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Abstract 

Background:  In bacteria, genes with related functions—such as those involved in 
the metabolism of the same compound or in infection processes—are often physi‑
cally close on the genome and form groups called clusters. The enrichment of such 
clusters over various distantly related bacteria can be used to predict the roles of genes 
of unknown function that cluster with characterised genes. There is no obvious rule to 
define a cluster, given their variability in size and intergenic distances, and the defini‑
tion of what comprises a “gene”, since genes can gain and lose domains over time. Pro‑
tein domains can cluster within a gene, or in adjacent genes of related function, and in 
both cases these are chromosomally clustered. Here, we model the distances between 
pairs of protein domain coding regions across a wide range of bacteria and archaea via 
a probabilistic two component mixture model, without imposing arbitrary thresholds 
in terms of gene numbers or distances.

Results:  We trained our model using matched gene ontology terms to label function‑
ally related pairs and assess the stability of the parameters of the model across 14,178 
archaeal and bacterial strains. We found that the parameters of our mixture model are 
remarkably stable across bacteria and archaea, except for endosymbionts and obligate 
intracellular pathogens. Obligate pathogens have smaller genomes, and although 
they vary, on average do not show noticeably different clustering distances; the main 
difference in the parameter estimates is that a far greater proportion of the genes 
sharing ontology terms are clustered. This may reflect that these genomes are enriched 
for complexes encoded by clustered core housekeeping genes, as a proportion of the 
total genes. Given the overall stability of the parameter estimates, we then used the 
mean parameter estimates across the entire dataset to investigate which gene ontol‑
ogy terms are most frequently associated with clustered genes.

Conclusions:  Given the stability of the mixture model across species, it may be used 
to predict bacterial gene clusters that are shared across multiple species, in addition to 
giving insights into the evolutionary pressures on the chromosomal locations of genes 
in different species.
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Background
Bacterial and archaeal genomes have a characteristic structural organisation where func-
tionally interacting genes, such as those encoding for the subunits of the same protein 
complex or involved in the same pathway, physically aggregate in blocks (clusters) on the 
chromosome. This feature provides an evolutionarily advantage by enabling these cells to 
regulate and trade these genes as a unit, rather than as a set of independent entities [1]. 
Indeed, contiguous genes on the same DNA strand can be co-transcribed in response 
to the same stimuli through a shared promoter, as happens within the family of gene 
clusters known as operons, first described in [2]. Adjacent genes are also transferable to 
other microorganisms within an individual fragment of DNA of relatively moderate size, 
thus allowing cell-to-cell transmission of whole pathways through a single exchange of 
genetic material [3, 4].

Microbial gene clusters have been found to be implicated in a wide variety of biologi-
cal processes that range from basic cell survival, as in the case of clusters of genes encod-
ing for ribosomal subunits [5] or for proteins conferring immunity to bacteriophages’ 
attacks [6], to highly specialised metabolic pathways that provide, for instance, photo-
synthetic [7] or magnetotactic [8] abilities. Bacterial clusters are also of pivotal impor-
tance in bacterial-induced disease, as observed in Escherichia coli strains that gain the 
ability to infect humans upon acquisition of DNA segments encoding for enterotoxins 
and other infection machineries [9].

The existence of chromosomal clustering is also relevant in the field of computational 
biology, in particular for the prediction of the function of bacterial and archaeal genes 
[10]. Microbial genome sequences can in fact be examined to identify the clustering 
partners of genes with unknown cellular role and assign them hypothetical functions 
based on the known properties of the other members of the cluster. For instance, a trans-
porter protein clustering with enzymes catalysing a certain metabolic pathway could be 
responsible for the import of the substrate of this pathway; coding sequences located 
close to toxin injection systems could represent unidentified microbial toxins. Compu-
tational methods aimed at predicting functional partners, such as [11] often aggregate 
across a number of common data sources available for many species, such as scientific 
literature co-mentions of genes, experimental data, inference through homology, as well 
as gene clustering. However, since gene clustering is the information source available 
across all bacteria with sequenced genomes, it is important to be able to understand 
its dynamics and evaluate its predictive power independent of more variable informa-
tion sources. Ideally gene clustering should rely on more than genomic distances, since 
operon co-membership and chromosomal 3D conformation (such as Hi-C) could con-
tribute very functionally relevant information. However, since such experimental data 
is only available for a small subset of genomes, and computational inferences of these 
properties may introduce biases relating to sequence composition of species, we chose 
here to focus exclusively on genomic distance among protein domains as the central 
information to model.

Different approaches to the problem of chromosomal clustering prediction have been 
proposed in the past, and all share fundamental methodological challenges. One of 
these challenges comes from the lack of systematic information about the values of the 
structural properties of clusters of genes, namely their expected total size and average 
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distance (also called intergenic gap) between adjacent clustering genes. A previous study 
showed that, in Escherichia coli, adjacent genes from the same operon tend to have 
slightly smaller intergenic distances than adjacent genes that are not co-transcribed 
[12]. Similar properties have been found to apply to the Gram positive model bacterium 
Bacillus subtilis [13]. To our knowledge, no other similar studies have been performed 
on multiple microorganisms, mostly due to the scarcity of well-annotated datasets of 
experimentally validated clusters. Clustering parameters are therefore usually either 
set to arbitrary thresholds [11, 14–23] or inferred from a few well-known clusters from 
model species [12, 24]. These simplifications, however, are hard to evaluate and it is pos-
sible that they may not be equally suitable for all typologies of microbes or clusters.

Here, we illustrate the results of a large-scale analysis of putative chromosomal clus-
ters carried out on publicly available whole-genome sequences from 14,178 archaeal and 
bacterial strains. This extensive dataset covered microorganisms from a multitude of 
taxonomical groups, growth environments and metabolisms. Due to the technical and 
computational challenges related to the processing of such a large amount of genomic 
data, this represents one of the biggest surveys of chromosomal clustering in bacteria 
and archaea available to date. As previously proposed by [19], we chose to focus on 
clusters of protein domain coding regions instead of whole genes. Indeed, proteins, and 
consequently protein coding genes, have been widely shown to have a modular struc-
ture consisting of one or more regions with (semi-)autonomous function and structure. 
These regions, called protein domains, can either exist as independent proteins or aggre-
gate in different combinations that yield different protein products. It has been exten-
sively argued that protein domains are the true functional and evolutionary units of 
protein coding genes [25], and it is thus reasonable to also treat them as units of chro-
mosomal clustering.

All the genome assemblies in the dataset were examined for already known clusters 
of protein domain coding regions by the design and application of a novel method. This 
approach, based on the concept that the products of clustering genes have related roles 
within the cell, reduces the need for arbitrary parameter choices in clustering prediction 
models. We show that selecting for regions encoding for protein domains with shared 
functional annotations, mainly assigned based on their sequence similarity with experi-
mentally characterised domains, leads to an enrichment of regions located proximally to 
each other. This proximity can be modelled using probability distribution functions that 
associate the distance on the chromosome of two domains to their probability of being 
part of the same cluster. The parameters of these distributions seem not to depend on 
the functional classes of the assayed domains or on the biological features and chromo-
somal structures of single microorganisms, and could be applied to the computational 
prediction of novel clusters.

Results
This study was conducted on a dataset of 14,178 genome assemblies, corresponding to 
13,883 bacterial and 295 archaeal strains. Assayed bacterial assemblies included rep-
resentatives for 38 unique phyla (with 4 assemblies not assigned to any known phyla), 
1138 genera (113 assemblies with unassigned genus) and 4180 species. Of these spe-
cies, 873 were represented by more than one strain, up to a maximum of 839 strains 
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for Escherichia coli. Archaeal assemblies contained strains from 5 unique phyla (1 unas-
signed), 101 genera (5 unassigned) and 228 species. Only 26 archaeal species had more 
than one strain representative, with Saccharolobus solfataricus having the maximum 
number of strains (12). A phylogenetic tree showing the taxonomy of all the strains used 
in this analysis is shown in Fig. 1.

The genome of most known archaea and bacteria consists of one or more independent 
DNA elements capable of self-replication (replicons). It is usually possible to recognise 
a main, longer DNA molecule (chromosome), often of circular shape, accompanied by 
one or more shorter replicons. In this dataset, 8,337 (60.05%) of the total bacterial and 
214 (72.54%) of the total archaeal assemblies consisted of a single chromosome, with 
the remaining genomes containing between two and 22 (bacteria) or 9 (archaea) repli-
cons each (Fig. 2, panel A). The length of the main chromosome in bacteria ranged from 
the 112 kb of Candidatus Nasuia deltocephalinicola to the 14.782 Mb of the soil bacte-
rium Sorangium cellulosum So0157-2, with a median length of 3.925 Mb. In archaea, 
it ranged from 952 kb (candidate strain of Mancarchaeum acidiphilum, Candidatus 

Fig. 1  Maximum likelihood phylogenetic tree of the 14,178 complete genome assemblies examined in this 
analysis. The tree was obtained from a concatenated alignment of the sequences of the 107 housekeeping 
protein coding genes listed in Additional file 1: Table S1. Purple tree branches correspond to archaea, while 
the remaining branches correspond to bacteria. Only the main phylogenetic groups, composed of more than 
20 assemblies each, are annotated. The Tenericutes clade is branching from within Firmicutes in accordance 
with the current established view on the origin of this group [26, 27]
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Micrarchaeota) to 5.440 Mb (Haloterrigena turkmenica DSM 5511), with a median of 
2.226 Mb. Additional replicons were usually shorter (Fig.  2, panel B), with a median 
length of 66 kb for bacteria and 129 kb for archaea.

Our analysis considered protein domain coding regions as fundamental units of chro-
mosomal clustering in place of whole genes (see   Background and [25] for justifica-
tion of this choice). Accordingly, predicted gene sequences from every assembly were 
segmented into one or more sub-sequences, corresponding to protein domain coding 
portions (hereby referred to as “domains”). We used the online database Pfam (https://​
pfam.​xfam.​org/, [28]) to annotate domains.1 Currently on its 32nd release, Pfam con-
tains information regarding 17,  929 families of protein domains found in eukaryotes, 
bacteria or archaea. Distinct domains found within the same gene coding sequence were 
labelled as fused. More than one copy (homolog) of the same domain was sometimes 
found within the same chromosome or gene. The median percentage of predicted genes 

Fig. 2  Properties of the DNA replicons found in the 14,178 analysed genome assemblies. Panel A shows the 
number of DNA replicons in the 295 archaeal and 13,883 bacterial genome assemblies analysed; panel B 
shows the distribution of DNA replicon sizes in the same dataset

1  We describe our steps in annotating these “Pfam domains” in Annotation with Pfam domain coding regions.

https://pfam.xfam.org/
https://pfam.xfam.org/
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containing no matches for any Pfam protein domain families was 12.9% in bacteria and 
24.24% in archaea (Fig. 3). In total, 14,662 different Pfam domain families were predicted 
to be present at least once in the dataset.

Pre‑existing functional annotations can be used to model known clustering domains

We first reviewed putative clustering domains present in any of the 14,178 total genome 
assemblies to obtain information about the typical expected structural properties of 
clusters. Every assembly was tested individually to verify whether these properties were 
strain-specific, depending for instance on the size of the genome or habitat of each 
organism, or if they followed some constant patterns.

It is straight-forward to see how, under no previous assumptions about the structure 
of microbial chromosomal clusters, the minimum amount of domains required to form 
a cluster is two. Accordingly, our analysis started with the definition of all the possible 
pairing of domains found on the main chromosome of each assembly. For instance, for 

Fig. 3  Relationship between the length of the main chromosome and the number of annotated genes 
or number of genes without predicted protein domain coding regions in the 14,178 genome assemblies 
analysed. Panels A show the total number of annotated gene coding sequences versus the length of the 
main chromosome in the 295 archaeal (top row) and 13,883 bacterial (bottom row) genome assemblies. 
Panels B show the number of annotated genes containing no predicted Pfam protein domain coding regions 
on the main chromosome versus the length of the main chromosome in the 295 archaeal (top row) and 
13,883 bacterial (bottom row) genome assemblies
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a chromosome containing four domains a1, a2, b, c (with a1 and a2 being two copies of 
domain a located in different regions of the chromosome) the complete set of these pairs 
was {(domain a1 , domain b), (domain a1 , domain c), (domain a2 , domain b), (domain a2 , 
domain c), (domain b, domain c), (domain a1 , domain a2)} . Pairs involving copies of the 
same domain, such as (domain a1 , domain a2 ), were excluded from further analyses. In 
bacteria, the total number of domain pairs per chromosome ranged between approxi-
mately 11 thousand (strain PUNC of Candidatus Nasuia deltocephalinicola) to just over 
92 million (Gram positive Nonomuraea sp. ATCC 55076), with a median of just over 9 
million. In archaea, the same variable went from just under 464 thousand (Candidatus 
Mancarchaeum acidiphilum strain Mia14) to approximately 11.8 million (Saccharolobus 
solfataricus strain SULG), with a median approximately 3 million (Fig. 4).

Our next step was to examine the arrangement on the chromosome of those pairs 
where the two domains had similar known cellular roles, which were the best candidates 
to be part of the same cluster. These pairs were identified by annotating every domain 
in the dataset with Gene Ontology Biological Process (GOBP) terms, a set of standard-
ised labels that describe previous knowledge about the involvement of protein domains 
in specific cellular pathways. For instance, domains corresponding to subunits of the 
ribosome were linked to the GOBP term translation (GO:0006412); domains found in 
bacterial flagella were annotated with bacterial-type flagellum dependent cell motility 
(GO:0071973). Other domains corresponding to known toxins or other infection factors 
were annotated with the more generic process pathogenesis (GO:0009405). All domain 
pairs on each chromosome were then divided into two subsets: (1) functionally inter-
acting pairs, when the two involved domains had at least one identical GOBP annota-
tion, and (2) other pairs, when the two domains did not share any GOBP annotations 
(including cases when one or both domains had no associated GOBP annotations at all). 
Note that, out of the 14,662 types of domains found at least once in the dataset, 11,947 
(81.45%) were not associated to any GOBP term, meaning that the function of most of 
these domains is still unknown or poorly annotated in public databases.

Fig. 4  Relationship between main chromosome size and number of pairs of predicted Pfam coding regions 
in the 14,178 assemblies analysed. Panel A shows the number of predicted pairs of protein domain regions 
with unique coordinates versus the length of the main chromosome in the 295 archaeal genome assemblies. 
Panel B shows the same variables for the 13,883 bacterial genome assemblies
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The position of the two members of the above defined functionally interacting pairs 
on each chromosome was assessed by measuring the size of the smallest DNA fragment 
having the two members of the pair at the two ends (pair chromosomal distance). In 
all 14,178 genome assemblies, these distances were approximately uniformly distrib-
uted between zero and half the total length of each chromosome, with the exception of 
a notable peak of observations in correspondence of the beginning of this distribution 
(shown in Figs. 5 and 6 (panels A) for a select subset of strains). This peak, correspond-
ing to domains located roughly within 5 kb from each other, was consistently observed in 
all examined chromosomes. To test whether the peak of closely mapping pairs was char-
acteristic of functionally interacting domains, the same analysis was repeated on domain 
pairs with no shared GOBP annotations. In this case, all measured chromosomal dis-
tances were uniformly distributed between zero and half the length of the chromosome, 
with no detectable enrichment of domains mapping close on the chromosome (Figs. 5 
and 6, panels B). This behaviour was consistent in all genome assemblies, with the excep-
tion of some Mycoplasma strains such as Mycoplasma haemofelis str. Langford 1 (Fig. 5, 
panel Tenericutes (b)), where an enrichment of close pairs was present even for non-
functionally interacting domains.

The observed chromosomal distances for pairs of domains indicate that function-
ally interacting domains display a preference towards being located within a relatively 
small distance of each other, as expected because of their known tendency to aggregate 
in chromosomal clusters. Domains with no known functional interactions, on the other 
hand, appeared to be as likely to be adjacent as on opposite regions of the chromosome 
(note that, on a circular chromosome, this corresponds to half the total length of the 
DNA molecule), consistent with previous knowledge that most genes in archaea and 
bacteria have very close neighbours [17]. The observation of the same uniform distribu-
tion of distances for the majority of the functionally interacting pairs also suggested that 
not all functionally interacting domains (at least, when GOBP annotations are used to 
define functional interactions) are part of a single chromosomal cluster. These observa-
tions were used to build a clustering model as detailed in Methods, and the parameters 
of the models were then estimated in each assembly to compare their values across dif-
ferent organisms.

Clustering parameters are stable across microbial strains, with the exception 

of intracellular parasites and endosymbionts

The fitting of the clustering model on functionally related pairs in each assembly ren-
dered 14,178 assembly-specific estimates for the two parameters �(i) and φ(i) (Fig. 7). For 
�
(i) , representing the rate parameter of the distribution of distances of clustering pairs, 

these estimates ranged between a minimum of 1.70 × 10−4 , in Candidatus Uzinura dias-
pidicola str. ASNER (whose chromosomal pair distances are shown in panel Bacteroi-
detes, Fig. 5), to 1.07 × 10−3 for Mycoplasma mycoides subsp. mycoides SC str. Gladysdale 
(panel Tenericutes (a) in Fig. 5). The mean and variance of the exponential distribution 
are the reciprocals of the rate parameter and of its square, respectively. Accordingly, the 
above values of �̂(i) corresponded to an expected chromosomal distance of 5,882.35 base 
pairs in U. disapidicola ASNER (which has an average protein coding region length of 
913.34 bp and an average intergenic spacer length of 153.36 bp) and 934.58 bp. in M. 
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mycoides Gladysdale (average protein coding region length: 350.54 bp; average inter-
genic region length: 243.0 bp).

The estimated values for �̂(i) were relatively stable across genome assemblies, with the 
highest variation observed for genome assemblies where the main chromosome was 
between 112 kb and 1.193 Mb in length (those to the left of the vertical dashed lines 

Fig. 5  Distributions of chromosomal distances for pairs of Pfam protein domain coding regions in different 
bacterial phyla. Chromosomal distance, expressed in number of base pairs, between the two members of 
all pairs of domains where the two domains had one or more Gene Ontology Biological Process (GOBP) 
annotation in common (functionally interacting pairs). Inset on top right of each panel is a zoomed in view of 
the first 0 to 10 kbp to highlight the peak observed at low distances. Additional file 1: Fig. S1 includes these 
figures along with the same distribution for pairs where the two domains did not have any common GOBP 
annotations
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in both panels of Fig. 7). For this subset of genome assemblies, the mean and standard 
deviation of the estimated rate parameter corresponded to 4.62 × 10−4 and 8.99 × 10−4 , 
respectively (the expected domain chromosomal distance for the mean value of �̂(i) was 
2,164.50). In the remaining genome assemblies, the mean of �̂(i) was 5.16 × 10−4 , with a 
standard deviation of 6.25 × 10−4 (expected chromosomal distance for the mean value 
of �̂(i) : 1,937.98). No appreciable differences were observed for estimates computed on 
archaeal versus bacterial genome assemblies. The set of organisms with short chromo-
somes and highly variable �̂(i) values consisted of strains from the genera Blattabacte-
ria, Borreliae, Chlamidiae, Entoplasmae, Mesoplasmae, Mycoplasmae, Rickettsiae, 

Fig. 5  continued
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Spiroplasmae, Ureaplasmae and other less frequent species, all characterised by an obli-
gated endosymbiontic or intracellular-parasitic lifestyle.

Values of φ̂(i) , the proportion of clustered pairs out of all pairs, are larger for very 
small genomes (Fig. 7B). The smallest observed φ̂(i) was 4.7 × 10−3 (Nonomuraea sp. 

Fig. 6  Distributions of chromosomal distances for pairs of Pfam protein domain coding regions in different 
archaeal phyla present in the dataset. Panels A: chromosomal distance, expressed in number of base pairs, 
between the two members of all pairs of domains where the two domains had one or more Gene Ontology 
Biological Process (GOBP) annotation in common (functionally interacting pairs). Panels B: same distribution 
for pairs where the two domains did not have any common GOBP annotations (other pairs)
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ATCC 55076; panel Actinobacteria in Fig. 5); meaning that 47 of every 10,000 pairs 
of functionally related domains in this organism are expected to cluster together. The 
maximum observed φ̂(i) was 5.403 × 10−1 , obtained in Mycoplasma haemofelis str. 
Langford 1 (Fig. 5, panel Tenericutes (b)), that corresponds to an expected value of 
5,403 clustering pairs for every 10,000 functionally related pairs. As in the case of the 
estimates for the rate parameter, a high min-max variation in φ̂(i) was again observed 
for strains with relatively short chromosomes. Organisms with chromosomal length 
between 112 kb and 1.193 Mb had values of φ̂(i) ranging between 7.46 × 10−2 and 
5.403 × 10−1 , with a mean of 2.33 × 10−1 (2,330 clustering pairs every 10,000). In the 
rest of the dataset, the mean φ̂(i) value was 4.33 × 10−2 (433 clustering pairs every 

Fig. 7  Assembly-specific estimates of clustering parameters obtained in each of the 14,178 genome 
assemblies analysed. The plots show estimate value for the model’s clustering parameters obtained after 
fitting the clustering model on chromosomal distances measured for functionally related pairs on each of the 
14,178 genome assemblies individually. Panel A: estimated values of the rate parameter of the exponential 
distribution characteristic of clustering pairs of domains ( ̂�(i) ); panel B: expected proportion of clustering 
pairs out of the total functionally related pairs ( φ̂(i) ). The vertical dashed line separates organisms with more 
variable estimates from the rest
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10,000). This overall pattern may reflect that these smaller genomes are enriched for 
clustered housekeeping gene complexes—when taken as a proportion of the total 
genes—with a corresponding reduction in non-essential genes that may be less tightly 
clustered.

Hypothetical clustering domains are involved in different cellular processes

After the definition and parameterisation of the model, a further analysis step was 
taken in order to assess what kind of functionally related domains appeared to be clus-
tering together. As explained more in detail in Methods, the fitting of the model with 
the Expectation-Maximisation Algorithm returned, for each pair (domains a and b) on 
every chromosome i, an indicator variable ẑ(i)

(a,b) whose value ranged in the interval [0, 1]. 
Values of ẑ(i)

(a,b) closer to one indicated that, given the observed chromosomal distance 
and the model, domains a and b were likely to be part of the clustering sub-population; 
here, we considered functionally related domain pairs with a value of ẑ(i)

(a,b) higher than 
0.8 as hypothetical clustering pairs.

Fig. 8  Gene ontology biological process annotations shared by pairs assigned to the clustering pairs 
sub-population in any of the 14,178 genome assemblies analysed. Pairs assigned to the clustering pairs 
sub-population during fitting with the Expectation-Maximisation Algorithm were selected as those pairs 
with estimated ẑ(i)

(a,b)
≥ 0.8. For clarity of visualisation, only annotations shared by at least 5% of the total 

hypothetical clustering pairs from each organism are shown. Black bars on the outermost layer of the plot 
indicate organisms with chromosomal length between 112 kb and 1.193 Mb
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The hypothetical clustering pairs found across all 14,494 bacterial and archaeal strains 
shared a total of 1039 different GOBP annotations; the most frequent of these annota-
tions are summarised in Fig. 8. The most ubiquitous shared annotations corresponded 
to generic, high-level molecular processes such as oxidation-reduction, transmembrane 
transport, proteolysis, protein phosphorylation, DNA methylation; DNA modification, 
and DNA topological change. However, the type of clustering domains annotated with 
these processes differed across genome assemblies, indicating that these clustered pairs 
did not belong to copies of the same cluster present in most microorganisms, but rather 
to independent clusters with similar functional annotations. A second group of fre-
quently shared GOBP terms referred to housekeeping pathways indispensable for basic 
cellular survival, such as DNA replication, DNA transcription, translation and tRNA 
aminoacylation for protein translation. As opposed to domains from the previous cat-
egory, in this case the hypothetical clustering domains carrying these annotations were 
the same in most assayed bacteria and archaea.

Many putative clustering domain pairs were part of metabolic pathways necessary 
for the production of energy or the synthesis of biological molecules (carbohydrate 
metabolic process; phosphoenolpyruvate-dependent sugar phosphotransferase system; 
polysaccharide catabolic process; biosynthetic process; histidine biosynthetic process; 
photosynthesis). Some of these annotations were widespread among organisms, while 
others were specifically found just in some subclades, as in the case of pairs involved 
in photosynthesis, that were found within the Chlorobi subclade. Other hypothetical 
clustering functionally related pairs were involved in regulatory systems used by cells 
to sense external stimuli and trigger adequate responses (signal transduction; regulation 
of transcription, DNA templated; phosphorelay signal transduction system). A further 
category of functional annotations often shared by clustering pairs referred to pathways 
involved in the horizontal transfer of DNA segments to other organisms (DNA recom-
bination; DNA integration; transposition, DNA mediated; conjugation), in accordance 
with the knowledge that chromosomal gene clusters are often exchanged between cells. 
Lastly, some group of microorganisms carried clustering pairs annotated with infection-
related functions such as bacterial-type flagellum-dependent cell motility, cell adhesion 
or pathogenesis. Organisms with shorter chromosomes and atypical clustering param-
eters did not display specific patterns in the type of functions carried out by their puta-
tive clustering domains.

Discussion
We have defined a probabilistic model describing the structural properties of chromo-
somal clusters of protein domain-coding regions in 14,178 bacterial and archaeal spe-
cies. To our knowledge, this is the first time that a dataset of comparable size has been 
used for the analysis of chromosomal gene clusters. These chromosomal aggregates of 
functionally related genes are thought to be ubiquitous across microorganisms and to 
involve a significant portion of their total coding sequences [29]; however, mainly due 
to experimental challenges in their identification, no information about known domain 
clusters is available for most microbial genomes. Here, we observed that protein domains 
already known for being involved in the same cellular pathway have a tendency to be 
proximal to each other on the chromosome. These sets of proximal, functionally related 
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regions were selected as members of hypothetical clusters of domains, and used to build 
a probabilistic model that links their positions on the chromosome to their likelihood of 
being members of the same cluster. The fitting of the model on 14,178 archaeal and bac-
terial strains showed that the parameters of this clustering model are stable across bac-
terial lineages, with the exception of a small subset of organisms consisting of obligate 
intracellular parasites and endosymbionts.

The similarities in clustering parameters did not appear to depend on a shared set of 
domains forming similar clusters in multiple species, but rather on the existence of fixed 
structural properties shared by clusters with different functions. Indeed, only some of 
the identified putative clusters, in particular those involved in basic housekeeping path-
ways such as cell replication and protein expression, were widespread across species; 
others, such as clusters conferring photosynthetic or pathogenic abilities, were confined 
to specific phylogenetic groups inhabiting environments in which these processes are 
needed for their survival. Additionally, each species carried multiple clusters involved in 
different types of cellular functions. Multiple hypotheses can be made to try to explain 
the observed consistencies in clustering parameters. It is possible that, during evolu-
tion, most microbial clusters would converge to similar structures because of constraints 
posed by the molecular processes involved in their expression and transmission. For 
instance, coding sequences clustering forming operons are often transcribed within a 
single polycistronic mRNA molecule. It has been observed that bacterial mRNA length 
can correlate with a decrease in stability and an increase in degradation rate [30, 31]. 
This may act as a factor that limits the total size of operons (by favouring, for instance, 
operons made of fewer genes or with smaller intergenic regions), to avoid the produc-
tion of oversized and therefore unstable transcripts. It is also known that clustering 
genes can be exchanged across microbial species [3, 32], and sometimes even between 
microbes and higher eukaryotes [33]. These horizontal gene transfer events take place 
when a cell collects an exogenous DNA fragment from the environment, by direct con-
tact with another cell or through a bacteriophage acting as a “DNA shuttle” [34]. The 
successful outcome of these DNA acquisitions, however, depends on the size of the frag-
ment itself, as larger pieces of DNA are, for instance, less likely to fit within the head of 
a bacteriophage or to be successfully uptaken by DNA recombination machineries for 
integration into the recipient cell’s genome [4]. Lastly, intuition dictates that the chain of 
evolutionary events required for independent genes to start interacting and at the same 
time group together on the chromosome should be less probable for large number of 
genes, favouring the formation of shorter clusters [1].

Bacterial species with intracellular lifestyles were the only class that displayed 
detectable variations in their clustering parameters. This class of microorganisms 
has a peculiar life cycle, where they are never in contact with the external environ-
ment but mainly propagate inside the cytoplasm of other cells that provide them with 
nutrients and protection. This lifestyle is connected to a substantial shrinking of their 
genome, with most genes being made redundant by the presence of similar pathways 
in the host cell and undergoing inactivation via pseudogenisation [35–37]. The result-
ing scarcity in gene coding sequences, coupled with the relatively large non-coding 
regions made of left-over fragments from inactivated genes, makes the analysis of 
these genomes more subject to random noise. This property, coupled with the fact 
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that these organisms may be involved in fewer horizontal gene transfer events due to 
their lack of contact with external DNA sources, could explain the observed fluctua-
tions in their clustering parameters.

The main advantage of using a probabilistic model is that it allows us to test for 
chromosomal clustering without the need for a fixed threshold in terms of number 
of involved genes or size on the chromosome, but by expressing them more flexibly 
in terms of probabilities. However, the approach described in this paper has a series 
of pitfalls, mainly associated with the inaccuracies or gaps in the annotation of Pfam 
domains. In particular, 13% of the total predicted genes in bacterial genome assem-
blies and 24% of those in archaeal genome assemblies did not match any known Pfam 
domain coding regions, meaning that some coding portions of these genomes were 
ignored in all subsequent analyses. This issue will likely become less and less rele-
vant as more information about Pfam domains is gathered, allowing the refinement of 
these annotations. More importantly, it should be noted that analysing chromosomal 
proximity of some domains in a single bacterial species is, by itself, not sufficient to 
generate hypotheses about the presence of clusters. The high compactness and gene 
density of microbial genomes lead most consecutive genes to map very close to one 
another, even in the absence of functional interactions [17].

The models presented here should prove of utility in statistical investigation of 
domain clustering to define clustered domain pairs. This could in principle be per-
formed independently, or in combination with machine learning approaches that can 
draw on other shared features of the pairs. Such features might include G+C content 
or more detailed sequence features [38] that, for very highly mobile clusters undergo-
ing high levels of horizontal gene transfer, might relate to aspects of their common 
mutational history across their shared previous hosts.

It is likely that, within each genome, there are groups of genes for which the distance 
models may differ, such as genes that may be distinguished by particular regulatory/
operon structures, or by distinct patterns of lateral gene co-transfer between strains. 
However, such sub-analyses are tricky, as the definition of such subgroups would need 
to be large enough in order to have statistical power for parameter inference.

The distance estimates presented here are dependent on the reliability of GO terms. 
While it is likely that there is error in GO terms, we would have anticipated that such 
error would be likely to increase with the computational inference of such terms in 
non-model species. In spite of this, we found no obvious indication that parameter 
estimates were markedly different for genomes which were more distantly related to 
model organisms which have been the focus of extensive experimental annotation 
work. This suggests that the parameter estimates are likely robust to reasonable levels 
of error in the individual GO terms used in the analysis.

The most obvious application of the models may be towards improving methods for 
the discovery of gene functional relationships on the basis of chromosomal co-cluster-
ing across genomes, such as are incorporated as a strand of evidence into the STRING 
database of putative functional relationships [11]. The reliability of these estimates 
will depend on the correct statistical handling of genomic similarity of closely related 
strains. A straightforward analysis of clustering across all genomes will end up domi-
nated by the clustering of many syntenic genes seen in very closely related species; 
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this would provide little insight into the more informative deeper clustering of func-
tionally related domains that persists over longer evolutionary distances.

Conclusions
This study represents one of the biggest surveys of chromosomal clustering in bacte-
ria and archaea available to date. We first demonstrated that functionally related pairs 
of protein domain coding regions are typically found close together on bacterial and 
archaeal chromosomes compared to pairs of domains that are not functionally related. 
We then fitted a two component mixture model to the observed intergenic distances 
between Pfam domains across a large set of bacteria and archaea species. The first com-
ponent models these distances as being uniformly distributed, corresponding to a neu-
tral evolutionary pressure on location. The second component assumes the existence 
of an evolutionary pressure to keep protein domains that are functionally related close 
together on the chromosome and the pairwise distances are modelled as exponentially 
distributed, with a species-specific rate parameter.

We find that both the relative proportion of each component and the exponential decay 
rate of our clustering model seem not to depend on the functional classes of the assayed 
domains or on the biological features and chromosomal structures of single microorgan-
isms, and can be applied to the computational prediction of novel clusters. Finally, our 
mixture model estimates the probability of belonging to the clustering mixture compo-
nent for each domain pair; that is, the probability that they are functionally related in 
that strain. Future work will use our approach and results to discriminate between these 
two groups in the absence of previous information about their cellular role, and to apply 
the developed model to the prediction of new putative evolutionarily conserved clusters 
occurring across multiple strains of bacteria and archaea. This will involve combining 
the strain specific probabilities while accounting for phylogenetic distance and leverages 
the main result of this work which is that the mixture model parameters are stable across 
species. Such an approach could also be used to assess the reliability of GO terms, as 
pairs that share a term which are found not to have a small intergenic distance conserved 
across species is indicative of annotation error.

Methods
Dataset of archaeal and bacterial genomes

Microbial genome assemblies

The study was conducted on a dataset of genome assemblies from 13,883 bacterial and 
295 archaeal strains, for a total of 14,178 complete genomes selected (for the list see 
https://​doi.​org/​10.​6084/​m9.​figsh​are.​15035​619.​v1), from the NCBI Genbank Genomes 
database (https://​ftp.​ncbi.​nlm.​nih.​gov/​genom​es/​genba​nk/), among the complete genome 
assemblies available in June 2019 that had also passed RefSeq quality checks. Assembly 
metadata, such as taxonomical identifiers, sources and assembly statuses, were extracted 
from the summary file available at

https://​ftp.​ncbi.​nlm.​nih.​gov/​genom​es/​GENOME_​REPOR​TS/​proka​ryotes.​txt. The 
complete nucleotide sequences of each assembly (available in fasta format in .fna 
files) were tested for putative gene coding sequences with the microbial genome anno-
tation tool Prokka v1.12 [39] with default software settings. The only exception was 

https://doi.org/10.6084/m9.figshare.15035619.v1
https://ftp.ncbi.nlm.nih.gov/genomes/genbank/
https://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/prokaryotes.txt
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assembly GCA_002761215.1, corresponding to Candidatus Gracilibacteria bacterium 
HOT-871, which follows the alternative version of the genetic code known as transla-
tion table 25, where the stop codon UGA encodes for the amino acid glycin. In this case, 
Prokka was run with the option --gcode 25.

Annotation with Pfam domain coding regions

All putative gene sequences identified by Prokka were further examined for the presence 
of protein domain coding regions using hmmscan v3.1b2 [40], with setting --eval 
0.001. Hmmscan was run against the target database Pfam release 32.0 (https://​ftp.​
ebi.​ac.​uk/​pub/​datab​ases/​Pfam/​relea​ses/​Pfam32.​0/​Pfam-A.​hmm.​gz, [28]), a reference 
collection of Hidden Markov Model profiles for 17,929 protein domain families. The 
threshold to define whether a gene contained a significant sequence match for a putative 
Pfam domain was placed at single domain e-value < 0.001. A further filtering step was 
implemented to deal with cases where multiple domains from the same Pfam domain 
clan matched within the same gene sequence. These clans are groups of domain fam-
ilies with shared ancestry that have undergone independent evolution, but still retain 
high sequence similarity. This means that, in presence of a true match for a member 
of a clan, other members of the same clan can also align with the same region, albeit 
with lower scores. Whenever this happened, only the match with the lowest e-value was 
accepted. Finally, as hmmscan is often not able to determine the exact boundaries of sin-
gle Pfam domain coding regions within gene sequences, the chromosomal positions of 
all predicted domains were approximated to the ones of their corresponding gene cod-
ing sequences.

Identification of known functionally interacting domains

The gene ontology (GO) database [41] is an online resource that provides a series of 
relationships (annotations) between genes or protein domains and some standard labels 
(Gene Ontology terms) describing their known molecular or cellular functions. All pre-
dicted Pfam protein domains from the 14,178 genome assemblies were annotated with 
the corresponding Gene Ontology term(s), when available, using the pfam2GO map-
ping table version 2019/06/01 14:44:40 downloaded from http://​geneo​ntolo​gy.​org/​exter​
nal2go/​pfam2​go. From these annotations, we selected only those corresponding to 
Gene Ontology Biological Process (GOBP) terms, using the GO terms description file 
available at http://​purl.​oboli​brary.​org/​obo/​go.​obo. Any two domains found in the same 
assembly that shared at least one identical GOBP annotation were labelled as function-
ally interacting.

Phylogenetic analysis

A phylogenetic tree describing the evolutionary relationships between the 14,178 exam-
ined microbial strains was built from the sequence of 107 protein coding genes (see 
Additional file 1:  Table S1 for a list of housekeeping protein coding genes from archaea 
and bacteria) previously identified as present in most known bacteria and archaea, such 
as genes encoding for ribosomal proteins or sub-units of the RNA polymerase [42]. This 
analysis was carried out using the software wrapper bcgTree v1.0.8 [43]. In detail, the 
protein sequences of the predicted homologs of these genes in all genome assemblies 

https://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam32.0/Pfam-A.hmm.gz
https://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam32.0/Pfam-A.hmm.gz
http://geneontology.org/external2go/pfam2go
http://geneontology.org/external2go/pfam2go
http://purl.obolibrary.org/obo/go.obo
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were identified with hmmscan, concatenated together and aligned with Clustal Omega 
v1.2.1 [44]. The alignment was refined by selecting only the best aligned blocks using 
Gblocks v.0.91b [45], and processed to build a Maximum-Likelihood tree with the soft-
ware FastTreeMP v2.1.8 [46]. The resulting tree was rooted using the archaea subclade 
as an out-group. The currently accepted taxonomic classification (species, genus, phy-
lum, etc) for each assembly in the dataset was determined by mapping each taxonomic 
identifier to the current taxonomy of all living beings available on the NCBI database 
(https://​ftp.​ncbi.​nlm.​nih.​gov/​pub/​taxon​omy/​new_​taxdu​mp/​new_​taxdu​mp.​tar.​gz).

Modelling of clustering domains in individual organisms

An overall visual summary of the complete analysis pipeline is reported in Fig. 9.

Chromosomal distances of domain pairs

The probabilistic models of chromosomal distances of clustering domains were obtained 
by analysing each of the 14,178 genome assemblies independently and only on their main 
chromosome, which was defined as the longest DNA molecule found in each assembly. 
The choice to restrict to the main chromosome was made to reduce noise caused by 
the presence of minor DNA elements such as plasmids, where most domains map very 
close to each other simply simply because of the small size of the DNA molecule itself. 
In every chromosome i, we measured the chromosomal distance (expressed in number 
of base pairs) between the two members of all possible pairings (domain a, domain b) 
obtainable from the Pfam domains located on the chromosome. This distance (defined 
in Eq. 1) includes the size of both involved domain coding sequences and of any DNA 
fragment located between the two.

In genome assemblies from bacteria and archaea, gene (and domain) coordinates 
are conventionally assigned beginning at the origin of replication (located immedi-
ately upstream to the predicted homolog of dnaA gene) and increasing along the lead-
ing strand of the DNA molecule, travelled clockwise, until the origin of replication is 
reached again. Due to the circular shape of most of these chromosomes, however, 
domains that appear to be very far according to the values of their coordinates can be 
very close if the chromosome is examined in an anti-clockwise manner. Accordingly, for 
each pair (domain a, domain b) found on chromosome i, the corresponding chromo-
somal distance was defined as the size, expressed in number of base pairs, of the smallest 
DNA fragment delimited by and including the two domains measured by travelling the 
chromosome either clockwise or anti-clockwise (as shown in Fig. 10):

where start(i)a  , end(i)a  and start(i)b  , end(i)b  are the start and end coordinates of domain a 
and domain b on chromosome i, respectively, and L(i) is the total length of chromo-
some i, expressed in number of base pairs. These distances are symmetrical, in that 
dist

(i)
(a,b) (clockwise) = dist(i)

(b,a) (counterclockwise); therefore, the order in which the two 
domains are located on the chromosome is not relevant. Note that, when two domains 
were located within the same gene, the value of dist(i)

(a,b) corresponded to the size of 
the gene itself. To avoid over-representation of the same distance due to the presence 

(1)dist
(i)
(a,b) = min(end

(i)
b − start(i)a + 1, L(i) − start

(i)
b + end(i)a + 1),

https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/new_taxdump/new_taxdump.tar.gz
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of multi-domain protein coding genes, all distances corresponding to multiple pairs of 
domains mapping within the same pair of genes were only counted once.

Clustering model based on chromosomal positions

After examining the distributions of chromosomal distances between functionally 
interacting pairs, we hypothesised these distributions to be the result of the exist-
ence of two distinct sub-populations of pairs that can be modelled using two distinct 

Fig. 9  Schematic pipeline of the analyses
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probability distributions. The chromosomal distances of the first sub-population, rep-
resenting functionally interacting domains grouping together on the chromosome 
(clustering pairs), were modelled using an exponential distribution with rate param-
eter �(i):

Thus clustering pairs are modelled as being likely to be close together on the chromo-
some with the probability of chromosomal distance between them exponentially decay-
ing with increasing distance. The value of the rate parameter of this distribution was 
initially considered as characteristic of each chromosome i and unknown.

The second sub-population, representing domains that are involved in the same cel-
lular process but whose coding regions are scattered on the chromosome (non-clus-
tering pairs), was modelled with a uniform distribution between zero and half of the 
total length of chromosome i:

Exp
(

dist
(i)
(a,b); �

(i)
)

= �
(i) · exp

(

−�
(i) · dist

(i)
(a,b)

)

for dist
(i)
(a,b) ≥ 0.

Fig. 10  Schematic representation of the method utilised to measure chromosomal distances of pairs of 
domains. This method was used to measure the chromosomal distance dist(i)

(a,b)
 , expressed in number of base 

pairs, between two domain coding regions a and b on a circular chromosome i of length L(i) . The final value 
of dist(i)

(a,b)
 was chosen as the smallest distance measured by travelling the chromosome either clockwise or 

anti-clockwise
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i.e. all chromosomal distances between non-clustering pairs are modelled as being 
equally probable.

The likelihood of the observed chromosomal distances between the two members of 
functionally interacting pairs2 was then defined using a mixture model consisting of the 
weighted sum of the these two distributions:

where the weights φ(i) and (1− φ(i)) represent the proportion of clustering and non-
clustering pairs, respectively, out of the total number of functionally interacting pairs 
found on chromosome i. The allocation of the observed functionally interacting pairs 
to the clustering or non-clustering population - and consequently the value of φ(i)—was 
unknown at this stage.

Parameter estimation for the clustering model

The values of the two parameters characterising the above mixture model, namely the 
rate parameter of the exponential distribution �(i) and the proportion of clustering pairs 
over the total functionally interacting pairs φ(i) , were initially regarded as unknown and 
characteristic of each chromosome i. As these values are not obtainable analytically, their 
maximum-likelihood estimates were computed with the Expectation-Maximisation 
(EM) algorithm [47]. This optimisation algorithm is a heuristic procedure commonly 
employed in statistics to obtain parameter estimates for models with latent properties, 
that is models where the data display characteristics that can not be directly measured 
but can be inferred from other variables. In this case, the hidden feature of the data was 
whether the two members of each functionally interacting pair were part of the same 
cluster. This property was included in the model by assigning to each pair a binary latent 
variable z(i)

(a,b) , that indicated whether the pair was likely to be part of cluster ( z(i)
(a,b) = 1 ) 

or not ( z(i)
(a,b) = 0 ). The values of these indicator variables were initially unknown.

The EM algorithm takes its name by the fact that it computes maximum likelihood 
estimates by iterating through two steps (Expectation and Maximisation), usually fol-
lowed by a third step that checks for convergence. In the implementation used in this 
study, the algorithm started with two initial guesses for the two parameters (called �̂(i,0) 
and φ̂(i,0) ) and updated them by repeating the following three steps for t = 1, 2, . . . , up to 
a maximum of 1,000 iterations:

(1) Expectation step Given the most recent estimates for the two parameters of the 
model, called �̂(i,t−1) and φ̂(i,t−1) , update the estimates for the latent variables of each 
pair (domain a, domain b) on chromosome i according to the following equation:

U

(

dist
(i)
(a,b); 0,

L(i)

2

)

=
2

L(i)
for0 ≤ x ≤

L(i)

2
.

p(dist
(i)
(a,b)|a, b functionally interacting) = φ(i) · Exp

(

dist
(i)
(a,b); �

(i)
)

+

(1− φ(i)) · U
(

dist
(i)
(a,b); 0, L

(i)/2
)

,

2  In the absence of knowledge of whether the pair is clustering or non-clustering.
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where dist(i)
(a,b) is the distance of the two members of the pair on chromosome i, obtained 

according to Eq. 1, and L(i) is the size (in base pairs) of the same chromosome. This is 
the expected value of the indicator variable of whether the pair are clustering or non-
clustering, given the current estimates of the model parameters.

(1) Maximisation step Compute new values �̂(i,t), φ̂(i,t) that maximise the expected com-
plete data log-likelihood given the current estimates of the latent variables, that can be writ-
ten as:

In detail, the value of �̂(i,t) that maximises the above complete data log-likelihood func-
tion is obtained by taking the partial derivative of the above function with respect to �(i) 
and setting it equal to zero, yielding:

The update estimate for φ̂(t) is then obtained by maximising the complete data log-likeli-
hood with respect to φ(i) , which results in the computation of the mean of the new esti-
mates of all the latent variables obtained in the estimation step:

where #ẑ(i,t)
(a,b) is the number latent indicator variables (i.e. the number of domain pairs in 

species i) These are the maximum likelihood estimates of the model parameters, given 
the current expected value of the indicator variable on whether each pair is clustering or 
non-clustering.

(3) Convergence check Compute the value of the marginal log-likelihood of the model at 
iteration t ( MLL(i,t) ) given the updated parameters estimates φ̂(i,t) and �̂(i,t):

If the difference between the two consecutive values of MLL(i,t) is lower than a certain ǫ 
(here set to 10−16 ) i.e. MLL(i,t) −MLL(i,t−1) < ǫ stop iterating and take φ̂(i,t), �̂(i,t) as the 
final maximum likelihood estimates for φ(i), �(i) . Otherwise, move to the next iteration.
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Sampling of initial values

The EM algorithm is guaranteed to increase the complete data log-likelihood of the 
model, and consequently its marginal log likelihood, with every iteration. The com-
plete data log-likelihood function, however, has multiple local maxima and the algo-
rithm will converge to only one of them, which strictly depends on the value of the 
initial parameter guesses and does not necessarily correspond to the global solution 
to the maximisation problem. As the algorithm is completely deterministic, multiple 
runs with the same set of starting values will always converge to the same solution. A 
way to address this issue is by re-running the algorithm with different initial param-
eter guesses and taking the estimates that give the highest final marginal log-likeli-
hood. Accordingly, the EM algorithm was repeated with 100 different combinations 
of initial guesses for �i and φi , obtained by combining ten samples for each parameter.

In the case of �̂(i,0) , an initial estimate was obtained with the method of moments 
assuming that all functionally interacting pairs were exponentially distributed, that 
corresponds to computing the reciprocal of the mean pairwise distance on each 
chromosome:

where #dist(i)
(a,b) denotes the total number of pairwise distances in species i. Further 

guesses were then obtained by sampling ten logarithmically spaced values that ranged 
from three orders of magnitude below to three orders of magnitude above the value 
obtained with the method of moments. The initial guesses for the fraction of function-
ally interacting domains that were also clustering, φ̂(i)

0  , was obtained by sampling ten 
logarithmically spaced values between 0.001 and 0.1. This interval was chosen based on 
the a priori assumption, derived from visual analysis of the data, that the proportion of 
clustered pairs was going to be somewhere within this interval.

Implementation and data visualisation

All above described analyses were implemented in a collection of scripts written in 
the programming language Python v3.6. The computational time required for the 
analysis of this extensive dataset was optimised by allocating the processing of indi-
vidual assemblies to independent CPU cores working in parallel. Moreover, most 
numerical calculations were carried out using the library NumPy v.1.15.2 that allows 
for efficient vectorised processing of data. The import and handling of Genbank files 
and phylogenetic trees took advantage of the libraries Biopython v.1.72 [48] and ete3 
v3.1.1 [49], respectively. Summary plots were generated with the libraries Matplotlib 
v.3.0.0 and seaborn 0.9.0. The scripts are available at https://​github.​com/​selen​ocyst​
eine/​conse​rved-​chrom​osomal-​clust​ers.

Abbreviations
GO: Gene ontology; GOBP: Gene ontology biological process; EM algorithm: Expectation-maximisation algorithm.
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