CYP2E1 which determines mechanism
of ketone-stimulated insulin release in pancreatic β cells
[129]. Peroxisomes in β cells contribute also to endoplasmic
reticulum (ER) stress [130].

4.2. Cytosolic Redox Buffers and Antioxidant Enzymes in
Pancreatic β Cells. Redox buffers and antioxidant enzymes
detoxify the produced ROS and frequently exert specific roles
in β cell ROS homeostasis. Thus an increased antioxidant
output from the pentose-phosphate pathway was suggested
to decrease ROS upon GSIS [131]. Acute reduction in ROS by
glucose was correlated with the increased pentose-phosphate
pathway activity [132]. Catalase, glutathione peroxidase
(GPX), and superoxide dismutase (SOD1 or CuZnSOD) rep-
resent the three of most important intracellular antioxidant
enzymes, a primary defense system. However, the expression
and activity of antioxidant enzymes is low in rodent β cells
compared to other organs [132]. This property increases
their susceptibility to an oxidative insult. When compared
to liver content, pancreatic islets contain only 1% catalase,
2% GPX and 29% SOD1 activites [73, 133–135]. β cells
posses also low repair machinery for oxidatively damaged
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DNA [136]. In turn, β cells are rich in peroxidase-based
antioxidant defenses, such as glutaredoxin and thioredoxin
[137]. Human β cells seem to be less prone to oxidative
stress than are rodent β cells, possibly because they have
greater catalase and SOD activity [138]. Yet, GPX activity
is poorly detectable in human islets [139]. Besides vitamin
E (α-tocopherol), ascorbate, and uric acid, among small
antioxidant molecules, glutathione provides an important
mechanism protecting the β cells against oxidative damage
[140, 141]. Glutathione, present in mM concentrations, is
kept in the reduced state (GSH) by glutathione reductase.
GSH transfers its reducing equivalents to ascorbate, GPX,
and glutaredoxins.

The main protein antioxidant defense is composed of
disulfide reductases namely, thioredoxin (TRX), glutare-
doxin (GRX), peroxiredoxins (PRX) and glutamate-cysteine
ligase. Thioredoxin represents a disulfide reductase for pro-
tein sulfhydryl groups, maintaining proteins in the reduced
state [142]. Thioredoxin reductase uses electrons from
NADPH and regenerates oxidized TRX. Similarly, glutare-
doxin reductase-2 [143] reduces H2O2 or hydroperoxy-FA
lipid chains to water or hydroxyFA lipid chains, respectively,
on expense of conversion of GSH to oxidized glutathione
GSSG, which is regenerated by glutathione reductase. Perox-
iredoxins are a family of thiol peroxide reductases which uses
TRX or other thiol-containing proteins to clear H2O2 or lipid
peroxides [144]. Peroxiredoxin reaction product is sulfenic
acid. At the TRX shortage, peroxiredoxin is inactivated to
PRX-SO2 [145], which can be reversed by sulfiredoxins, at
expense of ATP, yielding PRX-SOH.

Interestingly, being localized at peri-plasma membrane
cytosol, glutaredoxin GRX1 has been also implicated in
modulation of Ca2+-dependent insulin exocytosis, which
was suppressed by GRX1 silencing [143]. The stimulatory
action of NADPH on the exocytotic machinery was found to
correlate with ∼30% inhibition in whole-cell Ca2+ currents.
Upon GRX1 silencing, NADPH did not amplify insulin
release, but still inhibited Ca2+ currents [143].

4.3. Redox Information Signaling. The deviation in redox
state towards pro-oxidation or reduction is always given by
balance between production of ROS and antioxidant defense.
Since in pancreatic β cells mainly NADPH-dependent
systems operate, such as the thioredoxin or glutaredoxin
system, the elevated ROS may activate stress-sensitive sec-
ond messengers such as p38MAPK, JNK [146], and PKC
[147]. Also, the transcription factors MAF-A and PDX1
participating in β cell proliferation and insulin biosynthesis
were shown to be sensitive to oxidative stress [148, 149].
Moreover, the evidence of redox signaling exists in GSIS of
pancreatic β cells. First, the exocytosis of insulin, namely,
soluble NSF attachment protein receptor (SNARE) complex,
is significantly reduced upon H2O2 treatment [150]. NADPH
as an important component of antioxidant defense system
was also proposed as a parallel mediator GSIS or modulator
of canonical GSIS mechanism, since an increase in the
NADPH pool is usually accompanied by the increase in
insulin granule exocytosis [137]. In the β cell cytosol,
NADPH is formed by reduction of its oxidized counterpart

NADP via pyruvate cycling pathways mediated by cytosolic
malic enzyme (ME1) and cytosolic isocitrate dehydrogenase
(IDH1) as well as via glucose-6-phosphate dehydrogenase,
the rate limiting enzyme of the pentose phosphate pathway
shuttle. In mitochondria, NADPH is regenerated via NADP
dependent reduction mediated by ME3 and mitochondrial
IDH2 as well as via nicotinamide nucleotide transhydroge-
nase [151]. All above reactions change only reduced/oxidized
form of NADPH, without changes in total NADPH and
NADP pool. This can be performed through NAD kinase
whose single cytosolic isoform was found to regulate insulin
secretion in β cells [152]. NAD kinase was found to be acti-
vated by glucose stimulated increase in Ca2+. Because NAD
kinase is cytosolic, the produced NADP(H) can be used by
other NADP/NADP(H) dependent enzymes. Also NADPH
oxidases (implicated in GSIS) belong to NADPH consuming
enzymes working in pro-oxidant mode. In conclusion, the
redox couple NAD(P)/NAD(P)H plays an important role for
GSIS. A pro-oxidative state can also induce ER stress, which
can further impair β cell function by activation of PERK to
decrease insulin synthesis [153].

5. Oxidative Stress in Pancreatic β Cells and
Its Role in Type 2 Diabetes

5.1. Type 2 Diabetes Mellitus. The progressed T2DM is
manifested by both insulin resistance in peripheral tis-
sues as well as β cell dysfunction [1, 2, 6–9, 154–157].
Insulin resistance in skeletal muscle and fat tissue, increased
liver gluconeogenesis, abnormal secretion of incretins and
impaired central regulation of food intake and energy expen-
diture are indicated for T2DM [1, 2, 6–9, 153–159]. Overt
hyperglycemia results mainly from an interaction between
insulin resistance in the peripheral tissues and failing insulin
secretory capacity. In both cases, the metabolic abnormalities
typical for diabetes are linked to insufficient β cell mass,
which is unconditional in type 1 DM (T1DM) or may be
only relative in T2DM. The impaired glucose tolerance and
later diabetes are manifested in the progressed stage, when
already pancreatic β cells cannot defeat increased metabolic
demands and their function fails. It is proposed that impaired
GSIS might be a primary cause or, alternatively, it may result
from the globally deregulated metabolism.

A clear disproportion between fuel intake and energy
expenditure in T2DM etiology suggests participation of a
metabolic disorder. This may be reflected also by impairment
of redox homeostasis, impairment of insulin signaling, and
redox signaling and dysfunctions at mitochondrial level in
both, primarily (or earlier) in peripheral insulin-sensitive
tissue, but also may play a significant role in failing pancreatic
β cells [153–159]. Description of emerging role of redox
signaling and ROS in β cell biogenesis and maintenance
of β cell mass and in its loss in diabetes is out scope of
this paper. However, we emphasize that progressive oxidative
stress does not represent only chronic exposure to ROS per
se, leading to oxidation of proteins, lipids, and DNA, notably
mitochondrial DNA that results in further turn of self-
accelerating metabolic deterioration. Progressive oxidative
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stress also impairs redox signaling [4, 131, 149, 160–163],
insulin signaling [1, 2, 74, 164], autocrine insulin signaling
[117–120], and housekeeping mechanisms of cells, namely
autophagy and mitochondria-specific autophagy, mitophagy
[5, 165–167], besides initiating an inappropriate apoptosis
[168–170]. Another component of oxidative stress comes
from intake of excessive fatty acids and lipid peroxidation
products, generally termed as lipotoxicity [88, 171–173]. Yet
another component results from elevated blood glucose as
is known as glucotoxicity affecting β cells as well [174]. It
can be mentioned that distinct early events of impairment
may converge upon T2DM progress towards the same
consequences (Figure 2).

5.2. Mitochondrial Oxidative Stress. The impaired mitochon-
drial function belongs to key dysfunctions leading to insulin
resistance and diabetes progression [1, 2, 4, 5, 123, 131, 132,
154–159, 175–191]. Typically, the decrease of extent between
minimum and maximum OXPHOS leads to impaired GSIS.
Mitochondrial dysfunction and excessive oxidative stress of
mitochondrial origin may lead to lipid accumulation and
peroxidation, shifts of the cellular redox balance towards
oxidative stress, to the endoplasmic reticulum stress, and to
a secondary inflammatory response [159]. All these events
take place not only in peripheral tissues but also in β
cells [156–159, 175–177]. Whereas energy metabolism of
peripheral tissues in relation to T2DM etiology has been
intensively investigated, β cell bioenergetics, metabolism,
and pathogenesis related to T2DM are not fully understood.

The first target of oxidative stress in mitochondrion
is mtDNA [158, 159, 177–184] and its maintenance pro-
teins and proteins of mtDNA transcription and replication
machinery [185, 186]. It is exemplified for Goto Kakizaki
rats, a T2DM model, characterized by an onset of Langer-
hans islet pathology, indicated by islet hypertrophy with
decreasing the number of insulin-secreting β cells [187, 188].
Indeed, degradation of mtDNA in the remaining β cells has
been found [189, 190] as well as fragmented mitochondrial
reticulum morphology [191]. Especially, mtDNA variants in
the coding and control regions can have combined effects
influencing T2DM development [178]. MtDNA encodes
seven subunits of respiratory chain, Complex I ND1 to ND6
and ND4L, cyt b (subunit of Complex III), three subunits
of Complex IV, that is, cytochrome c oxidase, subunits 1,
2, 3, and ATP synthase subunits 6 and 8, plus 22 tRNAs
and two ribosomal RNAs. Certain mtDNA mutations in
these mt genes should lead to oxidative stress and initiate β
cell dysfunction [184], such as in the heart [192]. Thus an
ATP8 subunit mutation has been associated with increased
mitochondrial superoxide generation, impaired GSIS, and
increased β cell mass adaptation [179]. Excessive ROS due
to mtDNA mutation can induce apoptosis [180]. Similar to
Goto Kakizaki rats, age-related decline in mtDNA copy num-
ber has been indicated in human Langerhans islets [183].
Nevertheless, a general link between clinically found mtDNA
mutations and β cell dysfunction is not yet established (e.g.,
[182]). The reason lies in robust mtDNA genetics, when
heteroplasmy has to exceed enormous threshold until delete-
rious outcomes arise. However, when the important feature

of mtDNA genetics is impaired, such as impaired mtDNA
maintenance protein transcription factor B1, mitochondrial,
TFB1M, there is a risk of T2DM development [185]. Hence
mitochondrial disorder of rather metabolic origin prevails in
T2DM development [158, 177].

5.3. Cytosolic Oxidative Stress. Likewise in mitochondrion,
when ROS sources exceed the antioxidant defense, oxidative
stress prevails. Depending on the shift from the physi-
ologically tolerant ROS homeostasis even mild oxidative
stress may activate ROS-sensitive information signaling.
Persistent oxidative stress is deleterious due to accumulation
of oxidized proteins, lipids, and DNA. In pancreatic β cells
an antioxidant defense can be considered as low. However, it
may be set so to provide redox regulations involved in GSIS
and β cell housekeeping processes.

Under diabetic conditions, oxidative stress markers have
been frequently detected in β cells, such as 8-hydroxy-2′-
deoxyguanosine (8-OHdG) reporting on DNA oxidation
[136, 193, 194], 4-hydroxy-2,3-nonenal, that is, one of
lipid peroxidation end-products [193, 195] or nitrotyrosine
[194]. Studies using diabetic models showed improved
insulin sensitivity by antioxidants [161]; however, antiox-
idant benefits to diabetic patient treatments may not be
extrapolated to normal subjects for preventive purposes,
since overly diminishing intracellular ROS by excessively
high antioxidant enzyme activities deregulate GSIS.

As described in Section 4.2, β cell function may be easily
impaired under yet mild oxidative stress. Such stress imposes
also activation of ROS-sensitive second messengers, such
as p38 mitogen-activated protein kinase, p38MAPK [146],
or c-Jun N-terminal kinase, JNK/SAPK [148]. Activation of
JNK pathway during oxidative stress results in decreased
insulin gene expression by affecting the DNA binding
activity of the epigenetic regulation of transcriptional factor
pancreatic duodenal homeobox (PDX1). Thus, in turn, the
beneficial effect of antioxidants on diabetic patient could be
explained besides the protection of oxidative destructions of
macromolecules also by maintenance of PDX1. PDX1 plays
pivotal role in proliferation, survival, and function of β cells
and activation of insulin gene expression [148, 196]. The
epigenetic regulation of PDX1 involves histone acetylation
of H3 and H4, which helps to remodel the chromatin
in the PDX1 promotor to form more accessible structure
for transcription and to maintain high level of functional
PDX1 [196]. This promotes β cell differentiation and insulin
synthesis for compensating insulin resistance. Also direct
H2O2 effect on PDX1 was found to be induced through
specific phosphorylation on Ser61 and/or Ser66, resulting
in an increasing degradation rate and decreasing half-life of
the protein [197]. PDX1 protein is also regulated through
FOXA2 activator. SOD1 promotor was shown to contain four
binding sites for FOXA2 [198, 199].

The cytokine-induced β cell dysfunction and apoptosis
is also based on ROS-induced intracellular signaling path-
ways [200, 201]. Cytokine-generated ROS induce expression
of inducible nitric oxide synthase (iNOS) which results
in NO• release and translocation of nuclear factor-κB
(NFκB). In turn, NFκB induces NADPH oxidase as a
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Figure 2: Vicious spirals of repeating self-accelerating oxidative stress and dysregulated redox and information signaling as possible causes
of type 2 diabetes. Schema of cell events that occur at type 2 diabetes development, as related to oxidative stress and impaired redox
homeostasis and signaling, dysfunctional insulin signaling in peripheral tissues, and autocrine insulin signaling in failing pancreatic β cells.
Considered “vicious spirals” (depicted by black spirals) of progressive oxidative stress leading to oxidation of proteins, lipids, and DNA,
notably mitochondrial DNA, all resulting in further turn of self-accelerating metabolic deterioration and specifically impairment of the
glucose sensing. Progressive oxidative stress also impairs redox signaling and autocrine insulin signaling which further deteriorates fitness
of β cells and their housekeeping mechanisms, specifically autophagy and mitochondria-specific autophagy, mitophagy, besides initiating
an inappropriate apoptosis. Another component of oxidative stress comes from the intake of excessive fatty acids and lipid peroxidation
products, generally termed as lipotoxicity. Yet another component results from elevated blood glucose as is known as glucotoxicity further
accelerating cell oxidative stress, impairing cell maintenance, dysregulating information signaling and leading to advanced glycation end
products (AGEs), (yet further accelerating oxidative stress and other cell stresses), activating polyol pathway and thus again contributing
to pro-oxidation redox homeostasis, activating hexosamine pathway and dysregulating crucial survival pathways including insulin receptor
(autocrine) signaling, and finally enhancing glycosylation and forming antiparallel crossed β-pleated sheet structure called amylin-derived
islet amyloid, promoting β cell cytotoxicity.

major cytosolic ROS source. Recently, thiredoxin-interacting
protein (TXNIP) was found to shuttle between nucleus
and mitochondrion to which migrates upon oxidative stress
and promotes apoptosis via matrix ASK1-induced release of
cytochrome c [202]. This complies with results of TXNIP-KO
mice studies [203, 204], in which streptozocin treatment is
50-fold less prone to apoptosis [203]. TXNIP also mediates
ER stress induced β cell death and has numerous implica-
tions in diabetes development [205, 206].

5.4. Consequences of Chronic High Glucose. One would need
to conclude that some important physiological aspects and
numerous cell regulations in pancreatic β cells are dependent
on glucose [174]. Surprisingly concentrations outside of
physiological stimulatory range of 3 to ∼10 mM glucose
(“GSIS range”) are deleterious especially when exposed to β
cells at prolonged time. Thus, even low glucose can stimulate
oxidative stress via AMPK activation [207]. Glucose at high
end of GSIS range is one of the most important stimuli
for β cell mass maintenance by stimulating proliferation,

neogenesis and hypertrophy [174], most specifically via
autocrine insulin signaling [117–120]. We may refer to
glucotoxicity at much higher glucose levels, leading to
effects that overwhelm the beneficial glucose “maintenance
effects.” Thus, for example, hyperglycemia deteriorates β
cells after islets transplantation [208]. However, a hallmark
of glucotoxicity is that hyperglycemia causes a profound
oxidative stress that is possible to attenuate by overexpression
of proteins of antioxidant defense [148, 193, 209–211].
Activation of JNK and impairment of PDX1 function (cf.
above) belong to one of mechanisms involved. Also ER stress
comes from glucotoxicity [206]. The classic pathway of glu-
cotoxicity comes from the spontaneous reactions of glucose
and other sugars with amine residues of proteins, lipids,
and nucleic acids forming so-called advanced glycation end
products (AGE) [212]. Polyol pathway is activated when
excess glucose is converted to sorbitol in the presence of
aldose reductase, consuming NADPH and thus contributing
to pro-oxidation state [213]. By increased flux of glucose
via so-called hexosamine pathway, resulting in induction of
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O-glycosylation of signaling molecules, a crucial survival
pathway is dysregulated leading to oxidative stress, as insulin
receptor and insulin receptor substrates/PI3 kinase pathway
[214]. Also elevated diacylglycerol under hyperglycemia
activates protein kinase C which subsequently activates
NADPH oxidase and ROS production [127]. Finally, per-
sistent hyperglycemia/ROS exposure enhances glycosylation,
thus unfolding of some proteins, lipids and nucleic acids,
notably alters a 37 amino acid islet amyloid polypeptide
(IAPP), termed amylin. Resulting antiparallel crossed β-
pleated sheet structure called amylin-derived islet amyloid
(ADIA) is sensitive to free radical polymerization and thus
promotes β cell cytotoxicity [215–217].

6. Future Perspectives

In the future research it will be probably established whether
T2DM is an inevitable disease and whether one may develop
strategy to highly retard or completely exclude the patho-
logical outcomes of progressive self-accelerating oxidative
stress and nitrosative stress and concomitant dysregulated
information signaling. The emerging role of redox signaling
in GSIS and processes of molecular physiology of pancreatic
β cells need to be elucidated as well. Unfortunately, neither
targeted antioxidants might be able to defeat T2DM, since
they simultaneously disrupt the inherent physiological redox
signaling. Perhaps more focused strategies on yet unknown
mechanisms will help to defeat T2DM world epidemy.
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[190] L. Alán, T. Špaček, J. Zelenka et al., “Assessment of mitochon-
drial DNA as an indicator of islet quality: an example in Goto
Kakizaki rats,” Transplantation Proceedings, vol. 43, no. 9, pp.
3281–3284, 2011.
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