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Liver fibrosis is a wound-healing response to chronic liver injury such as alcoholic/nonalcoholic fatty liver disease and viral hepatitis
with no FDA-approved treatments. Liver fibrosis results in a continual accumulation of extracellular matrix (ECM) proteins and
paves the way for replacement of parenchyma with nonfunctional scar tissue. The fibrotic condition results in drastic changes
in the local mechanical, chemical, and biological microenvironment of the tissue. Liver parenchyma is supported by an efficient
network of vasculature lined by liver sinusoidal endothelial cells (LSECs). These nonparenchymal cells are highly specialized
resident endothelial cell type with characteristic morphological and functional features. Alterations in LSECs phenotype including
lack of LSEC fenestration, capillarization, and formation of an organized basement membrane have been shown to precede fibrosis
and promote hepatic stellate cell activation. Here, we review the interplay of LSECs with the dynamic changes in the fibrotic liver
microenvironment such as matrix rigidity, altered ECM protein profile, and cell-cell interactions to provide insight into the pivotal
changes in LSEC physiology and the extent to which it mediates the progression of liver fibrosis. Establishing the molecular aspects
of LSECs in the light of fibrotic microenvironment is valuable towards development of novel therapeutic and diagnostic targets of
liver fibrosis.

1. Introduction

Liver Fibrosis is one of the leading causes of liver-relatedmor-
bidity and mortality in the United States with an estimated
health care cost of $103 billion per year ($1,613 per patient).
Hepatic fibrosis occurs in response to chronic liver injury
initiated by several factors including alcoholic/nonalcoholic
fatty liver disease and viral hepatitis [1–4]. Fibrosis is a
chronic condition which initiates a cascade of biochemi-
cal and biophysical changes in the liver microenvironment
causing necrosis and apoptosis of hepatocytes (highly spe-
cialized epithelial cells) and liver sinusoidal endothelial cells
(LSECs), through the release of inflammatory mediators and
profibrotic cytokines and activation of hepatic stellate cells.

Further exacerbation of this chronic wound-healing response
results in excess deposition and decreased turnover of extra-
cellular matrix (ECM) proteins (e.g., collagen).The increased
density of ECM results in increased matrix stiffness, and
recent studies demonstrate that this phenomenon correlates
and contributes to the progression of liver fibrosis [5–8].
Recent clinical reports and animal studies have revealed that
fibrosis could be reversible [9–13]. While fibrosis is reversible
in its initial stages, uninterrupted fibrosis may lead to cir-
rhosis. The exact point when fibrosis becomes irreversible
requires further investigation. Despite significant advances in
understanding hepatic fibrosis and defining targets for ther-
apy, there are no antifibrotic drugs yet approved for clinical
use in patients with advanced liver disease. The parenchymal
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Figure 1: Morphological changes in LSECs during liver fibrosis. Hepatocytes and liver sinusoidal endothelial cells are separated by the space
of Disse that contains minimal extracellular matrix (ECM) in a healthy liver. Quiescent hepatic stellate cells reside in the space of Disse. The
Kupffer cells undergo phenotypic change to become more inflammatory. The fenestrations on LSECs allow for solute transport. In a fibrotic
liver, the stellate cells are activated, a basement membrane is formed in the endothelium, and the LSECs are defenestrated.

and nonparenchymal cells in the liver microenvironment
play a unique role in the pathology of liver fibrosis. The
progression and regression of liver fibrosis rely on a complex
interplay between the hepatocytes, LSECs, stellate cells, and
Kupffer cells and the noncellular components of the fibrotic
microenvironment [14–20]. Understanding the cellular and
molecular mechanisms involved in fibrosis progression has a
number of clinical implications, including the development
of therapeutic interventions to impede or reverse hepatic
fibrosis, some of which are already available [1, 2, 21].

The high metabolic activity of the liver demands an
efficient vasculature in the organ. The intricate network of
capillaries of the liver is lined by liver sinusoidal endothe-
lial cells (LSECs), a specialized endothelial cell type that
is phenotypically different from vascular endothelial cells
[22]. LSECs are characterized by their unique morphological
characteristics such as lack of a basement membrane in the
endothelium and presence of open fenestrations [22]. These
fenestrations are clustered throughout the cytoplasm to form
dynamic sieve plates and facilitate the steric transport of cargo
from the lumen (sinusoidal space) to the space of Disse and
into the parenchyma [23]. The alterations in the diameter
and frequency of fenestrations on LSECs are correlated with
several liver injuries, toxins, and diseases and have impli-
cations in the loss of overall liver function [23, 24]. LSECs
also possess a characteristically high scavenger function for
a diverse array of macromolecules. These cells contain a
large number of endocytic vesicles that perform degradation
and recycling of macromolecular wastes from lumen such
as extracellular matrix breakdown, immune complexes, and
lysosomal enzymes [25]. Additionally, LSECs play an active
role in the immune regulation of the organ through bacterial
processing, leukocyte adhesion, and viral clearance [26–
28]. These cells also maintain the hemodynamics of liver
capillaries by actively responding to the varying intrahepatic
blood flow and pressure [29]. Additionally, the paracrine
signaling between LSECs and hepatocytes is crucial for the
functional maintenance of the parenchyma. Similar to the
functional importance of LSECs in a healthy liver, these cells
are recognized as early regulators in the progression of liver
fibrosis.

Liver injuries leading to fibrosis result in a drastic alter-
ation in the LSEC phenotype. The loss in fenestration and

the appearance of basement membrane in the space of Disse
are observed early in a fibrotic liver, a process referred to
as capillarization. DeLeve and co-workers demonstrated that
the capillarization of LSECs (loss in fenestrations) precedes
the onset of fibrosis and acts as a gatekeeper event for the
progression of liver fibrosis [30]. Several secretory changes
such as loss of endothelial nitric oxide synthase (eNOS)
activity and overexpression of endothelin-1 also accompany
fibrosis and mediate portal hypertension in the liver [31].
Additionally, capillarized LSECs contribute to the ECM
accumulation in the fibrotic liver in the form of collagen and
fibronectin synthesis. Fibrosis is also influenced by a reversal
of LSEC function from tolerogenic to proinflammatory and
immunogenic; this phenomenon contributes to both height-
ened inflammatorymilieu and altered intrahepatic immunity
[32, 33]. Changes in LSECs during liver fibrosis result in a
cascade of autocrine and paracrine responses and warrant
a systematic analysis of the role of LSECs in the fibrotic
microenvironment to further the research towards early
detection and therapy for liver fibrosis (Figure 1). Therefore,
it is crucial to understand the role of dynamic changes in
livermicroenvironment during liver fibrosis pertaining to the
subtle but pivotal changes in LSEC physiology, and the extent
to which it mediates the progression of liver fibrosis.

2. Mechanical Environment of the Fibrotic
Liver and LSECs

An excessive accumulation of ECM proteins and remodeling
is synonymous with liver fibrosis and results in a dramatic
change in the mechanical microenvironment, particularly in
the stiffness of the organ [34]. Increase in the liver stiffness is
currently the most clinically relevant diagnostic marker, and
several elastography-based techniques are utilized to corre-
late the severity of liver fibrosis with the organ stiffness value
[35–37]. Recent studies have highlighted the profound impact
of biophysical attributes of ECM, including dynamic changes
inmatrix stiffness, as a keymechanism ofmodulating hepatic
stellate cell activation and one of the contributors to fibrosis
disease progression [38–42]. Animal studies have shown that
increase in liver stiffness precedes the development of fibrosis
in an iterative carbon tetrachloride model of rat liver fibrosis
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[43]. Wells and co-workers have demonstrated that matrix
stiffness regulates the myofibroblastic differentiation of two
precursor populations, hepatic stellate cells and portal fibrob-
lasts [40]. Hepatic stellate cells cultured on stiff environment
(8–12 kPa) developed fibrosis-like features of myofibroblast
phenotype, including enhanced cell spreading, 𝛼-smooth-
muscle actin (𝛼SMA) expression, and stress fiber organiza-
tion. Recently, our group has demonstrated that physiological
ranges of matrix stiffness regulated primary hepatocyte mor-
phology. Hepatocytes cultured on soft (healthy) substrates
displayed a more differentiated and functional phenotype
for a longer duration as compared to stiff (fibrotic-like)
substrates [44]. Matrix stiffness was demonstrated to alter
hepatocytes function wherein hepatocytes on soft substrates
retained 2.7-fold higher cytochrome P450 (CYP) activity
on day 7 in culture, as compared to the control group on
standard tissue culture surface. In addition, we observed that
the epithelial cell phenotype was better maintained on soft
substrates as indicated by higher expression of hepatocyte
nuclear factor 4 alpha, cytokeratin 18, and connexin 32 [44].
Weaver and co-workers have demonstrated that fibrotic levels
of matrix stiffness significantly inhibit hepatocyte-specific
functions by inhibiting the HNF4𝛼 transcriptional network
mediated through the Rho/Rho-associated protein kinase
pathway [45]. These data suggest that early increase in liver
stiffness ismechanistically important in regulating individual
cellular responses to tissue injury. A majority of the current
work studying the role of tissue stiffness in pathogenesis of
hepatic fibrosis focuses on hepatic stellate cells. The effect of
varying mechanical cues on LSECs is particularly interesting;
however, this has not been extensively explored until recently.
Since the capillarization of LSECs is also an initial trigger for
fibrosis, establishing the correlation between the mechanical
cues and LSECs is of prime importance towards achieving an
early therapeutic intervention. This is an important question
because the mechanistic cause of liver failure in cirrhosis is
not fully understood and there is evidence that cells including
hepatocytes and LSECs from a cirrhotic liver may regain lost
function when exposed to a healthy liver microenvironment
[46, 47]. Understanding the effect of increased matrix stiff-
ness during the course of liver fibrosis on LSEC function
will provide more insight into the role of matrix rigidity as
a contributor to the disease progression.

Endothelial cell behavior is largely regulated by the
mechanical cue of shear stress dictated by flow of blood
through the lumen of blood vessels and capillaries [48]. In
case of liver microvasculature, despite the low flow rate of
blood, the narrow capillary diameter results in a significant
shear stress generation [49, 50]. The fenestrations are espe-
cially sensitive to shear stress in the lumen. Studies with
animalmodels have demonstrated that introduction of a high
perfusion pressure through the portal vein resulted in the
fusion and enlargement of the LSEC fenestrae, resulting in
an abnormal transport of chylomicrons to the parenchyma
[51]. Several studies have also attempted identification of
changes in the molecular signature change that accompanies
LSECs under abnormal shear stress. Employing an in vitro
culture model of LSECs with a microfluidic setup recreated
the shear stress of fluid flow and demonstrated that LSECs

cope with increasing shear stress in the microenvironment
by increasing nitric oxide (NO) synthesis [29]. In fibrotic
livers, the microvasculature remodeling results in increased
vascular resistance and consequent increase in shear stress
[52]. Rodent models of liver fibrosis have demonstrated
that LSECs had a significantly lower expression of NO and
nitric oxide synthase (NOS) [53]. DeLeve and co-workers
demonstrated that the NO signaling pathway regulates the
maintenance of LSEC differentiated phenotype indicating
that the autocrine production of NO by LSECs regulates
the VEGF mediated pathway [54]. LSECs in cirrhotic livers
with evident portal hypertension overexpress Kruppel-like
factor 2 (KLF2) to cope with the abnormal hemodynamics
of the liver [55]. In the liver, the transcription factor KLF2
is induced early during progression of cirrhosis to lessen
the development of vascular dysfunction; nevertheless, its
endogenous expression results are insufficient to attenuate
establishment of portal hypertension and aggravation of
cirrhosis [56, 57]. The important role of shear stress in
endothelial dysfunction and the effect of restoring the flow
rate on the LSEC function need further investigation. In an
attempt to investigate the phenotype restoration of LSECs,
Hwa et al. demonstrated that LSECs can be rendered func-
tionally stable when maintained in perfusion cultures with
laminar flow of media mimicking the shear stress condition
of a healthy liver [58]. In another study, Domansky and
co-workers retained the viability of LSECs for a prolonged
duration by maintaining a physiological flow rate in a biore-
actor [59]. LSECs cultured in perfused bioreactor retained
expression of the functional marker sinusoidal endothelial 1
(SE-1) and exogenous supportive endothelial growth factors
like vascular endothelial growth factor (VEGF) upto 13 days
after seeding. Furthermore, the retention of the endothelial
phenotype was observed to be dependent on the flow rate and
the oxygen concentration in the perfused multiwell.

The mechanical microenvironment, especially in the
form of tissue stiffness and stretching forces, is proven
to activate hepatic stellate cells and promote liver fibrosis
progression [40, 60]. Since the paracrine signaling between
activated stellate cells and LSECs is known to be instrumental
in the capillarization of LSECs, mechanical cues can also be
considered to have an indirect effect on LSECs [54]. Juin
and co-workers showed that increased ECM matrix rigidity
increased the number of podosomes (actin-rich structures
involved in motility and proteolysis) formed in LSECs sug-
gesting that the cells responded to mechanical stress and
underwent cytoskeletal remodeling [61]. Similarly, human
LSECs lose the fenestrations anddemonstrate increased stress
fiber formation when subjected to high stiffness microen-
vironment [62]. Also, we have demonstrated that matrix
stiffness regulates LSEC morphology and function eliciting
cell behavior akin to those observed in animal models of liver
fibrosis [63].Theunderstanding of the direct effects of various
mechanical forces such as stiffness, compression, shear stress,
and stretch on LSECs will contribute to elucidating the role of
LSECs in liver fibrosis and identification of therapeutic tar-
gets in the mechanotransduction pathways to effect reversal
of fibrosis.
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3. Extracellular Matrix of Fibrotic
Liver and LSECs

A healthy liver contains a significantly low amount of ECM
as compared to some other organs, constituting approx-
imately 3% of the liver area [64]. The most prominent
macromolecules of the healthy liver ECM are collagens of
types I, III, IV, and V, glycoproteins such as fibronectin,
laminin, and tenascin, glycosaminoglycans such as heparin,
chondroitin sulfate, and hyaluronic acid, and proteoglycans
such as perlecan and decorin [65, 66]. Healthy LSECs also
contribute to the ECM by producing a modest amount of
macromolecules such as collagen type IV and fibronectin
[67]. In the event of liver fibrosis, the quantity of ECM
increases many fold but, interestingly, the ECM composition
remains relatively unaltered.

In a healthy liver, the space of Disse has a low density
of ECM proteins which enables easy transport of cargo from
the blood vessel lumen to various liver cells thereby playing
a crucial role in the functional maintenance of the cells
[67]. The typical sparse basement membrane is made up of
collagen type IV and laminin but during early stages of liver
fibrosis, the space of Disse (perisinusoidal space) undergoes
changes both in terms of the residing cells and the ECM
composition. A network of fibrillar collagen combined with
excess collagen type IV and laminin increases and forms
a basement membrane, as witnessed in clinical studies and
animalmodels [68–71]. Studies suggest that once a substantial
basement membrane appears in the liver endothelium, the
changes in LSEC phenotype and fenestrations become virtu-
ally irreversible [72].

Recent studies have established that LSECs can be an
active contributor to the excessive ECM in the event of
liver fibrosis [18, 20, 73, 74]. Identification of the specific
ECM expressed by LSECs can be challenging since their
scavenging action of ECM fragments present in the lumen
results in ambiguity regarding the cellular source of the
protein. Several animal and clinical studies have identified
the specific contributions of LSECs towards the fibrotic ECM.
Maher and McGuire demonstrated that, after liver injury,
LSECs displayed an increase in the mRNA levels of collagen
type I [75]. Similarly, rodent studies by Neubauer et al.
showed that injured LSECs synthesized a higher amount of
collagen type IV [76]. Animal studies have also displayed that
LSECs can synthesize fibronectin, a necessary structural unit
of the liver ECM [77]. Apart from the typical structural/cell
adhesion role that is attributed to cellular fibronectin, LSECs
demonstrate a higher expression of the EIIIA fragment of
fibronectin which can play the role of an active bioligand
triggering the wound-healing response in the organ [78].

The excessive accumulation and the altered structural
aspects of ECM in a fibrotic liver affect the phenotype of
LSECs, directly and indirectly. The direct effect of the exces-
sive collagen type I was explored byMcGuire et al. where they
showed that presence of interstitial collagen fibers resulted
in the defenestration of LSECs [79]. Apart from the physical
barrier due to the basement membrane, the defenestration
of LSECs further compromises the ability for the exchange
of molecules between parenchyma and the lumen. Similarly,

Shakado et al. demonstrated that an increase in laminin
concentration of the culture substrate resulted in a loss in
endothelial pores [80]. Another interesting study by Sellaro et
al. showed that LSECs cultured on decellularized liver ECM
maintained a fenestrated phenotype for a prolonged period
when compared with decellularized ECM of other organs
[81].

The altered ECM during the progression of liver fibrosis
also results in changes in the profile of cell-matrix adhesion
molecules expressed by LSECs. Couvelard and co-workers
demonstrated that LSECs overexpress several integrins that
act as laminin receptors, including 𝛼

6
𝛽
1
and attributed this

to the increase in laminin in the space of Disse [82]. These
studies suggest the responsiveness of LSECs to the various
components of the ECM. With respect to indirect effects,
ECM acts as means for the attachment and storage of several
cytokines and growth factors that when activated can result in
changes in the LSECbehavior [83]. A variety of growth factors
such as TGF-𝛽, FGFs, TNF-𝛼, and PDGF are covalently or
noncovalently bound to the ECMmolecules of collagens and
fibronectin [84].

4. Cross-Talk between LSECs and the Liver
Parenchyma (Hepatocytes)

Communication between parenchyma of the liver and LSECs
is crucial in the healthy liver as well as in the progression of
liver fibrosis. Structural features of LSECs such as fenestra-
tions ensure regulated bidirectional transport of metabolites
and solutes between blood and parenchyma. Loss of fenes-
tration has implications in the functional loss in hepatocytes
and development of secondary metabolic diseases such as
atherosclerosis. Altered fenestration dimensions result in
irregular transport of chylomicrons and access to hepatocytes
thereby altering the lipid metabolism, and higher release of
cholesterol by these cells [85].

The signaling pathway underlying the cross-talk between
hepatocytes and LSECs has recently received significant
attention. LSECs regulate the functional maintenance and
regeneration of hepatocytes through paracrine action of
angiogenic trophogens such as hepatic growth factors (HGF)
and Wnt2; LSECs regulate the functional maintenance and
regeneration of hepatocytes [86]. This phenomenon was
further corroborated by Yamane et al., wherein the paracrine
nature of LSEC and hepatocyte communication mediated by
VEGF-Flt receptor family on LSECs and HGF-Met receptor
groups on hepatocytes were validated [87].

Recent studies have garnered attention to exosomes as
a potential means of transfer of macromolecules between
different cell types. Exosomes are vesicular structures of
less than 100 nm diameter that are taken up by cells in a
nonreceptor mediated manner. Microparticles released by
LSECs in cirrhotic patients were shown to contain signaling
molecules that regulate hepatocyte behavior [88]. Another
study demonstrates that hepatocytes subjected to lipotoxicity
released exosomes that are rich inVNN1 and the presentation
of VNN1 on the exosome surface results in uptake by
endothelial cells making them proangiogenic in phenotype
[89].
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5. Cross-Talk between LSECs and the Liver
Nonparenchymal Cells

One of the primary pathophysiological responses to LSEC
injury is the early activation of hepatic stellate cells (HSCs)
that constitute the most fibrogenic cellular species of the
liver. These activated HSCs exhibit the phenotypic traits of
higher contractility and proliferation, secrete high amounts
of collagen type I and TGF-𝛽, possess a higher expression of
𝛼-SMA, and lose the retinoid storage function [90]. Multiple
cytokines have been implicated in triggering the activation
of HSCs and several of them are released by injured LSECs.
Capillarized LSECs secrete fibronectin EIIIA which activate
HSCs [78]. Similarly, a decrease in the KLF-2 factor in LSECs
results in HSC activation and in vitro studies show that
overexpressing KLF-2, on the other hand, can restore the
quiescent phenotype of HSCs [57]. The multifaceted role of
TGF-𝛽 as a key mediator of fibrosis is well established [60].
LSECs play a crucial role in activation of TGF-𝛽1 through
plasmin which in turn activates HSCs [91]. Similarly, PDGF
also mediates the activation of HSCs in a paracrine (LSECs
secrete PDGF) and autocrine manner.

Communication between LSECs and HSCs is vital for
the functional maintenance of LSECs as well [91]. Similar
to hepatocytes, quiescent HSCs also have been reported to
secrete VEGF that plays a crucial role in the maintenance
of fenestrations in LSECs in both a NO-dependent and
NO-independent manner [92]. Activated HSCs were shown
to release microparticles loaded with Hedgehog signaling
molecules that interact with LSECs and alter their gene
expression profile [93]. Similarly, exosomes from endothelial
cells that contained sphingosine kinase 1 (SK1) and demon-
strated fibronectin expression were shown to regulate the
activation of HSCs [94].

Kupffer cells are the macrophages of the liver and play a
crucial role scavenging foreign materials that end up in the
portal circulation [95].They are also responsible for the initia-
tion of inflammation by releasing active cytokines and reac-
tive oxygen species as a response to hepatotoxin mediated
injury to hepatocytes or biliary epithelial cells. In a fibrotic
liver, Kupffer cells overexpress platelet derived growth factor
(PDGF) which acts as the primary mitogen for activated stel-
late cells, hence indirectly driving forth fibrogenesis [96, 97].
In the specific case of alcohol mediated injury, the Kupffer
cells get activated and produce TNF-𝛼 that evokes parenchy-
mal stress response [98]. Despite advances in isolating their
role in liver disease progression, the cross-talk between
Kupffer cells and LSECs remains largely unexplored. In a
rodent model with liver injury due to sepsis, Hutchins et
al. demonstrated that the interaction between PD-1 express-
ing Kupffer cells and PD-L1 expressing LSECs resulted in
endothelial dysfunction [99]. Similarly, Arii and Imamura
demonstrated that blocking the signaling from Kupffer cells
in cold-preserved liver resulted in restoration of LSEC phe-
notype. The study also demonstrates that an increase in
ICAM-1 expression on LSECs is regulated by secretion of
TNF-𝛼 by Kupffer cells [100]. In an attempt to establish the
communication between Kupffer cells and LSECs, an in vitro
study by Ford et al. demonstrated that in a fibrotic model,

cross-talk between LSECs and Kupffer cells resulted in a loss
of fenestrations and increase in CD31 expression [62].

6. Therapeutic Interventions Targeting LSECs
and Vasculature for Liver Disease

Restoration of LSEC phenotype could present a potential
route for promoting the regression of fibrosis. Recent studies
further our understanding of the role of LSECs in directly
mediating fibrosis resolution. Decreasing the excessive col-
lagen in a fibrotic liver through MMPs and TIMPs has
been of interest for a while now but a study by Malovic
et al. demonstrated that LSECs possess mannose receptors
that rapidly endocytose denatured collagen 𝛼 chains from
blood [101]. Enhancing the LSEC mediated removal of col-
lagen fragments could be a potential target for therapeutic
purposes. The role of VEGF has been controversial due
to the conflicting nature of several studies. In an effort to
hinder angiogenesis in the fibrotic livers, Fernandez et al.
have demonstrated the importance of inhibiting the signaling
pathways of VEGF and PDGF in order to decrease the
expression of CD31 and VEGFR-2 in the endothelium [102].
On the other hand, fibrosis resolution and maintenance
of fenestration in LSECs have been achieved in rodent
models through VEGF mediated pathway [103, 104]. Nitric
oxide synthase (NOS) synthesized by LSECs is an important
target for fibrosis resolution owing to the regulatory role
it plays in portal hemodynamics. Decreased levels of NO
are due to downregulation in the expression of eNOS in
LSECs subjected to capillarization and the restoration of
eNOS could have therapeutic implications [105]. Dill et al.
showed that disruption of Notch1 signaling results in vascular
remodeling of the liver and the intact signaling ensures the
highly differentiated phenotype of LSECs is maintained, thus
indicating the potential as an antiangiogenesis target for liver
fibrosis [106].

Several experimental drugs have surfaced over the last
decade that could potentially treat fibrosis by targeting the
vascular function of the organ. Treatment of cirrhotic rats
with tetrahydrobiopterin, an essential cofactor for the syn-
thesis of NO, demonstrates a marked improvement in portal
hypertension [107]. Another study combating the oxidative
stress of the fibrotic liver demonstrated that administration
of ascorbic acid in cirrhotic patients resulted in an increased
bioavailability of NO, thereby resulting in a moderate alle-
viation of endothelial dysfunction [108]. Increasing super-
oxide population in the fibrotic livers of rodent models was
treated with Tempol, a small superoxide dismutase (SOD)
mimic, which resulted in the restoration of normal portal
pressure [109]. In another multitargeted approach, Sunitinib
administration to cirrhotic rats resulted in a decrease in hep-
atic vascular density and portal pressure [110]. Antifibrosis
applications of statins in a study by Marrone et al. showed
that statins can directly target LSECs in a fibrotic liver by
triggering an upregulation of KLF2 expression, where KLF2
acts as a vasoprotective molecule of the liver endothelium
[57].
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7. Conclusions

Unchecked fibrosis of the liver results in a continual accumu-
lation of ECM proteins and paves the way for replacement
of parenchyma with nonfunctional scar tissue. The persis-
tence of fibrotic state in the liver determines the severity
of numerous challenges with respect to achieving complete
restoration of liver health and some of these are reversal
of vascular remodeling, excessive crosslinking between the
collagen fibers, and loss in parenchyma [111]. Since pheno-
typic alteration in LSECs phenotype is one of the earliest
events of fibrogenesis, investigating the molecular aspect of
LSECs in the context of liver fibrosis progression will prove
to be valuable towards early detection and a consequent early
intervention of liver fibrosis.
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giogenic treatment with sunitinib ameliorates inflammatory
infiltrate, fibrosis, and portal pressure in cirrhotic rats,” Hepa-
tology, vol. 46, no. 6, pp. 1919–1926, 2007.

[111] R. Bataller andD. A. Brenner, “Liver fibrosis,” Journal of Clinical
Investigation, vol. 115, no. 2, pp. 209–218, 2005.


