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Abstract

Motivation: Cancer is a complex and heterogeneous disease involving multiple somatic mutations that accumulate during
its progression. In the past years, the wide availability of genomic data from patients’ samples opened new perspectives in
the analysis of gene mutations and alterations. Hence, visualizing and further identifying genes mutated in massive sets of
patients are nowadays a critical task that sheds light on more personalized intervention approaches. Results: Here, we
extensively review existing tools for visualization and analysis of alteration data. We compare different approaches to study
mutual exclusivity and sample coverage in large-scale omics data. We complement our review with the standalone software
AVAtar (‘analysis and visualization of alteration data’) that integrates diverse aspects known from different tools into a
comprehensive platform. AVAtar supplements customizable alteration plots by a multi-objective evolutionary algorithm for
subset identification and provides an innovative and user-friendly interface for the evaluation of concurrent solutions. A
use case from personalized medicine demonstrates its unique features showing an application on vaccination target
selection. Availability: AVAtar is available at: https://github.com/sysbio-bioinf/avatar Contact: hans.kestler@uni-ulm.de,
phone: +49 (0) 731 500 24 500, fax: +49 (0) 731 500 24 502
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Introduction
High-throughput biomolecular technologies make multi-modal
data available for diverse biological and medical settings. Anal-
ysis and visualization of genomic and transcript-omic maps are
important steps not only for illustration but also for exploratory
analysis [35, 45, 46, 70, 86]. In this context, computer assistance
is paramount in the objective analysis of data such as gene
mutations or overexpression of genes [74]. Most importantly,
intuitive visualization tools simultaneously integrating different
data modalities are required [87]. These data modalities such
as mutation, expression or methylation profiles can be depicted
as alteration plots, comparing patients’ coverage for the exam-
ined alteration to alteration exclusivity for the single patient’s
sample.

Commonly, alteration plots are created manually by
researchers in time-consuming processes, although specialized
analysis tools for alteration data may include basic visualization
functionality, e.g. cBioPortal [14, 30], Gitools [79], UCSC Cancer
Genomics Browser [85], Integrative Genomics Viewer [84],
IntOGen [32], MAGI [57] and caOmicsV [117].

Visualization and annotation of genomic alteration are only
the first steps in deepening the knowledge on disease develop-
ment and progression. Therefore, a huge effort has also been
made in the context of the analysis of genome alteration data.
Detection of mutually exclusive alterations has been shown to
provide crucial information in the context of cancer develop-
ment and investigation of therapeutic approaches, also in light
of personalized treatments [24]. Due to the extensive hetero-
geneity in cancer genomes, most patients possess only a single
driver mutation [105]. Hence, groups of genes harboring driver
mutations tend not to co-occur in the same sample, as also
shown in different cancer cohorts [11, 15]. Many cancer-related
genes are involved in the phenomenon of mutual exclusivity
[28]. Exemplarily, BRAF and NRAS, both members of the MAPK
pathway, are widely altered in patients with melanoma [9], thy-
roid carcinoma [25], myeloma [71] and colorectal cancer [64].
However, few patients harbor both alterations [9]. Strikingly, the
forced expression of two mutually exclusive genes in lung ade-
nocarcinoma [101], KRAS and EGFR, causes proliferation and sur-
vival disadvantage to cancer cells [41]. The biologically motivated
hypothesis behind mutual exclusivity is based on either func-
tional redundancy [15, 17, 21, 90, 109] of these genes or synthetic
lethality [16, 27]. Hence, having efficient algorithms to subgroup
genes based on their mutual exclusivity gives both insights
on patients’ specific sub-groupings and potential personalized
therapeutic interventions.

As an illustrative example, the TCGA AML (acute myeloid
leukemia) dataset [99], containing mutation data of 200 samples,
is used. Figure 1A, shows the alteration plot for the top 10 genes
with the highest sample coverage. In the figure, each patient
sample is a column of the plot, whereas every row represents
a gene that can be altered or not in each sample. Coverage
is defined as the representativeness of alteration within all
samples. The overlap is considered as the co-occurrence of
multiple mutations within the same sample. In Figure 1 consid-
erable overlap (less mutually exclusivity) between the genes can
be observed. Here, to further optimize the gene set selections,
different algorithms can be applied. The final aim is to find
subsets of genes with high coverage together with high mutual
exclusivity (Figure 1B). These approaches are based either on
alteration data only (de novo) or integration with experimental
knowledge or databases (knowledge-based approaches).

In the following, we will review available visualization and
analysis tools for gene alterations. Besides one exception, none

of the currently available visualization tools provides implemen-
tations for gene drivers selection. Hence, we introduce our soft-
ware ‘analysis and visualization of alteration data’ (AVAtar) that
incorporates both visualization and analysis approaches. AVAtar
has unique features for import, filtering and a combination of
private and database data together with numerous export func-
tions. Different from all other analysis software, AVAtar provides
a user-friendly interface suitable for life scientists without the
need for programming skills. To explore the possibilities pro-
vided by AVAtar, we first compared its features to available tools
for both visualization and analysis. Second, we summarized a
use case from an already published study [29] regarding semi-
personalized selection of candidate vaccination targets for head
and neck squamous cell carcinomas (HNSCC).

Genomic analyses to semi
personalized medicine
Since the first human genome has been made available [18],
the investigation and interpretation of genomic data have been
a focus of modern molecular biology [53]. Technical improve-
ments and strong reduction of sequencing costs have permitted
genomic information to be more and more included in medi-
cal practice [10]. Thanks to introduction of genomic analyses,
cancers can now be defined by their molecular drivers. This is
not only useful in cancer identification but also for treatment
decisions [10]. In fact, some traditional treatments could be
proved ineffective or have side effects in certain patient popu-
lations [10, 98]. For example, tamoxifen was long time used to
treat breast cancer patients. However, nowadays it is known that
patient-specific alterations affecting its active metabolite exist
[37]. Hence, analyses of genomic alterations is an important step
towards semi-personalized medicine. Moreover, minimal sets of
intervention targets might be of interest.

Visualization tools
Tools for visualization of genomic data are relevant for under-
standing and describing connections between genomic alter-
ations and cancer [76, 88, 110]. Different approaches for visu-
alization have been suggested (Table 1), such as genomic coor-
dinate views, heat maps, network views, aberration plots and
transcript views. The advantages of genomic coordinates-based
tools rely on the possibility of accessing detailed sequences and
various types of alterations. However, they can display limited
numbers of samples and genes simultaneously [117]. Examples
of these tools are cBioPortal [14, 30], Integrated Genomics Viewer
[84], MAGI [57] and USC Cancer Genome Browser [85]. Besides
genomic coordinate view approaches, heat maps and network
views allow visualization of multiple genomic alterations in
broad groups of genes and samples [14, 108, 114]. Hence, for
further analyses, these types of genomic visualization are pre-
ferred. In accordance, most of the available tools include heat
map visualization. A distinguishing feature of these tools is the
possibility of combining private and database data, as well as
exporting both raw data and figures (Table 1). In this regard,
AVAtar is the only tool that provides a complete set of features
for both import and export.

Tools for gene selection of mutual exclusivity
Different computational approaches have been developed to
investigate driver gene mutations. They are mainly divided into
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Figure 1. Alteration plots for gene selections of the TCGA AML dataset [99]. Every row represents a gene and every column a sample. If a sample has an alteration

in a gene, the corresponding cell is marked (blue: first alteration in sample, green: overlapping alterations). (A) Top 10 genes with most frequent mutations sorted by

sample coverage. (B) Example of optimization of the gene set selection with six genes (sorted by sample coverage). Genes highlighted in A (red) have been excluded by

the optimization of the gene set selection.

de novo and knowledge-based approaches, where experimental
information is integrated into the algorithms. Even if many tools
for knowledge-based investigation are available [2, 5, 7, 8, 12, 13,
15, 31, 34, 38, 40, 47, 48, 59, 61, 65, 78, 80, 83, 92, 96, 97, 100, 113,
116, 118, 119], the fact that they require information on either
pathways, interaction networks, or functional phenotypes data
makes their broad application limited. Hence, de novo methods
will be the focus of this review. In general, de novo methods are
based only on alteration data. Two main strategies for the selec-
tion of mutually exclusive genes have been classically applied
(Figure 2). One of the simplest approach to investigate mutual
exclusivity is pairwise statistical analyses such as Fisher’s exact
test or likelihood ratio methods [24]. However, this approach
has many limitations. First, it assumes that genetic alterations
are evenly distributed across samples, which does not face the
reality of alteration data [1, 3, 51, 54]. This problem was addressed
by the WeSME approach that includes a weighted sampling pro-
portional to the observed mutation frequency [49]. In addition,
mutual exclusivity frequently does not involve only a few genes
[115], making the pairwise test approach not suitable for inves-
tigating modules [67]. For this purpose, algorithms searching for
modules of mutually exclusive mutations have been developed.
Here, the new addressed task is to find sets of genes whose alter-
ations cover high number of samples (coverage) together with
low number of overlapping alterations in the set (high mutually
exclusivity). This problem has been addressed from different
perspectives. The combinatorial score approach, such as the
Dendrix and its extension [56, 106], uses greedy algorithms to
maximize the combination of these two objectives by expanding
a seed set of genes. However, this method that tries to maximize
both coverage and exclusivity can be biased towards high fre-
quencies genes sets [105]. For this reason, other modules selec-
tion approaches have been implemented. Exemplarily, CoMet

[60], MEGSA [77], and GAMToc [68] focus on selecting modules
based on statical significance instead of maximization of scores
(Figure 2). Another approach to overcome the problems behind
score maximization has been implemented in AVAtar. Instead
of defining weights a priori and searching for a single optimal
gene selection, a set of gene selections consisting of the optimal
trade-offs (defined as Pareto set) between the objectives can be
identified (Figure 2). This allows the researcher to interactively
explore the optimal trade-offs found and to choose gene sets
based on task-specific background knowledge.

Another limitation of available tools to compute mutual
exclusivity is their running environment (Table 2). Almost all
tools require programming and bioinformatics skills of the user,
thus excluding a wide range of life science researchers. On the
other hand, AVAtar provides user-friendly graphical interface.
In this context, also cBioPortal [14, 30] presents the possibility
to perform mutual exclusivity analysis with a user-friendly
graphics. However, the algorithm is based on pairwise tests
that have already been shown to be quite limited [14, 24, 30].
Instead, AVAtar implements a modular search based on Pareto
set optimization. Moreover, the user can preprocess data and
combine sets of private and database searches in a unique form.

Multi-objective evolutionary algorithm implemented
in AVAtar

Weighting the importance of contradicting aims is a common
approach to resolve conflicts and allows the application of stan-
dard optimization algorithms. However, there is neither a gen-
erally applicable weighting for all datasets nor an obvious and
objective weighting for a given dataset that guarantees an opti-
mal selection. Here, multi-objective optimization [22] offers an
alternative approach. Technically, the task consists in finding a



4 Völkel et al.

Table 1. Available visualization tools for genomic alterations. For each tool, its application type (R package, Web application with local
installation or standalone software) is specified as well as analysis, visualization, import and export features. A � indicates that the feature is
available, ‘−’ indicates it is not present
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caOmicsV [117] R package � – – – – � – � �
cBioPortal [14, 30] Web/local � � � – � � – � �
Gitools [79] Web/local � – – – � � – � �
Integrated Genomics
Viewer [84]

Web/local � – – � � � � – –

IntOGen [32] Web/local � � � – � � – � –
MAGI [57] Web/local � � – � � � � – �
UCSC Cancer
Genome Browser [85]

Web/local � � – � � � � – –

AVAtar Standalone � � � � � � � � �

Figure 2. De novo approaches overview for investigation of mutual exclusivity. On the left blue box, single score selection is depicted. It is performed by applying

pairwise test on alteration data. On the right green box, module selection methods are illustrated. Sets of mutually exclusive genes are selected by different approaches:

combinatorial scores, statistical scores and Pareto optimization.

subset of genes G from a given set of genes G (G ⊆ G) such that
the number of covered samples γ (G) is maximized and either
the overlap ω(G) or the number of genes |G| is minimized. This
introduces a multi-objective optimization problem that results
in finding a Pareto-optimal set S∗ ⊆ S of gene subsets within the
set of all gene subsets S = G ⊆ G. To this purpose, we developed
an evolutionary algorithm for the multi-objective gene selection
task based on the Non-dominated Sorting Genetic Algorithm II
[22, NSGA-II] (implemented by jMetal library v.5.3 [73]). This is
a population-based metaheuristic that adapts concepts of the
theory of evolution [81]. A set of solutions, called population,
is evolved iteratively by applying recombination and mutation
operators to the solutions. Finally, AVAtar facilitates the creation
of objective and reproducible alteration plots by offering algo-
rithmic sorting of genes and samples. The task of finding a gene
order based on the additionally covered samples is formulated as
a minimal set cover problem. A modified greedy algorithm [20]
for set covering is applied [44]. Starting with an initial solution,
the greedy algorithm incrementally adds the gene covering the
most uncovered samples to its current partial solution. Further

details of the algorithm are described in the Supplementary
Information.

AVAtar
The multi-objective approach using a Pareto front was integrated
in a readily usable standalone software AVAtar. There are
no additional software requirements. After the extraction of
the downloaded AVAtar archive, the user can immediately
start to use it. The project repository of AVAtar available at
https://github.com/sysbio-bioinf/avatar includes a detailed user
manual with a stepwise walkthrough describing the application
of AVAtar in the HNSCC analysis. The walkthrough already
underlines our user-friendly interface, suitable for life scientists.
AVAtar supports the import from different data sources: data
files (Excel, Text), cBioPortal [14, 30] and Gene Expression
Omnibus [6]. The import dialog with builtin search capabilities
is shown in Figure 3. It is possible to combine data from
multiple studies and to integrate different alteration types.
Clinical attributes can be imported to define sample groups for

https://github.com/sysbio-bioinf/avatar
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Table 2. Available software for identification of mutually exclusive genes in alteration data. For each of the tools, the method used to identify
mutually exclusive alterations is stated. At last, running environment needed is reported. Tools marked by an asterisk (∗) have both visualization
and analysis features

Name Method Running environment

cBioPortal [14, 30]∗ Pairwise test Web tool
CoMET [60] Statistical score Python
Dendrix [106] Combinatorial scores Python
GAMToc [68] Statistical score (entropy score) Matlab
MEGSA [77] Statistical score R
Multi-Dendrix [56] Combinatorial score Python
MutExSL [94] Pairwise test Excel
RME [23] Combinatorial score Bash
TiMEX [19] Statistical score R
WeSME [49] Stastical score Python
WExT [58] Statistical score Python
AVAtar∗ Pareto front Standalone software

Figure 3. Dialog for selecting a study to import from cBioPortal. Studies can be searched by specifying terms that occur in their id, name or description.

analysis and visualization. Moreover, AVAtar’s optimization
setup is designed to offer default algorithm parameter values
that are suitable for a broad range of applications. A batch mode
to perform multiple optimizations in parallel on a compute
server is available. It can be started as follows:

java11 -jar avatar.jar -f hnsc.avatar -o usecase.batch -t 6
Runs: 0/7 - Progress: 0.243% - Estimated Duration: 05:42:54
Resulting gene selection sets can be explored interactively as

alteration plots and grouped by functional categories. Addition-
ally, graphics contrasting alternative gene selections can also
be created. Finally, all graphics obtained can be exported as
publication ready vector graphics.

Comparison between AVAtar and the Multi-Dendrix
approach

Deng et al. [24] already performed a benchmark comparison
among a variety of available algorithms for mutual exclusivity
investigation. From their analysis, the Multi-Dendrix algorithm

[56] performed best. Hence, we compared the performance of
AVAtar to this approach. We used the breast cancer dataset
of the Multi-Dendrix publication [56]. The Multi-Dendrix algo-
rithm uses a fixed a priori weight between coverage and overlap
to find a specified small number of pairwise disjoint sets of
genes with mostly mutually exclusive mutations within the sets.
The genes of the found sets are considered as potential driver
genes. The multi-objective evolutionary algorithm of AVAtar
does not weight coverage and overlap of the gene sets but
instead searches for the set of optimal tradeoffs between these
two objectives. In Figure 4, the Pareto front and the correspond-
ing set of selected genes resulting from our analysis are shown.
Cells colored in blue are the genes also identified from the
Multi-Dentrix. Genes with higher coverage are identified by both
methods and are also represented in most of our solutions. In
orange, we depicted new genes found by AVAtar. First, it can
be observed that part of new hits is represented in solution
with high coverage and overlap. However, we highlighted some
interesting sets found by combinations of good coverage and low
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Figure 4. Visualization of the Pareto set resulting from a coverage maximization and overlap minimization on the breast cancer dataset used to evaluate the Multi-

Dendrix algorithm [55]. On the left, the Pareto front is represented. Each point in the Pareto front represents a gene set solution for a certain coverage–overlap

combination. Magenta dots represent the highlighted solution of the right figure. On the right, the corresponding Pareto set solutions for gene selection are depicted.

Each column represents a solution of the Pareto set and each row contains a gene. The occurrence of a gene in a solution is marked by a colored rectangle. The solutions

found also by the Multi-Dendrix algorithm are marked in blue, whereas new genes idenfied by AVAtar are marked in orange. The three selected solutions highlighted

in magenta are shown in Figure 5.

Figure 5. Mutation plot of the four gene solution of the Pareto set of Figure 4 with most promising gene set selections.

overlap (magenta rectangles). For these solutions, we provide
the corresponding alteration plots in Figure 5. Moreover, simi-
larly to the Multi-Dendrix approach, we provided also pathway
subgrouping information. In these sets, AVAtar identified crucial
genes for breast cancer as ATM [26, 33, 36, 66, 69, 112] and
BRCA2 [42, 63, 72, 93, 102, 104] that were not found by the
Multi-Dendrix approach. ATM is selected together with TP53 in
two of our highlighted solutions. This supports our approach
since ATM is widely reported to be mutually exclusive with
TP53 in breast and also other types of cancers [39, 82, 91, 111].
Moreover, we could also select smaller sets with higher cover-
age on patients samples (72%). This set is better than the best
set selected by the Multi-Dendrix approach in terms of cover-
age, overlap, and the number of genes selected. Thus, AVAtar
empowers the user by providing all possible combination of the
best trade-offs between coverage and mutual exclusivity. This
possibility is of great relevance given that there is no commonly
shared method to set a weight between these two conflicting
objects.

Use case: vaccination targets for HNSCCs
In the following sections, we will further guide through the
features of AVAtar by presenting the use case also available on
the tutorial of the software. An in-depth medical description
of the analysis performed on AVAtar can be found in [29]. The

HNSCC analysis aims is to compare promising vaccination target
sets for different subgroups of patients with HNSCC. Clinically,
HNSCC shows distinct survival differences between the main
three primary tumor sites: oral cavity (OC), oropharynx (OP) and
larynx (L) [52]. Furthermore, HNSCC can be divided based on
the main drivers of carcinogenesis: noxious agents (smoking,
alcohol) or high-risk human papillomaviruses (HPV) [43, 107].
HPV-positive HNSCC is characterized by a much better prognosis
compared to HPV-negative HNSCC, which has previously been
shown for multiple treatment strategies [4, 62]. Shared cancer
antigens, in particular cancer-testis antigens (CTA), could play
an important role in future immunotherapy strategies for both
HPV-negative and HPV-positive HNSCC [52, 95, 103].

Thus, a comprehensive analysis of the CTA repertoire as
model antigens is needed to identify which antigens to target
based on primary tumor site and HPV status. To rationalize
vaccination efforts in clinical trials and to avoid the need
for cumbersome individual testing of antigen expression,
a semi-personalized off-the-shelve multi-antigen vaccine
covering a high rate of the respective patient cohort is
desired. In particular, for specific vaccination strategies, the
number of target antigens that can reasonably be combined
within one vaccine is limited. The task to find vaccina-
tion targets is formulated as multi-objective gene selection.
Here, we applied coverage maximization and subset size
minimization.
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Figure 6. Preparation of the HNSCC analysis and AVAtar optimization result. (A) Analysis workflow for the HNSCC use case: data preparation steps and optimization

settings. (B) Pareto set dialog of AVAtar. The found Pareto set (21 solutions) is shown on the left and a plot of the selected solution (orange circle) is shown on the right.

Dataset preparation and optimization setup
for HNSCC analysis

AVAtar offers the possibility to pre-process data by deleting
samples not relevant for the desired analysis, grouping samples
according to clinical attributes, or filtering desired genes. More
sophisticated preprocessing based on clinical data (e.g. harmo-
nization of primary sites) can be accomplished by exporting
the clinical data. Such editing and harmonization of clinical
annotations are unique features of AVAtar.

In the specific use case, two publicly available large datasets
of HNSCC patients (TCGA 2015 [75], TCGA provisional) have been
combined for the analysis. The clinical annotation for HPV status
is well defined in TCGA 2015 (> 1000 HPV E6/E7 RNA reads) but
in TCGA provisional a surrogate marker for HPV-association was
used (p16 immunohistochemistry). Therefore, the two datasets
have been combined to obtain the well-defined HPV-status def-
inition for the TCGA 2015 subset of patients. In our use case, the
datasets have been downloaded on 25 October 2018. By accessing
the preprocessing features of AVAtar cited above, the combined
dataset has been prepared as follows (see also Figure 6A):

1. The expression data from the dataset TCGA 2015 have been
inserted with alterations defined as overexpression using a
threshold equal to the standard deviation.

2. The expression data from the dataset TCGA provisional (522
samples with expression profiles) have been imported with
alterations defined as overexpression using a threshold
equal to the standard deviation. Duplicate samples that are

part of TCGA 2015 are excluded resulting in a total of 522
samples.

3. The primary tumor sites (clinical data) have been grouped
and renamed for compliance with the other dataset. This
has yielded the primary sites oral cavity, oropharynx, larynx
and hypopharynx.

4. The HPV status (attribute HPV STATUS) for the samples from
TCGA provisional has been determined based on the HPV-
p16-status (attribute HPV STATUS P16) and primary site.

5. The samples have been grouped by the primary site. Sam-
ples with primary site lip (m = 2) and hypopharynx (m = 10)
have been deleted.

6. The samples without an assigned HPV status (m = 19) have
been deleted as well.

7. Genes without overexpression and non-CTA genes have
been deleted.

The resulting dataset has 491 samples and 208 genes. Further,
the user can proceed to perform a gene analysis to get mutually
exclusive gene alterations within the selected and visualized
subgroups. In our use case example, we ran the optimization
with coverage maximization and gene count minimization on all
samples and on the selected sample groups: oropharynx, larynx,
oral cavity, HPV+ and HPV-. For the optimization of each sample
group, we chose to consider only the genes with at least 5%
alterations within that sample group. Optimization parameters
for the HNSCC analysis are listed in Table 3. A fine-grained
search with two swapped genes in expectation is used. This is
compensated by a larger number of search steps (106). Due to
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Figure 7. Optimization results for the HNSCC analysis. The objectives maximal coverage and minimal number of genes have been used in the optimization. (A) Alteration

plot (overexpression) of the 10-gene solution resulting from the optimization for all samples. Clinical subgroups are shown. (B+C) The solution comparison tables show

which genes are part (colored rectangles) of which solution (column). The solutions with at most 10 genes per primary site (B) and per HPV-status (C) are compared to

the 10-gene solution for all samples.

the large computation budget of 106 iterations with 100 solutions
resulting in 108 solution evaluations, the batch optimization
mode of AVAtar has been used to perform the six optimization
runs in parallel on a compute server.

Result visualization
An optimization using AVAtar has been performed for the
whole cohort and the sample groups resulting from the clinical
attributes of the primary tumor site and HPV status. For each
Pareto-optimal set, the solution with the largest coverage and
at most 10 genes have been selected. For the optimization
within the whole cohort, a 10-gene solution with a coverage of
92.3% has been found (Figure 6B). The visualization of coverage
and overlap by the primary site is displayed in Figure 6B and
Figure 7A. However, the gene set optimized for coverage of
all patients is dominated by OC patients, since these patients
represent 64% of the cohort. This 10-gene set has coverage of
91.7% among OC, 96.5% among L and only 87.8% among OP
indicating molecular differences among these primary sites. The

optimizations for the different primary sites yield distinct gene
sets (Figure 7B). Comparing these semi-personalized selections,
it becomes evident that a selection of up to 10 genes optimized
for the respective group of primary tumors results in an optimal
coverage for the respective group with a suboptimal coverage in
other primary sites. Since the OP cohort consisted primarily of
HPV-positive patients (72.7%) in contrast to the other primary
sites, this leads to the hypothesis that the main differences
in the CTA repertoire may be due to HPV status. Optimizing
for HPV status and comparing the gene selections of up to 10
genes for HPV-positive and HPV-negative patients, a distinct
gene selection overlapping only in one gene can be observed
(Figure 7C). The 10-gene selection found for the HPV-negative
patients differs from the selection for all patients in five genes.
The five-gene selection found for the HPV-positive patients
contains completely distinct genes compared to all-patients
selection and has only one common gene with the HPV-negative
selection. An in-depth medical discussion of the obtained results
can be found in [29].
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Table 3. Optimization parameter setup of the use case. The param-
eters are given as the easier interpretable values from the ‘simple
setup’ in AVAtar (second column) and the corresponding values from
the algorithm description (third column)

Parameter Value Algorithm
parameter value

Population size 100 μ = 100
Solution combination count 5 pcx = 0.1
Initially selected genes 20 psel ≈ 0.0962
Swapped genes 2 pmut ≈ 0.0096
Selection pressure 10 τ = 10
Search steps 106 k = 106

Conclusion
Nowadays, visualization and selection of gene alterations in
large datasets are central issues in cancer research. In partic-
ular, in the context of providing intervention targets for per-
sonalized medicine approaches. Herewith, we revised available
visualization and analysis tools and present AVAtar, our com-
prehensive software for gene visualization that also tackles the
issue of target selection. An evolutionary algorithm is built into
AVAtar to find trade-off solutions, which then can be explored
interactively. Here, finding optimal gene subsets such as tar-
get selection for semi-personalized vaccination is formulated
as a multi-objective optimization task. We further presented
a walkthrough for the use of AVAtar by showing a real case
scenario already applied in medical research [29]. The analy-
sis of HNSCC expression data demonstrates the capabilities of
AVAtar focusing on data import, visualization and optimization.
In this context, we could show that subgroup-focused analysis
can be performed with AVAtar by applying the optimization
algorithm on different patient groups separately. If the optimiza-
tion is executed separately for different clinical or molecular
patient groups, distinct optimal gene selections become evident
underlining the importance of subgroup-focused analyses in
clinical trials. The diversity in the selected genes depending
on the considered subgroups is in line with distinct molecular
differences between HPV-positive and HPV-negative HNSCC [43,
50, 89]. Apart from the demonstrated use case, AVAtar can be
used for explorative data analysis on binary or binarizable data,
e.g. mutation, expression and methylation data. The interactive
exploration of the trade-offs for the gene selection problem
found by the optimization algorithm is a unique feature of
AVAtar. To the best of our knowledge, AVAtar is the first soft-
ware integrating visualization of alteration data and analysis
via multi-objective optimization in an easily operable graphical
user interface. This is complemented by the cBioPortal and Gene
Expression Omnibus import functionality that provides access
to a vast amount of published data. Finally, the gene selection
optimization is a general method, which can be used for further
research questions such as optimal gene selection for panel
sequencing.

Key Points
• Overview of visualization and analysis tools for gene

alterations in cancer with features and limitation.
Potential improvement in the analysis and visualiza-
tion of gene alterations.

• Introduced a comprehensive platform that integrates
diverse aspects for gene alteration visualization and

analysis. AVAtar provides a user-friendly interface that
offers unique data-set processing features, gene selec-
tion analysis with an already implemented algorithm
for multi-objective gene selection and exportable
results.

• AVAtar was successfully applied to identify candidate
vaccination targets for HNSCC in different sub-groups
of patients.
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