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Exploitation of biological properties unique to cancer cells may provide a novel approach to overcome difficult challenges to
the treatment of advanced melanoma. In order to develop melanoma-targeted chemothermoimmunotherapy, a melanogenesis
substrate, N-propionyl-4-S-cysteaminylphenol (NPrCAP), sulfur-amine analogue of tyrosine, was conjugated with magnetite
nanoparticles. NPrCAP was exploited from melanogenesis substrates, which are expected to be selectively incorporated into
melanoma cells and produce highly reactive free radicals through reacting with tyrosinase, resulting in chemotherapeutic and
immunotherapeutic effects by oxidative stress and apoptotic cell death. Magnetite nanoparticles were conjugated with NPrCAP
to introduce thermotherapeutic and immunotherapeutic effects through nonapoptotic cell death and generation of heat shock
protein (HSP) upon exposure to alternating magnetic field (AMF). During these therapeutic processes, NPrCAP was also expected
to provide melanoma-targeted drug delivery system.

1. Introduction

The incidence of melanoma is increasing worldwide at an
alarming rate [1, 2]. As yet, management of metastatic

melanoma is an extremely difficult challenge. Less
than 10% with metastatic melanoma patients survive
currently for five years because of the lack of effective
therapies [3]. There is, therefore, an emerging need to
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develop innovative therapies for the control of metastatic
melanoma.

The major advance of drug discovery for targeted ther-
apy to cancer cells can be achieved by exploiting their
unique biological property. The biological property unique
to the melanoma cell resides in the biosynthesis of melanin
pigments, that is, melanogenesis occuring within specific
compartments,melanosomes.Melanogenesis begins with the
conversion of amino acid, tyrosine to dopa and subsequently
to dopaquinone in the presence of tyrosinase. This pathway
is uniquely expressed by all melanoma cells. It is well known
that the clinically “amelanotic” melanoma tissues always
have tyrosinase activity to some extent, and that “in vitro
amelanotic” melanoma cells become “melanotic” ones when
they are regrown in the in vivo condition.Melanin precursors
are inherently cytotoxic through reacting with tyrosinase to
form unstable quinone derivatives [4]. Thus, tyrosine ana-
logues that are tyrosinase substrates can be good candidates
for developing drugs to melanoma-targeting therapies [5].
N-propionyl and N-acetyl derivatives (NPr- and NAcCAP)
of 4-S-cysteaminylphenol, that is, sulfur-amine analogue of
tyrosine, were synthesized as possible melanoma-targeted
drugs (Figure 1) and found to possess selective cytotoxic
effects on in vivo and in vitro melanomas through the
oxidative stress that derives from production of cytotoxic free
radicals by interacting with tyrosinase within melanogenesis
cascade [6–10].

Intracellular hyperthermia usingmagnetite nanoparticles
(10–100 nm-sized Fe

3
O
4
) may be another choice to overcome

the difficult challenges for melanoma treatment. It has been
shown to be effective for treating cancers in not only primary
but also metastatic lesions [11, 12]. Incorporated magnetite
nanoparticles generate heat (thermotherapy) within the cells
after exposure to AMF due to hysteresis loss [13]. In this treat-
ment, there is not only the heat-mediated cell death but also
immune reaction due to the generation of heat shock proteins
(HSPs) [14–23].HSP expression induced by hyperthermia has
been shown to be involved in tumor immunity, providing the
basis for developing a cancer thermoimmunotherapy.

Based upon these rationales, we now provide evi-
dence that melanoma-targeted chemothermotherapy can be
achieved by conjugating a chemically modified melanogen-
esis substrate, NPrCAP with magnetite nanoparticles, which
then produce apoptotic and non-apoptotic cell death through
interacting with tyrosinase and heat-mediated oxidative
stress; hence, immunotherapy with production of in situ
peptides is being established (Figure 2).

2. Melanogenesis Substrate as a Potential
Candidate for Development of
Selective Drug Delivery System and
Cytotoxicity to Melanoma

2.1. Synthesis of Sulfur-Amine Analogues of Tyrosine,
Cysteaminylphenols, and Their Selective Incorporation into
Melanogenesis Cascade. With the interaction of melanocyte-
stimulating hormone (MSH)/melanocortin 1 receptor
(MC1R), the melanogenesis cascade begins from activation

of microphthalmia transcription factor (MITF) for induction
of either eu- or pheomelanin biosynthesis. Tyrosinase is the
major player in this cascade. Tyrosinase is a glycoprotein,
and its glycosylation process is regulated by a number of
molecular chaperons, including calnexin in the endoplasmic
reticulum [24, 25]. Vesicular transport then occurs to carry
tyrosinase and its related proteins (TRPs) from trans-Golgi
network to melanosomal compartments, which appear to
derive from early and late endosomal compartments. In this
process a number of transporters, such as small GTP-binding
protein, adaptor proteins, and PI3-kinase, play important
roles. Once melanin biosynthesis is completed to conduct
either eu- or pheomelanogenesis within melanosomes, they
then move along dendritic processes and are transferred
to surrounding keratinocytes in normal skin [26–28]. In
metastatic melanoma cells, however, there will be practically
no melanosome transfer inasmuch as there will be no
receptor cells such as keratinocytes. Thus melanosomes
synthesized by melanoma cells are aggregated within
autophagic vacuoles in which melanogenesis-targeted drugs
will be retained. In order to utilize this uniquemelanogenesis
pathway for developing melanoma-targeted drugs, N-acetyl
and N-propionyl derivatives of cysteaminylphenols (NAc-
and NPrCAPs) have been synthesized [8, 29] (Figure 1).

2.2. In Vivo and In Vitro Melanocyte Toxicity and
Anti-Melanoma Effects of Cysteaminylphenols (CAPs).
Both NPrCAP and NAcCAP were found to selectively
disintegrate follicular melanocytes after single or multiple
ip administration to newborn or adult C57 black mice,
respectively [12, 30]. In the case of adult mice after repeated ip
administration of NPrCAP, white follicles with 100% success
rate can be seen at the site where hair follicles were plucked
to stimulate new melanocyte growth and to activate new
tyrosinase synthesis. A single ip administration of NPrCAP
into a new born mouse resulted in the development of silver
follicles in the entire body coat.The selective disintegration of
melanocytes which is mediated by apoptotic cell death can be
seen as early as in 12 hr after a single ip administration. None
of surrounding keratinocytes or fibroblasts showed such
membrane degeneration and cell death [31, 32] (Figure 3).

A high, specific uptake of NAcCAP was seen in vitro by
melanoma cell lines compared to nonmelanoma cells [9].
A melanoma-bearing mouse showed, on the whole body
autoradiogram, the selective uptake and covalent binding
of NAcCAP in melanoma tissues of lung and skin [6]. The
specific cytotoxicity of NPrCAP and NAcCAP was examined
on various types of culture cells by MTT assay, showing that
only melanocytic cells except HeLa cells possessed the low
IC50 [8, 9].The cytotoxicity onDNA synthesis inhibitionwas
timedependent and irreversible on melanoma cells but was
transient on HeLa cells [10].

The in vitro culture and in vivo lung metastasis assays
showed the melanoma growth can be blocked by adminis-
tration of NAcCAP combined with buthionine sulfoximide
(BSO), which blocked the effect of antioxidants through
reducing glutathione levels. There was a marked growth
inhibition of cultured melanoma cells in the presence of BSO
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Figure 1: Synthesis and chemical structures of NAcCAP and NPrCAP and their tyrosinase kinetics.
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with AMF exposure.

indicating that the selective cytotoxicity by CAP is mediated
by the production of cytotoxic free radicals. The in vivo lung
metastasis experiment also showed the decreased number of
lung melanoma colonies [6]. The problem was, however, that
a fairly large number of amelanotic melanoma lesions were
seen to grow in the lung [6]. NPrCAP has been developed
and conjugated with magnetite nanoparticles in the hope of
increasing the cytotoxicity and overcoming the problem.

3. Conjugation of NPrCAP with Magnetite
Nanoparticles and In Vivo Evaluation of
Melanoma Growth Inhibition with/without
Thermotherapy

3.1. Synthesis for Conjugates of NPrCAP with Magnetite
Nanoparticles andTheir Selective Aggregation inMelanoma for

Development of Chemo-Thermo-Immunotherapy. Magnetite
nanoparticles have been employed for thermotherapy in a
number of cancer treatments including human gliomas and
prostate cancers [33–35]. They consist of 10–100 nm-sized
iron oxide (Fe

3
O
4
) with a surrounding polymer coating and

generate heat when exposed to AMF [12]. We expected the
combination of NPrCAP and magnetite nanoparticles to be
a potential source for developing not only antimelanoma
pharmacologic but also immunogenic agent. Based upon
the melanogenesis-targeted drug delivery system (DDS) of
NPrCAP, NPrCAP/magnetite nanoparticles complex was
expected to be selectively incorporated into melanoma cells.
It was also hypothesized that the degradation of melanoma
tissues may occur from oxidative and heat stresses by expo-
sure of NPrCAP to tyrosinase and by exposure of magnetite
nanoparticles to AMF. These two stress processes may then
produce the synergistic or additive effect for generating
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tumor-infiltrating lymphocytes (TIL) by in situ formation of
peptides that will kill melanoma cells in distant metastases
(Figure 2).

In order to develop effective melanoma-targeted
chemotherapy (by NPrCAP) and thermo-immunotherapy
(by magnetite nanoparticles with HSP), hence providing
a basis for chemo-thermo-immunotherapy (CTI therapy),
we synthesized conjugates of NPrCAP and magnetite
nanoparticles, on which NPrCAP is bound directly or
indirectly on the surface of magnetite nanoparticles or
magnetite-containing liposomes (Figure 4). Among these
NPrCAP and magnetite complexes listed in Figure 4,
NPrCAP/M and NPrCAP/PEG/M were chemically stable,
did not lose biological property, and could be filtered
as well as easily produced in large quantities. Most of
the experiments described below were carried out by
employing the direct conjugate of NPrCAP and magnetite
nanoparticles, NPrCAP/M. A preliminary clinical trial,
however, used NPrCAP/PEG/M to which polyethylene
glycol (PEG) was employed to conjugate NPrCAP and
magnetite nanoparticles.

In our studies, we found that NPrCAP/M nanoparticle
conjugates were selectively aggregated in melanoma cells
compared to non-melanoma cells [36]. The conjugates of
NPrCAP and magnetite nanoparticles would be selectively
aggregated on the cell surface of melanoma cells through
still unknown surface receptor and then incorporated into
melanoma cells by early and late endosomes. The conjugates
were then incorporated into melanosomal compartment as
the stage I melanosomes derive from late endosome-related
organelles, to which tyrosinase was transported from the
trans-Golgi network by vesicular transport [26].

3.2. In Vivo Growth Inhibition of Mouse Melanoma by Con-
jugates of NPrCAP and Magnetite Nanoparticles with/without
Thermotherapy. The intracellular hyperthermia using mag-
netic nanoparticles is effective for treating certain types of
primary and metastatic cancers [11, 12, 35–39]. Incorporated
magnetic nanoparticles generate heat within the cells after
exposure to the AMF due to hysteresis loss or relaxational
loss [13, 40]. In our study of B16 melanoma cells using
B16F1, B16F10, and B16OVA cells, we compared the thermo-
therapeutic protocols in detail by evaluating the growth of the
rechallengemelanoma transplants as well as the duration and
rates of survival of melanoma-bearing mice.

By employing B16F1 and F10 cells, we first evaluated the
chemotherapeutic effect of NPrCAP/Mwith or without AMF
exposure which generates heat. NPrCAP/M without heat
inhibited growth of primary transplants to the same degree
as did NPrCAP/M with heat, indicating that NPrCAP/M
alone has a chemotherapeutic effect. However, there was a
significant difference in the melanoma growth inhibition of
re-challenge transplants between the groups of NPrCAP/M
with and without heat. NPrCAP/M with AMF exposure
showed themost significant growth inhibition in re-challenge
melanoma transplants and increased life span of the host
animals, that is, almost complete rejection of re-challenge
melanoma growth, whereas NPrCAP/M without heat was

much less, indicating that NPrCAP/M with heat possesses
a thermo-immunotherapeutic effect (Figures 5(a), 5(b), and
5(c)).

Specifically our study indicated that the most effec-
tive thermoimmunotherapy for re-challenge B16F1 and F10
melanoma cells can be obtained at a temperature of 43∘C for
30minwith the treatment repeated three times on every other
day intervals without complete degradation of the primary
melanoma [37]. This therapeutic approach and its biologic
effects differ from those of magnetically mediated hyperther-
mia on the transplanted melanomas reported previously. In
previous studies by Suzuki et al. [38] and Yanase et al. [39],
cationic magnetoliposomes were used for B16 melanoma.
They showed that hyperthermia at 46∘C once or twice led
to regression of 40–90% of primary tumors and to 30–60%
survival of mice, whereas their hyperthermia at 43∘C failed to
induce regression of the secondary tumors and any increase
of survival in mice [38, 39].

4. Production of Heat Shock Protein,
Nonapoptotic Cell Death, and Tumor-
Infiltrating Lymphocytes by Conjugates
of NPrCAP and Magnetite Nanoparticles
with Thermotherapy

4.1. Production of Heat Shock Protein and Non-Apoptotic
Melanoma Cell Death by NPrCAP/Magnetite Nanoparti-
cle Conjugates with Thermotherapy. It has been shown
that hyperthermia treatment using magnetite cationic lipo-
somes (MCLs), which are cationic liposomes containing 10-
nm magnetite nanoparticles, induced antitumor immunity
through HSP expression [12, 22, 41, 42]. In our studies using
B16F1, F10, and OVA melanoma cells [43], the hyperther-
mia using NPrCAP/M with AMF exposure also showed
antitumor immune responses via HSP-chaperoned antigen
(Figure 6) [43]. It may be speculated that the HSPs-antigen
peptide complex released from melanoma cells treated with
this intracellular hyperthermia is taken up by dendritic
cells (DCs) and cross-presented HSP-chaperoned peptide
in the context of MHC class I molecules [44]. In our CTI
therapy with AMF exposure, the heat-mediated melanoma
cell necrosis was induced to NPrCAP/M-incorporated cells.
In this group, we also found that repeated hyperthermia (3
cycles of NPrCAP/M administration and AMF irradiation)
was required to induce the maximal antitumor immune
response [37].

If melanoma cells escaped from this necrotic cell death,
repeated hyperthermia should produce further necrotic cell
death to the previously heat-shocked melanoma cells in
which HSPs were induced. Our CTI therapy with AMF
exposure using B16OVA cells showed that Hsp72/Hsc73,
Hsp90, and ER-resident HSPs participated in the induction
of CD8+ T-cell response [43]. Different from the results of
B16F1 and F10 cells, Hsp72 was largely responsible for the
augmented antigen presentation to CD8+ T cells. As Hsp72
is known to upregulate in response to hyperthermia or heat
shock treatment [41], newly synthesized Hsp72 has a chance
to bind to the heat-denatured melanoma-associated antigen.
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4.2. T-Cell Receptor Repertoires of Tumor-Infiltrating Lym-
phocytes by Conjugates of NPrCAP and Magnetite Nanopar-
ticles with Heat Exposure (Hyperthermia). It is clear now
from our previous studies [22, 41] that conjugates of
NPrCAP/magnetite nanoparticles (NPrCAP/M) with heat
treatment (hyperthermia) can successfully induce the growth
inhibition of primary and secondary melanoma transplants.
It is also found that NPrCAP/M with hyperthermia elicited
the response of cytotoxic T lymphocyte (CTL) via the release
of HSP-peptide complex from degraded tumor cells [43]
(Figure 6). In addition, CD8+ T cells were observed within
B16melanoma nodules after hyperthermia usingNPrCAP/M
[37]. TIL reactivity to antigen is mediated via T-cell receptors
(TCRs) consisting of 𝛼 and 𝛽 chains. We studied the TCR
repertoire after hyperthermia using NPrCAP/M in order to
further understand the T-cell response to melanoma after
hyperthermia using NPrCAP/M [45]. We found that TCR
repertoire was restricted in TILs, and the expansion of
V𝛽 11+ T cells was preferentially found. DNA sequences of
the third complementarity determining regions were iden-
tified. This approach is based on subcutaneous melanoma
transplantation in the hind foot pad, which confines the DLN
to the inguinal and popliteal lymph nodes.Melanoma growth
was significantly suppressed by the treatment of NPrCAP/M-
mediated hyperthermia. CD8+ Tcellswere observed substan-
tially around the tumor and slightly within the tumor, while
few and no CD8+ T cells were observed around and within
the tumor of nontreated mice.

In addition, significant enlargement of inguinal DLNs
was observed in all of tumor-bearing mice including non-
treated mice and NPrCAP/M-injected mice. The number of

CD8+ T cells in inguinal DLNs increased significantly in the
mice treated with NPrCAP/M-mediated hyperthermia.

5. Melanocytotoxic and Immunogenic
Properties of NPrCAP without
Hyperthermia

5.1. Induction of Apoptosis, Reactive Oxygen Species (ROS),
and Tumor-Specific Immune Response by NPrCAP Adminis-
tration Alone. In our animal study, those animals bearing
B16F1 and B16F10 melanoma cells showed, to certain degree,
rejection of second re-challenge melanoma transplantation
by administration of both NPrCAP alone and NPrCAP/M
minus AMF exposure [46]. Our working hypothesis for this
finding is that there is a difference in the cytotoxic mech-
anism and immunogenic property of NPrCAP/M between
experimental groups with and without hyperthermia by
AMF exposure. The animals with NPrCAP/M without AMF
exposure resulted in non-necrotic, apoptotic cell death. The
animals with NPrCAP/M plus AMF exposure, on the other
hand, resulted in nonapoptotic, necrotic cell death with
immune complex production of melanoma peptide as well as
Hsp70 and a small amount of Hsp 90.

To further examine the mechanism of the cell death
induced by NPrCAP, those cells treated with NPrCAP
alone were subjected to flow cytometric analysis, caspase 3
assay, and TUNEL staining [46]. The sub-G1 fraction was
increased in the NPrCAP-treated B16F1 cells, comparable
to TRAIL-exposed B16F1, but not in the NPrCAP-treated
non-melanoma cells (NIH3T3, RMA) or nonpigmented
melanoma cells (TXM18) (Figure 7). The luminescent assay
detected caspase 3/7 activity in the NPrCAP-treated B16F1
cells remarkably increased (35.8-fold) compared to that in
the nontreated cells. NIH3T3, RMA, and TXM18 cells treated
with TRAIL showed 10.6-, 7.1-, and 5.8-fold increases of
caspase 3/7 activation compared to the control, respectively,
whereas those with NPr-4-S-CAP showed increases of 4.1-,
1.4-, and 1.8-fold, respectively. The number of TUNEL-
positive cells was significantly increased only in the B16F1
tumor treated with NPrCAP. This increase was not observed
in the B16F1 tumor without NPrCAP or in the RMA tumors
with or without NPrCAP.The findings indicate that NPrCAP
induces apoptotic cell death selectively in melanoma cells.

5.2. Melanocytotoxic and Immunogenic Properties of NPrCAP
Compared to Monobenzyl Ether Hydroquinone. Monobenzyl
ether of hydroquinone has long been known to produce
the skin depigmentation at both the drug-applied area by
direct chemical reaction with tyrosinase and the non-applied
distant area by immune reaction with still unknown mech-
anism [43, 48–50]. The melanogenesis-related cytotoxicity
primarily derives from tyrosinase-mediated formation of
dopaquinone and other quinone intermediates, which pro-
duce ROSs such as superoxide and H

2
O
2
[4, 31, 32, 51]. This

unique biological property of melanin intermediates not only
causes cell death, but also may produce immunogenic prop-
erties. We postulated that the cytotoxic action of NPrCAP
appears to involve two major biological processes. One is
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cytostatic process which derives from the DNA synthesis
inhibition through the interaction of quinone and free radi-
cals with SH enzymes and thymidine synthase. Another is the
cytocidal process by damage of DNA andmitochondrial ATP
through oxidative stress and interaction with SH-enzyme
[10]. They bind protein disulphide isomerase [52].

Monobenzyl ether form of hydroquinone was shown to
produce a reactive ortho-quinone generated by tyrosinase-
catalyzed oxidation and self-coupling and thiol conjugation
reactions [53]. It was also shown to induce cell death without
activating the caspase cascade or DNA fragmentation, indi-
cating that the death pathway is non-apoptotic [53, 54]. It
was further suggested that monobenzyl ether hydroquinone
induced the immunogenicity to melanocytes and melanoma
cells by forming quinone-haptens to tyrosinase protein and
by inducing the release of tyrosinase and melanoma anti-
gen recognized by T cells-1 (MART-1) containing CD63+
exosomes following melanosome oxidative stress induction.
The drug further augmented the processing and shedding of
melanocyte differentiation antigens by inducingmelanosome
autophagy and enhanced tyrosinase ubiquitination, ulti-
mately activating dendritic cells, which induced cytotoxic
melanoma-reactive cells. These T cells eradicated melanoma
in vivo [54, 55].

5.3. Development of Vitiligo during Melanoma Immunother-
apy and Activation of NPrCAP by Tyrosinase to Form Pos-
sible Antigen Peptides. Advanced melanoma patients and
melanoma patients treated by vaccine immunotherapy often
reveal vitiligo-like changes of the skin. Interestingly, this
vitiligo development is associated with a superior progno-
sis in melanoma patients [56]. Although there have been

several separate theories for the pathogenesis of vitiligo, the
haptenation theory has recently been put forth to explain
the molecular mechanism of monobenzone-induced skin
depigmentation [54, 57, 58]. Westerhof et al. proposed the
haptenation theory in which increased intracellular H

2
O
2

could trigger the increased turnover of elevated levels of
surrogate substrates of tyrosinase, resulting in melanocyte-
specific T-cell responses [57, 59]. According to this hypoth-
esis, tyrosinase could be recognized as a melanoma-specific
tumor antigen in relation to the systemic immune responses.

Phenolic substrates as prohaptens are oxidized by tyrosi-
nase to produce ortho-quinones, which act as haptens that
covalently bind to tyrosinase or other melanosomal pro-
teins to generate possible neoantigens [44, 53, 54]. These
neo-antigens, in turn, trigger an immunological response
cascade that results in a melanocyte-specific delayed-type
hypersensitivity reaction leading to melanocyte elimination
to produce depigmentation in vitiligo and melanoma rejec-
tion. We examined the tyrosinase-mediated oxidation of
NPrCAP and its subsequent binding to sulfhydryl com-
pounds (thiols) in NPrCAP-treated melanoma tissues and
demonstrated that NPrCAP is oxidized by tyrosinase to
form a highly reactive ortho-quinone, (N-propionyl-4-S-
cysteaminylcatechol, NPrCAQ; Figure 8), which then binds
covalently to biologically relevant thiols including proteins
through the cysteine residues. In vitro and in vivo studies
were also conducted to prove the binding of the quinone-
haptenNPrCAQ to proteins.The thiol adducts were analyzed
after acid hydrolysis as 5-S-cysteaminyl-3-S-cysteinylcatechol
(CA-CysC) (Figure 8). Our results specifically provided evi-
dence that NPrCAP is oxidized by tyrosinase to an ortho-
quinone, NPrCAQ, which is highly reactive yet stable enough
to survive and then interact with biologically relevant thi-
ols to form covalent adducts. The activation of NPrCAP
to NPrCAQ by tyrosinase and the subsequent binding to
proteins through cysteine residues were also demonstrated in
the in vitro and in vivo experiments. Our finding was the first
demonstration that the quinone-protein adduct formation
actually takes place in melanoma cells and melanoma tissues
through the tyrosinase-mediated mechanism. Furthermore,
60–80% of the NPrCAQ-thiol adducts were found in the
protein fraction in melanoma cells and in the tumors. This
is surprising when we consider the much lower reactivity
of protein sulfhydryl groups compared with those in small
thiols such as cysteine [60, 61]. The remaining nonprotein
SH adducts were produced by the reaction of NPrCAQ with
free cysteine or glutathione as a detoxifying mechanism. In
this connection, it was previously shown that the depletion of
glutathione augmented the melanocytotoxicity and antime-
lanoma effects of NAcCAP [62].

According to the potent melanoma immunotherapy the-
ory using monobenzone [54, 55, 57–59], tyrosinase appears
to trigger melanoma regression. Tyrosinase oxidation of
monobenzone produces a highly reactive quinone-hapten
[44, 54] and ROS concurrently [54]. The quinone-hapten
binds to cysteine residues in tyrosinase or other melanoso-
mal proteins thereby generating possible neoantigen, which
activate hapten-reactive CD8+ T-cells. The latter cells kill
monobenzone-exposed melanocytes expressing haptenated
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Figure 9: Scheme of intracellular hyperthermia using NPrCAP
/PEG/M or NPrCAP/M with AMF exposure. NPrCAP/PEG/M
nanoparticles are selectively incorporated in melanoma cells. Intra-
cellular hyperthermia can induce necrotic cell death, and adjacent
live melanoma cells suffer heat shock, resulting in increased level of
intracellular HSP-peptide complexes. Repeated hyperthermia turns
heat-shocked cells to necrotic cells, leading to the release of HSP-
peptide complexes into extracellular milieu. The released HSPs-
peptide complexes are taken up by dendritic cells (DCs). Then,
DCs migrate into regional lymph nodes and cross-present HSP
chaperoned antigenic peptides to CD8+ T cells in the context of
MHC class I molecules, thereby inducing antimelanoma cytotoxic
CD8+ T cells.

antigens on their surface, further liberating melanocyte anti-
gens for presentation by dendritic cells. Finally, the antigen-
specific T-cell response is induced and propagated [54, 57–
59]. The ROS generated also causes damage to melanosomes

leading to the presentation of melanosome-derived antigens
and the induction of antigen-specific T-cell responses [58].

These immunological events can also be expected to
occur for our NPrCAP because the involvement of CD8+
T cells and the production of ROS in NPrCAP-treated
melanoma cells were demonstrated in our previous study
[46]. We expect the production of NPrCAC through redox
exchange in melanoma cells and the subsequent production
of ROS from the catechol because the closely related catechol,
4-S-cysteaminylcatechol, was shown to produce superoxide
radicals (which are rapidly converted to hydrogen peroxide)
[63]. The thiol adduct RS-NPrCAC, as a catechol, may also
contribute to the production of ROS.

6. Summary and Conclusion

Several clinical trials using melanoma peptides or an anti-
body that blocks cytotoxic T-lymphocyte-associated anti-
gen on lymphocytes have been shown to improve overall
melanoma survival [64–66]. Promising oncogene-targeted
melanoma therapy has also been successfully introduced
recently [67].

Our study may however indicate that exploitation of a
specific biological property to cancer cells can be another
approach for developing novel melanoma-targeted drugs
which can also trigger the production of melanoma-targeted
in situ vaccine. Our approach using melanogenesis substrate
andmagnetite nanoparticles is based upon the expectation of
(i) direct killing of melanoma cells by chemotherapeutic and
thermo-therapeutic effect of melanogenesis-targeted drug
(NPrCAP/M) and (ii) indirect killing by immune reaction (in
situ peptide vaccine) after exposure to AMF. It is hoped from
these rationales that a tumor-specific DDS is developed by
NPrCAP, and selective cell death can be achieved by exposure
of conjugates of NPrCAP/M nanoparticles to AMF. Hyper-
thermia increases the expression of intracellular HSPs which
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is important in and necessary for the induction of antitumor
immunity [41, 68]. Overexpression of HSPs increases tumor
immunogenicity by augmenting the chaperoning ability of
antigenic peptides and presentation of antigenic peptides in
MHC class I molecules [39, 69]. In this process professional
antigen-presenting dendritic cells play unique and important
roles in taking up, processing, and presenting exogenous
antigens in association with MHC class I molecules. Our
study indicated that combination of melanogenesis substrate,
NPrCAP, and local magnetite nanoparticles with hyperther-
mia could induce in situ a form of vaccine against tumor cells
and may be effective not only for primary melanoma but also
for distant secondary metastases (Figure 9).

Interestingly we found that NPrCAP by itself has potent
chemotherapeutic and immune-adjuvant effects. It was
demonstrated that the phenol NPrCAP, as a prohapten, can
be activated in melanoma cells by tyrosinase to the reac-
tive quinone-hapten NPrCAQ which binds to melanosomal
proteins through their cysteine residues to form possible
neo-antigens, thus triggering the immunological response
(Figure 8).
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