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Abstract: Nanosensors have a central role in recent approaches to molecular recognition in applications
like imaging, drug delivery systems, and phototherapy. Fluorescent nanoparticles are particularly
attractive for such tasks owing to their emission signal that can serve as optical reporter for location or
environmental properties. Single-walled carbon nanotubes (SWCNTs) fluoresce in the near-infrared
part of the spectrum, where biological samples are relatively transparent, and they do not photobleach
or blink. These unique optical properties and their biocompatibility make SWCNTs attractive for
a variety of biomedical applications. Here, we review recent advancements in protein recognition
using SWCNTs functionalized with either natural recognition moieties or synthetic heteropolymers.
We emphasize the benefits of the versatile applicability of the SWCNT sensors in different systems
ranging from single-molecule level to in-vivo sensing in whole animal models. Finally, we discuss
challenges, opportunities, and future perspectives.

Keywords: molecular recognition; fluorescent nanoparticles; single-walled carbon nanotubes; protein
detection; nanosensors

1. Introduction

Molecular recognition of DNA, small molecules, proteins, or viruses is vital across many fields
of research, especially for the study of the underlying mechanism of biological processes, healthcare,
agriculture, food security, and environmental sciences [1–3]. Nanosensors play a key role in current sensing
technologies, enabling a deeper understanding of previously unstudied biological phenomena [4–7].
Recent developments of novel nanosensors offer promising approaches for improved clinical diagnostics
and treatments, with increasing interest in nanomaterials-based biosensors [8–18]. A sensor must have
two functionalities; namely, target recognition and signal-transduction, which translates the recognition
into a measurable signal. For recognition, a sensor can include antibodies, aptamers, DNA sequences,
molecular imprints, lectins, or synthetic moieties [19–24]. Signal transduction, on the other hand,
is usually achieved by labeling with fluorescent dyes or gold nanoparticles for immunohistochemistry
and other approaches, providing an optical indication of target binding [25–29]. The combination
of recognition with signal transduction contributes to the sensitivity and selectivity of the sensor in
biological environments [30–32]. Various nanoparticles have shown potential to be highly sensitive
and selective, such as metal nanoparticles, quantum dots, nanowires, graphene, graphene quantum
dots, and carbon nanotubes [8,9,11,12,30,33], such that they can bind and detect biologically relevant
concentrations of a target analyte. Among the numerous nanosensor platforms, the use of carbon
nanotubes as sensors for biotechnological and biomedical applications is of particular interest due to
their electrical and thermal properties, mechanical durability, and the wealth of options for further
functionalization, doping, and chemical modifications [34]. Carbon nanotubes can be divided into two
main categories according to the number of cylindrical graphene layers; namely, single-walled carbon
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nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). Whereas SWCNTs comprise
a single one-atom-thick graphene sheet rolled to form a cylinder with a diameter ranging from 0.7 to 3 nm,
MWCNTs consist of several concentric SWCNT layers whose diameters can range from approximately
1.5 nm for double-walled carbon nanotubes [35] to 220 nm for tens of layers [34].

In this review, we focus on SWCNT nanobiosensors due to their unique physical, chemical, and
optical properties [36–39]. We briefly survey the properties of SWCNTs and their various biomedical
applications, and then introduce different methods for recognizing proteins using their natural
substrates, such as protein receptors, protein-binding partners, antibodies, or aptamers, or using
a non-biological synthetic substrate bound to the SWCNT surface. We focus on recent demonstrations
of utilizing synthetic recognition sites on the nanotubes to detect different proteins. The proteins
do not necessarily have any affinity to the synthetic substrate, but rather to its pinned configuration
when wrapped around the SWCNT scaffold. Finally, we compare SWCNT sensors and other sensing
platforms, and provide a perspective on future directions.

2. Single-Walled Carbon Nanotubes

2.1. SWCNTs Properties

Single-walled carbon nanotubes are one-atom-thick graphene sheets rolled to form a cylinder with
a specific chirality and dimension [6] that determine their physical, chemical, electronic, and optical
properties [6,18,30,40,41] (Figure 1a,b). The roll up vector, which connects two lattice points on the sp2

hybridized graphene sheet, ends up as the circumference of the SWCNT and defines the orientation of
the honeycomb lattice of the nanotube. Larger diameter nanotubes have high persistence length [42],
and smaller level spacings in their electronic density of states [43] which in turn affect the optical
transitions [44]. The lattice structure further determines the chemical interaction of the SWCNT with
adsorbed surfactants or polymers, thereby enabling chirality-based separation and sorting [45–47].

Having a diameter of the order of 1 nm, and length in the range of 100 nm up to several micrometers,
SWCNTs are one-dimensional, high-aspect-ratio nanocarbon materials, with high surface areas that
can be readily functionalized. Without surface functionalization, SWCNTs are hydrophobic and tend
to bundle due to strong van der Waals attraction forces [48]. In order to form a colloidal suspension of
individually dispersed SWCNTs, they are usually non-covalently functionalized with amphiphilic
molecules or polymers by sonication [18,48–52]. Proper surface functionalization can render them
biocompatible, and thus, suitable for numerous biomedical applications, including sensing, drug
delivery, nanoinjection, phototherapy, imaging, or artificial actuation [13,30,51,53–73].

The high surface-to-volume ratio can facilitate a relatively large cargo load on SWCNTs for efficient
delivery applications. For example, SWCNTs can function as a universal drug delivery system (DDS)
for small interfering RNA (siRNA) and other oligonucleotides, having circulation times ranging from
minutes to hours. The delivery of siRNA has been observed to include pharmacokinetics, toxicity,
antitumor activity, and target protein knockdown in several cell lines [74]. In addition, SWCNTs
can penetrate cells and release siRNA into the cytoplasm [49], which is of great importance for
gene-silencing applications. Moreover, recent studies have reported the utilization of carbon nanotubes
for unassisted delivery of plasmid DNA and siRNA into a variety of model and non-model plant
species [75–77].

Semiconducting SWCNTs have unique optical properties, including bright fluorescence emission
in the near-infrared (nIR) spectral range mainly between 900 and 1600 nm, and a broad absorption
spectrum compared to organic molecules [78]. In addition, they do not photobleach or blink [16]
(Figure 1c). The photostable nIR fluorescence, along with robust functionalization, allow for the
prolonged detection of SWCNTs through biological samples such as tissues, blood, and cells, as they
are relatively transparent in this spectral range [15,30,41,51,69,73,79–86] (Figure 1d). Human blood, for
instance, has a narrow optical transparency window from 900 to 1400 nm where light can penetrate to
approximately 3–5 cm [87]. Only a few conventional markers absorb or emit strongly in this region;
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however, some suffer from low photochemical stability or poor biocompatibility [51,88]. In addition to
the optical properties, the physical dimensions of SWCNTs in the order of nanometers to a few microns
match the typical size of biological molecules, enabling precise targeting and visualization [30]. Thus,
SWCNTs are attractive candidates for biomedical imaging, detection, and sensing applications.
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semiconducting. (b) The density of electronic states of a semiconducting single-walled carbon 
nanotube structure. Solid arrows depict the excitation and emission transitions of interest; dashed 
arrows denote nonradiative relaxation. (c) Most fluorophores, such as indocyanine green (ICG), 
undergo rapid photobleaching upon continuous illumination (blue). SWCNT emission (red) remains 
photostable even under high fluence irradiation (1.3 × 107 W m−2). (d) SWCNTs fluoresce (blue) 
primarily in the near–infrared regime (900–1600 nm), where blood (red) and water (black) absorbance 
is minimal. The figure includes tissue data adapted from Wray et al. [87], reprinted with permission 
from Boghossian et al. [16], and used with permission from Wiley publication. (e) Excitation–emission 
profile of polymer-functionalized SWCNT suspension. Reprinted with permission from Bisker et al. 
[89] and used with permission from Nature Communications. 
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Figure 1. Single-walled carbon nanotubes (SWCNTs) properties. (a) A graphene sheet segment with
indexed lattice points. A nanotube with a chiral index (n,m) is obtained by rolling the sheet along
a roll-up vector originating at (0,0) up to (n,m). The chiral angle α (from 0 to 30◦) is measured
between the roll-up vector and the horizontal zigzag axis; the tube circumference is the length of
the roll-up vector. Nanotubes with chiral indexes for which mod (n-m,3) = 0 are metallic, whereas
the rest are semiconducting. (b) The density of electronic states of a semiconducting single-walled
carbon nanotube structure. Solid arrows depict the excitation and emission transitions of interest;
dashed arrows denote nonradiative relaxation. (c) Most fluorophores, such as indocyanine green (ICG),
undergo rapid photobleaching upon continuous illumination (blue). SWCNT emission (red) remains
photostable even under high fluence irradiation (1.3 × 107 W m−2). (d) SWCNTs fluoresce (blue)
primarily in the near–infrared regime (900–1600 nm), where blood (red) and water (black) absorbance is
minimal. The figure includes tissue data adapted from Wray et al. [87], reprinted with permission from
Boghossian et al. [16], and used with permission from Wiley publication. (e) Excitation–emission profile
of polymer-functionalized SWCNT suspension. Reprinted with permission from Bisker et al. [89] and
used with permission from Nature Communications.

2.2. SWCNTs as Optical Sensors

The fluorescence signal of SWCNTs is sensitive to the environment and can be affected by
global changes in pH and ionic strength [90] or local changes in surface functionalization or even
single-molecule adsorption [91]. The surface functionalization forms a corona phase surrounding
the nanotube scaffold, which mediates the interaction of the SWCNT with molecular analytes in its
proximity, and thus determines the fluorescence modulation upon surface binding. The SWCNT
fluorescence originates from a radiative recombination of excitons, which have strong binding
energy [16]. Upon target binding, there are several mechanisms that can lead to the modulation
of the emitted light, including exciton quenching due to competitive non-radiative decay, a shift in
the Fermi level leading to absorption bleaching, and reorientations of the solvent dipole moments
in close proximity to the SWCNT due to conformational changes of the corona phase, resulting in
a solvatochromic shift [92,93].
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Hence, SWCNTs can be used for sensing applications as fluorescence signal transducers, with the
benefits of high photostability, lack of photobleaching, and physical size comparable to the typical size
of target biomolecules [30,49]. The various chiralities can enable multiplexed detection by monitoring
the emission in different wavelength channels (Figure 1e), facilitating high throughput screening [6]
and hyperspectral imaging [94]. Further, different chiralities within the same SWCNT suspension can
respond differently to a target analyte, owing to differences in the chemical interactions between the
wrapping polymer and the underlying lattice structure of the nanotube [95].

Owing to their unique optical properties, SWCNTs have been utilized as optical sensors for
biomarkers of human diseases, including different types of cancer, glucose levels in diabetics, and H2O2

in reactive oxygen signaling pathways [83,96–98]. Single-walled carbon nanotubes functionalized with
nucleic acids or peptides form stable complexes, even in complex biological environments [99–105],
with increased thermal stability up to 200 ◦C [105]. Moreover, SWCNTs functionalized with DNA
sequences containing an endonuclease recognition site have been successfully used to study restriction
enzyme activity by monitoring their fluorescent emissions [106]. The DNA-SWCNTs have shown
increased fluorescence intensity in response to neurotransmitters and have successfully detected
dopamine efflux in neuroprogenitor cell cultures [107–111] and in acute brain slices [112,113]. Further,
(GT)6-SWCNT has successfully detected dopamine and norepinephrine in a broad range of pH and
salt concentrations, suggesting the potential compatibility for in-vivo neurophysiological use [113,114].
A recent study has demonstrated the recognition of the neurotransmitter serotonin using SWCNTs
wrapped with a serotonin-aptamer. This nanosensor was immobilized on a glass surface, on which
human blood platelets were cultured, and were shown to detect serotonin release patterns from
the cells in real time [115]. Additionally, DNA-wrapped SWCNTs were utilized for the detection of
a single-stranded RNA genome of an intact HIV particle [116] and of doxorubicin, a chemotherapy
drug effective against dividing cells due to its affinity to DNA [117]. Further, DNA-SWCNTs were
engineered to quantify microRNA hybridization, by a solvatochromic-like response following DNA
displacement from the nanotubes’ surface [118]. In addition, SWCNTs functionalized with boronic
acid-modified dextran, PEG-brush, and rhodamine isothiocyanate functionalized-PEG were shown to
be selective sensors for the small molecules riboflavin, L-thyroxine, and estradiol, respectively [119].

3. Protein Recognition with SWCNTs

The recognition of large bio-macromolecules poses a different challenge owing to the size,
complexity, and various conformations of the target, as in the case of proteins [120]. Nevertheless,
SWCNTs have been successfully utilized for protein detection and for the study of protein–protein
interaction by surface functionalization with either natural substrates or synthetic ones.

3.1. Natural Protein Recognition

One approach for protein detection is to use the natural binding partner of the target protein as
a recognition site on the SWCNTs. This can be achieved, for example, by using an antibody, an aptamer,
or a DNA recognition sequence, in order to exploit the original protein–protein or protein–DNA
interactions for sensing applications.

A label-free detection was demonstrated in Ahn et al. [121] using nanotubes functionalized with
chitosan polymer modified with nitrilotriacetic acid (NTA) chelator. The chitosan was utilized owing
to the accessibility of functional groups for additional modification. The NTA chelated Ni2+ and
served as a proximity quencher modulating the SWCNT fluorescence intensity as a function of distance
(Figure 2a). The NTA-Ni2+ group can bind to any hexahistidine tagged (his-tag) capture protein,
which serves as a natural binding site for the protein of interest. For example, a his-tagged protein A
bound to the NTA-Ni2+ group was used to capture human immunoglobulin G (IgG) [122]. A binding
of the target protein leads to a modulation of the fluorescence intensity, enabling the studying of
protein–protein interactions, protein glycoprofiles, and protein quantification [30,121–123].
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Figure 2. Detecting protein–protein interactions using SWCNTs. (a) Schematic of label-free protein
sensor array with fluorescent SWCNTs. The SWCNT suspension was spotted on a glass and
functionalized with NTA-Ni2+ to bind his-tagged capture proteins and detect the interaction between
the captured protein and a target protein. The his-tagged capture proteins were first immobilized
by the NTA-Ni2+ groups through their his-tag residues. Subsequently, upon the addition of a target
protein to each spot and their binding to the corresponding capture proteins, the distance between the
Ni2+ quencher and the SWCNT surface changed, resulting in a fluorescence modulation. Reprinted
with permission from Ahn et al. [121], copyright 2011 American Chemical Society. (b) Illustration of the
anti-uPA–DNA–SWCNT complexes. Reprinted with permission from Williams et al. [124]. Copyright
2018 American Chemical Society.

Satishkumar et al. [125] used fluorescent SWCNT sensors for the detection of avidin by conjugating
redox-active dyes bound to a recognition element, biotin, to the SWCNT surface. The biotinylated dyes
were quenched when adsorbed onto the SWCNTs, such that avidin binding resulted in their desorption
from the nanotubes and the recovery of the fluorescence. The mechanism of the fluorescence quenching
relies on oxidative charge-transfer reactions with small redox-active organic dye molecules [30]. This
concept, of dye-ligand complex conjugated to SWCNT, can be highly versatile for a wide range of
bioanalytes, through the choice of the specific receptor group attached to the quenched dye [125].

Additional studies showed the detection of the prostate cancer biomarker, urokinase plasminogen
activator (uPA), using DNA-SWCNTs conjugated to an anti-uPA antibody (Figure 2b) [124], and
the detection of single RAP1 proteins secreted from individual Escherichia coli cells using SWCNTs
functionalized with the RAP1 aptamer [126]. Further, Lee et al. demonstrated the optical detection
of insulin and platelet-derived growth factor with the corresponding aptamers through two distinct
mechanisms; namely, direct protein binding to the aptamer-SWCNT complex and the detachment of the
aptamer from the SWCNTs’ surface following protein binding, both leading to a decrease in fluorescence
intensity [127]. Moreover, SWCNTs functionalized with HE4 antibody showed a nanomolar sensitivity
for HE4, a biomarker for high-grade ovarian carcinoma, enabling noninvasive optical detection of
cancer biomarkers [128].

3.2. Synthetic Protein Recognition

Molecular recognition can also be achieved using a synthetic SWCNT corona [119]. In this
approach, a synthetic amphiphilic polymer is adsorbed onto the hydrophobic surface of the SWCNT.
The hydrophobic domains of the polymer form a stable polymer-nanotube complex, whereas the
hydrophilic regions extend into the aqueous environment (Figure 3a,b). The conformation of the
amphiphilic polymer, that is, the corona phase, can enable the binding of a specific analyte, resulting in
spectral modulations (Figure 3c). In order to discover new corona phases for molecular recognition,
a library of polymer-conjugated SWCNT is screened against a panel of analyses, and the nIR fluorescence
emission is monitored for intensity changes or wavelength shifts [89,119,129,130]. A successful screen
results in a corona phase that can specifically and selectively recognize a target analyte [119]. In parallel,
theoretical efforts have led to preliminary design principles of a specific configuration of a short
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polymer wrapping that would recognize the contour and functional groups of a small molecule or
a protein of interest [131].

The interaction between the target analyte and the functionalized SWCNTs, and the resulting
fluorescence modulation, depend on many factors, including the nanotube chirality, the composition and
valency of the polymer corona, and the lipophilicity and redox potential of the target [60,95,107,122,132].
The molecular interaction mediated by the SWCNT corona is an active area of research, where
experimental and numerical tools are rapidly being developed in order to shed light on the underlying
mechanism of this complex interaction [95,131–135].

The first high-throughput screening of synthetic polymer coronae of SWCNTs targeted a small
molecules library [119]. Subsequently, the first protein-targeted corona phase screen has led to the
discovery of a sensor for the protein fibrinogen [89]. In this study, 20 SWCNT corona phases were
screened against a protein library consisting of 14 proteins from the whole human blood, either the
most abundant or of clinical significance, including albumin, transferrin, haptoglobin, fibrinogen,
α1-antitrypsin, α1-acid-glycoprotein, human chorionic gonadotropin (hCG), α2-macroglobin,
immunoglobulin A (IgA), IgG, IgM, apolipoprotein A-I, C-reactive protein (CRP), and insulin [89].
The screen revealed a specific sensor for fibrinogen, using dipalmitoyl-phosphatidylethanolamine
(DPPE)-PEG(5kDa) corona (Figure 3d). Fibrinogen is one of the most abundant proteins in the plasma,
with an elongated structure that consists of three globular domains connected by coiled-coil helical
chains [136,137]. The detection of fibrinogen was also demonstrated in competitive assays in the
presence of albumin, which is usually used as a nonspecific binding agent [138–140], or in serum
environment. Nonselective parameters such as the molecular weight and hydrophobicity of the
proteins, or the surface coverage of the polymer, showed no correlation with the fluorescence response,
supporting the hypothesis that the combination of the three-dimensional structure of a target protein,
along with the conformation of the phospholipid-PEG corona adopted when pinned around the
nanotubes, is a key factor in successful molecular recognition [89].

An extended corona phase screen against the same protein panel revealed a sensor for insulin [129].
Insulin is a small peptide hormone which plays a key role in blood glucose regulation [141]. Through
the secretion of insulin, the pancreas stimulates glucose uptake in order to synthesize lipids, and
inhibits the production of ketone bodies and the breakdown of proteins, glycogen, and lipids [142].
The high-throughput corona phase screen was done with PEGylated-lipids-SWCNTs, where the
C16-PEG(2kDa)-ceramide-SWCNT complex showed a specific and selective quenching response to
insulin. The corona phase showed no prior affinity towards insulin, validated using isothermal titration
calorimetry (Figure 3e), by comparing the heat released while injecting the C16-PEG(2kDa)-ceramide
into an insulin solution or phosphate-buffered saline (PBS) [129]. The new synthetic nIR fluorescent
nanoparticle paves the way to real-time detection of insulin levels in vivo using an encapsulating
implant [30,55,62,83,143,144]. Inference of insulin levels in the various body compartments can be
achieved using a pharmacokinetic model of insulin, glucose, and glucagon metabolism [55].

In a recent study, Budhathoki-Uprety et al. developed an albumin nanosensor using SWCNTs
functionalized with polycarbodiimide polymers incorporating phenyl rings, which mimic fatty acid
binding to albumin [145]. Albumin detection was demonstrated in minimally processed urine
samples of microalbuminuria patients under ambient conditions, with similar sensitivity compared
to antibody-based clinical assay, suggesting that this antibody-free detection can facilitate diagnosis
in point-of-care and resource-limited settings (Figure 3f) [145]. A different approach for protein
recognition was demonstrated by Chio et al. using peptoid-functionalized SWCNTs [146]. Peptoids
are easy to manufacture, resistant to proteases activities, and can specifically recognize enzymes and
proteins [147,148]. In their study, Chio et al. utilized an anchor-loop peptoid corona for the recognition
of the lectin protein wheat germ agglutinin (WGA), and further validated that the WGA kept its
functionality of binding to target sugars (Figure 3g) [146].
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Figure 3. Synthetic coronae for protein recognition. (a) SWCNT is suspended using a synthetic
heteropolymer with hydrophilic and hydrophobic domains. (b) The heteropolymer is adsorbed onto
the surface of the SWCNT to form a corona phase around the nanotube, which facilitates the recognition
of a specific analyte, (c) resulting in a fluorescence modulation signature for sensing applications. From
Landry et al. [134], used with permission from Sensors. (d) Heat map of the normalized response of the
SWCNTs’ fluorescence intensity to the various proteins demonstrating the selective and specific response
of (DPPE)-PEG(5kDa)-SWCNT to fibrinogen. From Bisker et al. [89], used with permission from Nature
Communications. (e) Binding isotherm for the titration of C16-PEG(2kDa)-ceramide into insulin solution
(blue circles) or PBS (red squares) plotted against the molar ratio of C16-PEG(2kDa)-ceramide to insulin.
The overlapping curves of the injections into insulin or PBS indicate that the heat released in both
cases is similar, manifesting a lack of affinity between insulin and C16-PEG(2kDa)-ceramide without
the nanotube scaffold. Reprinted with permission from Bisker et al. [129]. Copyright 2018 American
Chemical Society. (f) A proposed albumin recognition model by the carboxylate-rich, hydrophobic
polymer, potentially due to mimicking the head group of fatty acids that bind albumin through salt
bridges or hydrogen bonds. Reprinted from Budhathoki-Uprety et al. [145], used with permission from
Nature Communications. (g) Peptoid-SWCNT complexes for protein recognition. An anchor region of
the peptoid is adsorbed to the SWCNT surface, whereas a flanking loop segment interacts with the
target protein, resulting in fluorescence modulation. Reprinted from Chio et al. [146]. Copyright 2019
American Chemical Society.

4. SWCNTs Advantages

Traditional recognition methods use antibodies to identify small and macromolecular targets.
Antibody-antigen pairs have a wide range of applications, from diagnostics and therapeutics to basic
and clinical research [149,150]. Although they benefit from high selectivity and specificity to the
antigens, a major limitation of antibodies in high-throughput research is the need for injecting the
antigen into an animal as the first step of production [151].
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Protein corona phase molecular recognition using SWCNT offers an alternative approach for
various assays, in which degradation, stability, cost, and production scale prevent natural recognition
elements, such as antibodies, from being employed. In this method, the synthetic polymer used
for recognition does not necessarily have any prior affinity to the target protein; rather, its pinned
configuration upon wrapping the nanotube surface forms a conformational binding site. A discovery of
such nanosensors can be driven by high-throughput screening with rapid manufacturing processes [119].
This can generate synthetic, non-biological antibody analogs that can overcome some of the limitations
of the conventional ones, including long development times; high production costs; the need for
living organisms for initial production; challenging reproducibility; poor stability due to hydrolysis in
ambient temperature, resulting in limited shelf time’ and sensitivity to degradation while circulating
in vivo [152–154]. In contrast, SWCNTs demonstrated long-term stability in vivo [62] and were shown
to protect DNA or siRNA from cellular nuclease degradation [49,155]. Hence, SWCNT recognition offers
a stable and reproducible construct that can push forward discovery research in the field [18,89,119].

The fluorescence of SWCNTs has several advantages over common organic fluorescent dyes and
fluorescent quantum dots. The main limitation of organic fluorophores is the inevitable photobleaching
that restricts their utilization for real-time microscopy experiments lasting several hours [51,156].
Further, organic fluorophores are quenched when jointly applied with hematoxylin and eosin
(H&E), an important stain used for evaluation of histological sections [157–159]. Quantum dots
are attractive probes for microscopy and imaging, owing to their photophysical properties, including
their photostability and narrow bandwidth fluorescence emission with a wide excitation range [160].
They are mainly used as inert markers [161–166] and FRET-based sensors [167] for both in vitro and
in vivo applications. They are highly luminescent semiconducting nanoparticles, and are approximately
100 times more resistant to photobleaching than organic fluorophore. Nevertheless, they suffer from
signal attenuation under prolonged excitation, fluorescence blinking, complicated surface chemistry,
and potentially cause long-term heavy-metal toxicity [168–171]. Single-walled carbon nanotubes
overcome these limitations owing to their inherent non-photobleaching, non-blinking fluorescence,
and their sp2 hybridized all-carbon structure that gives rise to easy surface functionalization and
biocompatibility [14,62,172]. Hence, SWCNTs are subjected to intensive research in many emerging
applications of optical nanosensors that exploit their nIR fluorescent emission and surface chemistry
for target recognition and signal transduction [10,16,30,41,50].

5. Conclusions

This review provides an overview and a comprehensive survey of the utilization of SWCNTs for
biosensing applications. The non-photobleaching, non-blinking fluorescent emission of SWCNTs plays
a key role in rendering them optical sensors, enabling in situ, label-free, real-time detection with both
spatial and temporal resolution [89,113,115]. Recent studies have demonstrated the detection of proteins
using various approaches for surface functionalization, including natural substrates [53,121,125] and
synthetic polymers [89,129,145], with the potential to enable long-term continuous monitoring of
important biomarkers or to replace costly and time-consuming laboratory testing [173]. We have
highlighted the advantages of SWCNTs for in-vivo and in-vitro biomedical applications such as
drug delivery, imaging, and sensing, focusing on protein recognition. Their considerable potential to
advance research and applications in this field has drawn increasing attention in recent years, opening
new avenues for future discoveries [18].

In summary, the unique properties of SWCNTs make them excellent candidates for sensing proteins
and bio-macromolecules, with optical signal transduction, where advancements in nanotechnology
design, synthesis, characterization, and modeling will continue to push forward the discovery of new
SWCNT-based fluorescent sensors.
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