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Background. Over-stimulation of the purinergic P2X7 receptor may bring about cellular dysfunction and injury in settings of
neurodegeneration, chronic inflammation, as well as in psychiatric and cardiovascular diseases. Here we speculate how P2X7

receptor over-activation may lead to the co-occurrence of neurological and psychiatric disorders with cardiovascular disorders.
Presentation. We hypothesize that proinflammatory cytokines, in particular interleukin-1β, are key players in the pathophysiology
of neurological, psychiatric, and cardiovascular diseases. Critically, this premise is based on a role for the P2X7 receptor in triggering
a rise in these cytokines. Given the broad distribution of P2X7 receptors in nervous, immune, and vascular tissue cells, this receptor
is proposed as central in linking the nervous, immune, and cardiovascular systems. Testing. Investigate, retrospectively, whether
a bidirectional link can be established between illnesses with a proinflammatory component (e.g., inflammatory and chronic
neuropathic pain) and cardiovascular disease, for example, hypertension, and whether patients treated with anti-inflammatory
drugs have a lower incidence of disease complications. Positive outcome would indicate a prospective study to evaluate therapeutic
efficacy of P2X7 receptor antagonists. Implications. It should be stressed that sufficient direct evidence does not exist at present
supporting our hypothesis. However, a positive outcome would encourage the further development of P2X7 receptor antagonists
and their application to limit the co-occurrence of neurological, psychiatric, and cardiovascular disorders.

Copyright © 2009 S. D. Skaper and P. Giusti. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Background

The P2X7 receptor (P2X7R) was originally described in cells
of hematopoietic origin, and mediates the influx of Ca2+ and
Na+ ions as well as the release of proinflammatory cytokines.
P2X7Rs may affect cell death through their ability to regulate
the processing and release of interleukin-1β (IL-1β), a key
mediator in neurodegeneration, chronic inflammation, and,
perhaps, some psychiatric diseases [1]. There is now ample
evidence that elevated IL-1β levels, associated in many cases
with P2X7R activation, occur in Alzheimer’s disease, spinal
cord injury, proinflammatory tissue trauma, neuropathic
and inflammatory pain, and depressive illness. Preliminary,
albeit intriguing observations suggest that elevated blood
pressure may be associated with polymorphic variations in
the P2X7R gene. Collectively, these findings have led us
to propose a hypothesis in which the P2X7R is viewed

as a common transducer of communication between the
nervous, immune, and cardiovascular systems, whereby
receptor over-activation may lead to the co-occurrence of
neurological and psychiatric disorders with cardiovascular
disorders, and vice versa.

2. Presentation of the Hypothesis

2.1. P2X7R as a Transducer in the Co-Occurrence of Neurolog-
ical/Psychiatric and Cardiovascular Disorders. ATP-sensitive
P2X7Rs are localized on cells of hematopoietic lineage
including mast cells, erythrocytes, monocytes, peripheral
macrophages, dendritic cells, T- and B-lymphocytes, epider-
mal Langerhans cells, and glial cells in the CNS [2, 3]. Activa-
tion of P2X7Rs leads to rapid changes in intracellular calcium
concentrations, release of the proinflammatory cytokine
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Figure 1: Schematic representation of potential interactions between the cardiovascular and nervous systems, which may lead to the co-
occurrence of cardiovascular, neurological, and psychiatric disorders. In this hypothesis, the P2X7 purinergic receptor plays a pivotal role in
linking these disorders, as a result of elevated levels of extracellular ATP and the release of pro-inflammatory cytokines such as interleukin-1β
(IL-1β) and tumor necrosis factor-α (TNF-α). AD, Alzheimer’s disease.

IL-1β and following prolonged exposure, the formation of
cytotoxic pores in plasma membranes. P2X7Rs could affect
IL-1β also via the 5-lipoxygenase pathway; that is, P2X7R
activation leads to leukotriene formation (e.g., in astrocytes)
[4] and leukotrienes increase IL-1β expression and release
[5]. Both the localization and functional consequences of
P2X7R activation indicate a role in inflammatory processes.
Activated immune cells (lymphocytes) [6], macrophages [7],
microglia [8], and platelets [9], and dying cells may release
high concentrations of ATP into the extracellular space
[10], while extracellular ATP concentrations increase under
inflammatory conditions in vivo [11] and in response to
tissue trauma [12]. In addition, pro-inflammatory cytokines
and bacterial products upregulate P2X7R expression and
increase its sensitivity to extracellular ATP [13].

We hypothesize that pro-inflammatory cytokines, in
particular IL-1β, are key players in the pathophysiology
of neurological, psychiatric, and cardiovascular diseases.
Critically, this premise is based on a role for the P2X7R in
triggering a rise in these cytokines. One of the most striking
features of ATP is its unmatched ability to promote massive
release of mature IL-1β from lipopolysaccaride primed
mononuclear phagocytes and other cell types, including
microglia [14]. ATP-driven maturation and release of IL-
1β are specifically mediated by the P2X7 receptor for
extracellular ATP [15, 16]. Given the broad distribution of
P2X7Rs in nervous, immune, and vascular tissue cells, this
receptor is proposed as playing a common transductional
role in linking the nervous, immune, and cardiovascular
systems. We also hypothesize that P2X7R over-activation may
lead to the co-occurrence of neurological and psychiatric
disorders with cardiovascular disorders (Figure 1).

These speculative hypotheses are based on an extensive
body of published studies describing pro-inflammatory
cytokine elevations and P2X7R over-activity in neurodegen-
erative diseases, pain, depression, and cardiovascular disease.
Activation of P2X7Rs provides an inflammatory stimulus
[17], and P2X7R-deficient mice have substantially attenuated
inflammatory responses [15, 18]. Acute spinal cord injuries
produce highly inflammatory environments [19]. In rats
subjected to spinal cord injury, areas surrounding the
traumatic lesion displayed an abnormally high and sustained
pattern of ATP release, and delivery of a P2X7R antagonist
after acute impact injury improved functional recovery and
diminished cell death in the peritraumatic zone [20]. P2X7R-
like immunoreactivity was upregulated around β-amyloid
plaques in a transgenic mouse model of Alzheimer’s disease,
and was regionally localized with activated microglia and
astrocytes [21]. Up-regulation of P2X7Rs on microglia is seen
after ischemia in the cerebral cortex of rats [22], and on
reactive astrocytes in multiple sclerosis autopsy brain tissue
[23]. Genetic and pharmacological approaches have been
used to show that P2X7R activation on microglia is necessary
for microglial cell-mediated injury of neurons [24].

Phenotypic data from P2X7R null mice provide impor-
tant evidence for participation of this channel in pro-
inflammatory tissue trauma. There is a lower incidence and
severity of collagen antibody-induced arthritis in P2X7R
knockout mice [25], and inflammatory and neuropathic
hypersensitivity is completely absent to both mechanical
and thermal stimuli in these mice [18]. Moreover, P2X7R
is upregulated in human dorsal root ganglia and injured
nerves obtained from chronic neuropathic pain patients [18].
Endogenous IL-1 levels are increased in the nervous system
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in response to trauma associated with mechanical damage,
ischemia, seizures, and hyperexcitability [26].

There appears to be a strong relationship between depres-
sion and immunological dysfunction in depressed patients
[27]. Cytokines like IL-1β are suggested to be involved in
the pathophysiology of depression, and excessive secretion
of macrophage cytokines (IL-1β, tumor necrosis factor-α,
interferon-γ) could be a potential causative factor [28].
Central and systemic administration of proinflammatory
cytokines to animals induces “sickness behavior”, which
is characterized by many of the physiological and behav-
ioral changes associated with depression [27, 29]. Clinical
use of cytokines (e.g., interferon-α) produces depressive-
like symptoms that can be attenuated with antidepressant
treatment [30], and major depressive illness is associated
with significant elevations in the density of microglia and
hypersecretion of proinflammatory cytokines, suggesting
that the latter could be involved in the etiopathogenesis of
depression [31–34].

Apoptotic cell death occurs in a number of vascular
diseases, including atherosclerosis and hypertension [35].
Shear stress that occurs during changes in blood flow causes
a substantial release of ATP from vascular endothelial cells
[36]. ATP may also be released from cardiomyocytes in
ischemic or hypoxic conditions [37]. P2X7R-associated pro-
duction of proinflammatory cytokines like tumor necrosis
factor-α could promote endothelial cell apoptosis [34], and
play a role in vascular remodeling in hypertension [38]. P2X
receptor channels are involved in transducing aldosterone-
mediated signaling in the distal renal tubule and are potential
candidate genes for blood pressure regulation [39]. On an
intriguing note, there is evidence to suggest that elevated
nighttime diastolic blood pressure is associated with single
nucleotide polymorphisms of the P2X7R gene [40]. P2X7Rs
are expressed in human saphenous vein myocytes [41],
and venous diseases may favor conditions allowing P2X7R
activation and lysis of venous myocytes. ATP released after
hypoxia, stress and inflammation, or membrane damage,
conditions found in the vessel wall of varicose veins, may lead
to P2X7R-induced pore formation, the disorganization and
loss of contractile myocytes in the muscle layers of the media
of varicose veins, and venous disease.

Fibroblasts are a key structural element of the arterial
wall known to play a major role in atherosclerosis and
diabetic angiopathy [42]. Fibroblasts from type-2 diabetes
patients are characterized by a hyperactive purinergic loop
[43].

3. Testing the Hypothesis

Retrospective studies inform us, for example, that depression
is recognized as having high prevalence in several medical
conditions including infectious, autoimmune, and neurode-
generative diseases, conditions associated with a proinflam-
matory status [28, 44]. Increasing evidence now points to a
strong relationship between depression and immunological
dysfunction in depressed patients, while clinical use of
cytokines produces depressive-like symptoms responsive

to antidepressant treatment [30]. While depression and
cardiovascular comorbidity have been recognized for some
time [45], a proinflammatory link has only recently been
investigated [46]. Although a first step, these correlations
are not definitive proof of our concept. More extensive
prospective studies are required to confirm the above,
and to investigate whether a link exists between illnesses
with a proinflammatory component (e.g., inflammatory
and chronic neuropathic pain) and cardiovascular disease,
for example, hypertension, and whether patients treated
with anti-inflammatory drugs have a lower incidence of
cardiovascular complications. This would then need to
be followed with a demonstration that pharmacological
block of P2X7Rs provides therapeutic benefit in these
conditions.

4. Implications of the Hypothesis

If a strong link between neurological, psychiatric and,
cardiovascular disorders could be established, then within
this framework P2X7R activity can be viewed as playing a
common transductional (“gatekeeper”) role in the develop-
ment of comorbidity between the nervous, immune, and
cardiovascular systems. The outcome, if positive, would
provide the impetus for further development and clinical
application of selective and potent P2X7R antagonists.
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