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ABSTRACT

Motivation: The nucleosome is the basic repeating unit of chromatin.

It contains two copies each of the four core histones H2A, H2B, H3

and H4 and about 147 bp of DNA. The residues of the histone proteins

are subject to numerous post-translational modifications, such as

methylation or acetylation. Chromatin immunoprecipitiation followed

by sequencing (ChIP-seq) is a technique that provides genome-wide

occupancy data of these modified histone proteins, and it requires

appropriate computational methods.

Results: We present NucHunter, an algorithm that uses the data from

ChIP-seq experiments directed against many histone modifications to

infer positioned nucleosomes. NucHunter annotates each of these

nucleosomes with the intensities of the histone modifications. We

demonstrate that these annotations can be used to infer nucleosomal

states with distinct correlations to underlying genomic features

and chromatin-related processes, such as transcriptional start sites,

enhancers, elongation by RNA polymerase II and chromatin-mediated

repression. Thus, NucHunter is a versatile tool that can be used to

predict positioned nucleosomes from a panel of histone modification

ChIP-seq experiments and infer distinct histone modification patterns

associated to different chromatin states.

Availability: The software is available at http://epigen.molgen.mpg.de/

nuchunter/.

Contact: chung@molgen.mpg.de

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The genome of eukaryotes is packaged into a macromolecular

structure called chromatin. The basic repeating unit of chromatin
is the nucleosome, which contains two copies each of the four

core histones H2A, H2B, H3 and H4, around which a 147-bp

stretch of DNA is wrapped in a flat left-handed superhelix

(Luger and Richmond, 1998). Nucleosomes form approximately

every 200 bp along the genome to package the underlying DNA.
Apart from the packaging function, nucleosomes may serve as a

signaling module (Turner, 2012) that is integrated into biological

processes acting with and on chromatin. This signaling function

depends on post-translational modifications of the histone

proteins, such as acetylation and methylation of lysine residues.

These histone modifications may serve as a binding platform for

non-histone proteins, whose activities change chromatin struc-

ture and function.
When nucleosomes tend to form at the same or nearby gen-

omic positions in different cells, they are called (well) positioned.

Positioned nucleosomes are important for the hypothesis that

nucleosomes constitute a signaling module, because gross move-
ments of modified nucleosomes along the chromatin fibers may

lead to a loss of coherence between the modifications and the

genomic features and/or functions.
The binding locations of modified histone proteins can be

determined by a technique called chromatin immunoprecipitation
followed by sequencing [ChIP-seq; Johnson et al. (2007)]. The

immunoprecipitation step enriches for chromatin fragments con-
taining a histone modification of interest, whereas the sequencing

step is used to quantify the abundance of the underlying DNA.
Because the core histone proteins are part of a stable protein–

DNA complex, it is natural to assume that the localization of

modified histone proteins corresponds to the position of the nu-
cleosomes. This suggests that histone modification ChIP-seq

data can be used to infer nucleosome positions. However, this
is far from being a trivial task for a number of reasons: (i) histone

binding does not seem to be as sequence-specific as for many

transcription factors; (ii) nucleosome positions can change con-
siderably with time and across cells; and (iii) the data are affected

by sparse sampling and high noise.
Nucleosome calling algorithms, such as the one presented

here, aim at detecting positioned nucleosomes. To obtain a com-

prehensive and reliable set of predictions, one should combine
the information contained in as many ChIP-seq experiments as

possible and allow for some plasticity in the shape of the signal.
However, modified histones tend to be mixed-source factors

(Landt et al., 2012), which means that the degree of positioning

can vary considerably across the genome. In regions where nu-
cleosomes occupy different positions in different cells (e.g. within

the body of actively transcribed genes), nucleosome calling algo-

rithms are less suitable than segmentation approaches [Song and
Smith (2011); Zang et al. (2009), to mention a few], which aim at

detecting domains of high nucleosome abundance.
A number of tools for the inference of nucleosome positions

have already been developed. Most of them apply signal process-
ing techniques, such as Fourier transforms (Flores and Orozco,

2011), wavelet decomposition (Zhang et al., 2008a) and ad hoc

filters (Albert et al., 2007; Weiner et al., 2010), to smooth the
enrichment profile, followed by the detection of local maxima.

Others are based on Bayesian modeling of the nucleosome*To whom correspondence should be addressed.
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enrichment pattern (Zhang et al., 2012). These methods do not

allow one to control for systematic biases by comparing the nu-

cleosome calls with data from control experiments. Furthermore,

they cannot integrate data from multiple histone marks in a

straightforward manner. Finally, because of the large size of

the problem, e.g. the human genome, and the potentially high

number of histone modifications, the runtime and memory con-

sumption of these tools may limit their applicability.

Our tool can use information from a control sample to correct

for systematic biases inherent in this high-throughput technol-

ogy. It is designed to integrate multiple histone marks to broaden

the range of nucleosome positions that can be detected. It anno-

tates each identified nucleosome with the contributing histone

modifications. We will demonstrate that these annotations can

be used to cluster nucleosomes by their histone modification

patterns. This clustering yields patterns of modifications that

can be correlated to the function of the chromatin, such as tran-

scriptional start sites and enhancers, or to the underlying process,

such as transcriptional elongation by RNA polymerase II. These

results support the assumption that nucleosomes serve as signal

modules for biological process and that the corresponding his-

tone modification patterns are a reflection of the signaling taking

place on these modules.

2 METHODS

The algorithm performs three major steps: (i) a preprocessing step, where

each file containing the chromosomal positions of mapped reads is turned

into a numerical signal, (ii) a shape detection step, where candidate pos-

itions for nucleosome formation sites are detected and (iii) a filtering step,

where these candidates are filtered and scored accounting for a number of

possible sources of bias. In the following, we will refer to the enrichment

profile on the positive or negative strand as the signal that counts for each

location the number of positive or negative reads whose 50 end maps

there, and they will be denoted P(p) and N(p), respectively, where p is

the chromosomal position.

2.1 Preprocessing

A well-positioned nucleosome typically exhibits the enrichment profile

shown in Figure 1: a peak of positive strand reads upstream of the nucleo-

some location, and one of negative strand reads downstream. To obtain a

consensus signal, which will be called the input signal I, the enrichment

profile on the positive strand P is shifted to the right, the one on the

negative strandN is shifted to the left and the sum of the two is considered.

Denoting with F the average length of a fragment in the DNA library, the

amount of this shift is about F=2, which yields the input signal:

IðpÞ ¼ Pðp� F=2Þ þNðpþ F=2Þ:

In case of single-end sequencing data, usually the average fragment length

needs to be estimated from the data itself. This estimation can be carried

out by several available tools [such as Zhang et al. (2008b)]. However,

because of the mixed source nature of the data, we found the available

methods unsatisfactory when applied to histone marks, and therefore, as

part of NucHunter, we also provide a method for estimating the average

fragment length (described in Section 2.4).

2.2 Peak detection

In the peak detection step (see Fig. 2), a suitable filter is applied to the

input signal, followed by the detection of local maxima in the filtered

signal and the analysis of the statistical significance of these maxima.

A filter (more precisely a linear time-invariant filter) is characterized by

a discrete signal K(p) called impulse response. Given an input signal I(p),

the filter output O(p) is the result of the following operation, called

convolution:

OðpÞ ¼ ðI� KÞðpÞ ¼
X
j

Iðp� j ÞKð j Þ,

where the index j ranges over positions where K(j) is not 0.

The impulse response in our approach has been chosen according to

the following two criteria: first, it must separate sharp peaks from more

spread out read distributions or non-enriched regions; second, it must

have good smoothing properties, so that the convoluted signal contains a

limited number of local maxima (Rice, 1944) and, therefore, the algo-

rithm returns fewer false positives. We chose as impulse response the

second derivative of a Gaussian density function, also known as the

Mexican hat wavelet (see Fig. 3):

KðiÞ ¼

�
1�

i2

�2

�
e�

i2

2�2 :

TheMexican hat wavelet removes from the Fourier spectrum of the input

signal both high- and low-frequency components (band-pass filter), which

is appropriate if we interpret high frequencies as random oscillations

Fig. 1. Preprocessing: from mapped reads to consensus signal. Positive

and negative reads generate a strand specific enrichment profile which

counts at each position the amount of reads whose 50 end maps there. The

consensus signal is obtained by shifting the strand specific enrichment

profiles F/2 bases downstream, where F is the average fragment size,

and summing them up

Fig. 2. Peak detection from the consensus input signal. The input signal is

smoothed using a filter with a certain impulse response, then the maxima

of the resulting signal are detected and non-significant local maxima are

filtered out
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because of noise or insufficient coverage, and low frequencies as broad

ambiguous peaks coming from a mixture of nucleosome positions, or as

local biases such as GC content or open chromatin. The wavelet is para-

metrized by the scale parameter �. In our studies, we chose a default value

of 50 for � because, in general, it corresponds to a good compromise

between calling too many peaks and merging closely spaced ones. The

parameter can also be fitted to the dataset under consideration using the

method outlined in Section 2.4.

Obtaining the convoluted signal for large genomes poses computa-

tional problems. In fact, a long signal as impulse response results in

a slow convolution operation. In NucHunter the convolution has

been implemented using recursive filters, an efficient signal-processing

technique (Hale, 2006).

Once local maxima are extracted from the filter output, their statistical

significance is assessed. To this end, we model the noise by assuming that

values of the input signal within a certain region are independent identi-

cally distributed random variables (rvs). Using this assumption, we derive

the mean and standard deviation of the convoluted signal, and we assign

a z-score to each local maximum. If I(p) denotes the input signal, K(p) the

impulse response and O(p) the convoluted signal at position p, let m(p)

and std(p) denote, respectively, the mean and standard deviation of the

input signal in a large region R that contains position p, then the z-score

is given by:

mðpÞ ¼
X
k2R

IðkÞ

jRj
,

stdðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k2R

ðIðkÞ �mðpÞÞ2

jRj � 1

vuut ,

z-scoreðpÞ ¼
OðpÞ �mðpÞ

P
i2N KðiÞ

stdðpÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i2N KðiÞ2
q :

The detected peaks are all those local maxima with a z-score above a

certain threshold. This z-score represents the strength of a peak, and a

user-defined threshold, whose default value is 3, specifies how many

standard deviations above average the peaks’ strength must be.

Additionally, the peaks are assigned a fuzziness score that represents

the degree of uncertainty about the peak position, given by the formula:

fuzziness ðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

OðpÞ

O0 0ðpÞ

s
,

where O0 0ðpÞ denotes the second discrete derivative of the filter output.

2.3 Filtering and scoring

After a set of putative peaks has been derived, additional filtering steps

are carried out when a control sample is available. They are all based on

the enrichment level of a peak, defined as the total number of reads that

contribute to the input signal in a window of a certain size (by default

147bp) centered around the peak.

Peaks are filtered in a similar manner as in Zhang et al. (2008b): the

enrichment level is modeled as a Poisson rv whose parameter is estimated

from both a global and a local average of the control sample, which is

rescaled so that the number of sequenced reads in the two samples

matches. From this model a P-value is obtained, and peaks can be filtered

based on a user-defined threshold (which defaults to 10�5).

In more detail, let G denote the genome length. The noise level in

the control sample is rescaled according to the total coverage ratio

� ¼

P
k2N

IðkÞP
k¼2N

CðkÞ
, so that the local and global noise estimates �W and �tot

can be expressed, respectively, as �

PW

k¼�W
CðpþkÞ

2Wþ1 and �

P
k¼2N

CðkÞ

G , and the

final noise estimate � is chosen as the maximum between the two

(W defaults to 1000). Finally, the null model for the read counts in a

window of a fixed radius R is given by:

XF
k¼�F

Iðpþ kÞ � Poissðð2Fþ 1Þ�Þ:

The next filtering step consists in controlling the relative amount of posi-

tive and negative reads in the enrichment level, as highly unbalanced

contributions from the two strands are likely to arise from mapping

biases. Following the approach of Zhang et al. (2008a), we filter out

peaks where the ratio between the two contributions is not contained

in the interval ½r, 1=r�, where r defaults to 4.

A final step takes place when the sample is obtained from multiple

ChIP-seq experiments. In this case, the consensus input signals from the

different samples are added together, and the above steps are carried out

as if the signal came from a single experiment. After that, however, the

enrichment level at each peak is decomposed into the contributions of the

different experiments, and each of them is tested independently to assess

whether a certain histone modification is present or not (see Fig. 4). The

tests are carried out using the same noise model and formulas shown

above, where now I corresponds to the consensus signal derived from

the single histone modifications.

Finally, for each nucleosome call the algorithm provides, along with

the genomic coordinates, the following statistics: (i) the z-score (peak

strength), (ii) the input signal enrichment level (sum of the raw read

Fig. 4. Integration of multiple histone modification experiments. First,

peak detection is performed on the sum of the input signals, then the

signal is decomposed into the contributions of the single histone modifi-

cations and then a statistical test is performed for each of them to asses

whether their contribution is significant or not

Fig. 3. The Mexican hat wavelet for � ¼ 50 (on the right) and its fre-

quency spectrum (on the left)
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counts in a window of 147bp around the peak), (iii) the control signal

enrichment level (sum of the smoothed read counts in the same window),

(iv) a P-value derived from the comparison between input and control

enrichment levels (significance of the enrichment) and (v) the fuzziness

score for the peak position. In case multiple samples are simultaneously

analyzed, it is also provided, for each input sample and each nucleosome

call, the contribution to the total enrichment level in terms of raw reads

and the result of the statistical test as an on/off flag.

2.4 Inferring the average fragment length

The average fragment length F is typically inferred based on the strand

cross-correlation function, defined as:

CCðkÞ ¼
X
p

PðpÞNðpþ kÞ,

where the index p spans all genomic positions. For point-source factors

and low noise levels the cross-correlation function usually has a peak at

position F (the ‘fragment peak’), as shown in Figure 5, which yields a

straightforward method for the estimation of F. However, for many his-

tone marks the cross-correlation plot is harder to interpret because of the

presence of a so-called phantom-peak (Landt et al., 2012) and other sys-

tematic biases, which can sometimes completely obscure the fragment

peak (see Fig. 5b). To account for these biases, we introduce a modified

cross-correlation function that we call peak cross-correlation (pcc):dCCðkÞ ¼X
p

P̂ðpÞN̂ðpþ kÞ:

The signals N̂ and P̂ are a dense representation of the peaks obtained

applying a peak detection algorithm to the strand-specific signals N and

P. More specifically, N̂ and P̂ are binary signals whose only non-zero

entries are ones occurring at the peaks’ locations. The peak detection

technique presented in Section 2.2 applied to the consensus signal I is

applied to the signals N and P.

The pcc function, which is used to infer F, can also indicate how ap-

propriate the choice of � is, where � is the parameter used for peak

detection (see Section 2.2). If N and P are assumed to be two replicates

of the same signal with a systematic shift of F base pairs in the nucleo-

some peaks, a good choice of � should result in a strong peak in the pcc

function around position F, whereas a bad choice should lead to almost

independent peaks in the two strands and a flat pcc function.

After the pcc function is computed, a clustering technique is applied to

interpret it, which yields an estimate for F and a quality score for �. We

assume that the plot is generated by sampling from a mixture of three rvs:

a uniform rv to model the background noise, a Gaussian rv to model the

phantom peak and another Gaussian rv to model the fragment peak, as

shown in Figure 5c. The parameters of these distributions are inferred

using an expectation-maximization algorithm, and the mean of the

Gaussian rv corresponding to the fragment peak is used as an estimate

for the average fragment length. The quality score, which is derived from

the likelihood of the inferred model, can be computed for different values

of � and yields a score curve (see Section 1 in Supplementary Material for

more details).

3 RESULTS

3.1 Comparison to other available tools

We have developed NucHunter to identify nucleosome positions
using histone modification ChIP-seq data. To test the predictive
power of our algorithm and to compare it with other available

tools, we ran NucHunter and two other tools [Nucleosome
Positioning from Sequencing (NPS) from Zhang et al. (2008a);
Template Filter from Weiner et al. (2010)] on a H3K9ac dataset

from yeast (Weinberger et al., 2012). Some tools had to be

(a)

(b)

(c)

Fig. 5. Strand cross-correlation analysis for some ChIP-seq experiments

in human K562 cells. (a) Histone modification H3K4me3, a point-source

or mixed-source factor. The phantom peak and the fragment peak are

clear. (b) Histone modification H3K9me3, a broad-source factor. The

fragment peak is almost not visible, in contrast with the phantom peak.

(c) The pcc for the histone modification H3K9me3. Now also the frag-

ment peak is visible, and it is possible to infer the average fragment length

with an EM algorithm
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excluded from the comparison either because they were not able

to deal with the large amount of data or because the results

obtained using default parameters were unsatisfactory. We

chose yeast because we wanted to compare the predictions to a

base pair resolution map of nucleosome positions in yeast

(Brogaard et al., 2012). This map has been obtained with a tech-

nique that, even if it has not been tested widely yet, is independ-

ent from ChIP-seq, and it is claimed to be more accurate.

In line with previous studies (Chung and Vingron, 2009), to

compare the nucleosome predictions with the nucleosome map,

we used the (normalized) area under the cumulative error curve

(AUC) as a performance measure. The AUCwas obtained apply-

ing the following procedure (see also Supplementary Material):

(1) we consider the set of all distances between nucleosome

predictions and nucleosomes in the map573bp,

(2) we obtain a cumulative error curve. In such a curve, a

point ðx, yÞ means that a fraction y of the distances is

less than x base pairs (see Supplementary Fig. S5),

(3) we compute the AUC and we normalize it, so that a set of

perfect predictions has an AUC of 1 and a random set of

genomic positions has an expected AUC of 0.5.

Along with the AUC, we also computed the sensitivity and the

specificity, defined, respectively, as the fraction of nucleosomes in

the map that are closer than 20bp to a nucleosome prediction

and the fraction of nucleosome predictions that are closer than

20bp to a nucleosome in the map. Moreover, to account for the

great variability in the number of predictions returned by each

tool, we repeated the performance measurements for different

score thresholds.

The results from Figure 6 show that NucHunter makes more

accurate predictions compared with the other tools. Considering

the default score thresholds, NucHunter andNPS return a similar

number of predictions but the former has an higher AUC than the

second, whereas Template Filter returns many more predictions

and of lower quality. When the score threshold is increased, the

AUC difference between NucHunter and NPS becomes much

more pronounced. This suggests that the nucleosome predictions

with highest score from NucHunter are, in general, much more

precise compared with those from the other tools. All the tools

suffer from low sensitivity in this dataset, in particularNucHunter

and NPS when the default score thresholds are used.
The reasons for unidentified nucleosomes or incorrect predic-

tions can be many. In the first place, the experimental procedures

used for the ChIP-seq experiment and that used for the nucleo-

some map are different. Roughly 5.6% of the nucleosomes in

the map, for instance, are located in low-mappability regions

and are not covered by any read. Moreover, the ChIP-seq

experiment targeted only acetylated nucleosomes, as opposed

to the nucleosome map. A more general problem is the identifi-

cation of fuzzily positioned nucleosomes. If the nucleosome

positioning varies extensively from cell to cell, the assumptions

made by the algorithms are violated and nucleosomes are hard

to identify. Lastly, both specificity and sensitivity are affected

from high noise levels, insufficient sequencing coverage and

sequencing biases.
In addition to the yeast dataset, we also tested the algorithms

on a simulated dataset and on different histone modification

ChIP-seq files in human K562 cells. In the simulated dataset,

the nucleosome map is randomly generated and the reads are

generated accordingly. Because there is no nucleosome map

for the human dataset, we used pairs of replicate experiments

and pairs of different histone modifications as gold standard-pre-

dictions pairs. The details of the simulation and the performance

evaluations are reported in Supplementary Material in Sections 3

and 4. In general, the results are in agreement with those

shown previously. In the Supplementary Material, it is also

shown that NucHunter runs faster and requires less memory

than the other two algorithms (see Supplementary Material

Section 5).

Fig. 6. Accuracy assessment of different tools on the yeast dataset. The performance measures (AUC, sensitivity and specificity) are computed for every

possible score threshold, which results in an AUC number of calls curve (left) and a specificity–sensitivity curve (right). The circles indicate the

performance of the algorithms using the default thresholds
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3.2 Clustering of nucleosomes based on histone marks

We ran NucHunter on a composite dataset from a human leu-
kemia cell line [K562, Myers et al. (2011)] consisting of a control

experiment and 12 ChIP-seq experiments for different histone
modifications. For each detected nucleosome and for each ex-
periment the algorithm returned, along with other statistics, the

raw read count within a window of a specified width (which
defaults to 147) around the inferred nucleosome location (see
Methods).

We used these read counts for an exploratory analysis of the
chromatin landscape. After a normalization procedure that cor-
rects the read counts taking into account the control sample, the

different sequencing depths of the datasets and the nucleosome
abundance at each locus, we obtained a joint histone modifica-
tion level distribution and we applied the k-means clustering al-

gorithm on it (see Supplementary Material for more details).
Given a parameter k, this unsupervised learning method aims

at partitioning the data points into k different families (clusters)
such that elements in the same cluster are as similar to each other
as possible. Each cluster is characterized by its centroid, which is,

in our case, a prototypical histone modification pattern.
We found that with k equals 6 the results are robust, whereas

for higher values of the parameter the clusters tend to change

depending on the initialization (see Supplementary Material).
Moreover and most importantly, we found that such a partition-
ing, derived solely from the histone modification patterns,

can also capture biologically meaningful positional features
of the nucleosomes. We assigned labels to each cluster based
on the histone modification pattern and genomic localization.

The labeled centroids are shown in Figure 7.
We studied the genomic localization of nucleosomes from

the different clusters using the RefSeq annotation dataset as

well as publicly available data from cap analysis of gene expres-
sion (CAGE) and DNase I hypersensitivity sequencing experi-
ments (Myers et al., 2011). We performed the following analyses

(further discussed in Supplementary Material): (i) we derived a
consensus nucleosome profile along genes by considering a large
set of annotated genes, by rescaling their nucleosome profiles to

the same length and by adding them up (Fig. 8a); (ii) we analyzed
the nucleosome positioning around promoters of active genes by
considering the distribution of distances between CAGE tags

and nucleosomes (Fig. 8b); and (iii) we obtained the average
DNase I hypersensitivity profile around nucleosomes for each

class (Fig. 8c).
Overall these data give a clear picture of the nucleosome land-

scape and recapitulate previous knowledge (see Fig. 7). The nu-

cleosomes in the first family are characterized by a strong
enrichment of H3K4me2/3 and H3K9ac, and they tend to
reside in the 50 portion of a gene near the transcriptional start

site (TSS; Fig. 8a). Thus, we labeled them ‘promoter’ nucleo-
somes. In proximity of promoters of active genes, these nucleo-
somes exhibit a strikingly regular pattern (Fig. 8b), whose main

features are a nucleosome-depleted region right upstream the
TSS and a well-positioned nucleosome 170bp downstream (the
þ1 nucleosome). The second and third clusters show an enrich-

ment of H3K4me1 and H2AZ as well as a general enrichment of
active marks, whereas TSS-associated histone marks, such as
H3K4me2/3 and H3K9ac, are less enriched compared with the

promoter cluster. These features, together with the high levels of

DNase I hypersensitivity that we observe (Fig. 8c), suggest that
these nucleosomes may flank enhancer sequences. Thus, we

labeled them as ‘enhancer 2’ and ‘enhancer 1’ nucleosomes.
The fourth centroid is enriched in H3K79me2 and H4K20me1,
whereas the fifth centroid is enriched in H3K36me3 and

H3K9me1, which are all histone marks related to elongation of
RNA polymerase II (Vavouri and Lehner, 2012). The localiza-

tion of these two classes of elongation nucleosomes along the
gene body, shown in Figure 8a, suggests that the 5th centroid
is enriched toward the 30 end of a gene, whereas the 4th centroid

is enriched more to the 50 end. Thus, we termed them ‘elongation
early’ and ‘elongation late’ nucleosomes, respectively. The last
centroid is characterized by an enrichment of H3K9me3 and

H3K27me3, suggesting that it represents chromatin-repressed
genomic regions (Margueron and Reinberg, 2011). Thus, we
termed it ‘repressed’.

Lastly, we explored the relation between the different clusters
that we obtained and a previously published study (Ernst and

Kellis, 2010) that aimed at classifying the chromatin landscape
into discrete states. Even though the last method uses a more
complex model, different data sources and positional relations

between histone modification patterns, we found that the overall
results are comparable (see Supplementary Material). We believe
that the joint analysis of histone modification patterns and

nucleosome positioning that NucHunter allows for provides
complementary information and offers a greater potential than
histone modification studies based on arbitrary binning schemes

of the genome.

Fig. 7. Using the k-means algorithm, 422547 nucleosomes called by

NucHunter were clustered into six clusters: promoter (20.4%), enhancer

1 (19.8%), enhancer 2 (14.4%), elongation early (16.4%), elongation late

(14.7%) and repressed (14.3%). The rows of the heatmap represent the

centroids of the clusters and the columns represent the histone modifica-

tions. The labels have been assigned based on prior biological knowledge
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4 DISCUSSION

The fast-paced development of chromatin immunoprecipitation-

based techniques is heading toward an increased spatial reso-

lution for DNA–protein interactions. In line with this trend,

we developed NucHunter, a software for base pair resolution

nucleosome identification in ChIP-seq experiments. The innova-

tive aspects of this tool reside in a more accurate and efficient

signal processing, an improved statistical analysis of the peaks,

the possibility of integrating data from a control sample and to

consider multiple histone modifications at once.

We put forward a nucleosome-centric view, because if we view

the modifications (either sequentially or in a combinatorial pat-

tern) as a reflection of a signaling activity then nucleosomes can

be viewed as ‘signaling modules’ (Turner, 2012). In agreement

with this idea, we found that nucleosomes can be clustered into

distinct subgroups. These subgroups either mark certain func-

tional regions of the genome, such as promoters and enhancers,

or are related to biological processes, such as elongation or chro-

matin-mediated repression. Although this is not a new finding

[see Ernst and Kellis (2010)], we think that our approach has the

benefit of assigning the data to a physical entity that carries

the information: the nucleosome. Thus, separation of different

histone modification patterns into distinct subgroups becomes

much more meaningful than by arbitrarily binning the genome

into non-overlapping windows (Ernst and Kellis, 2010), where

two nucleosomes with different modification patterns could

be present.
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Fig. 8. Genomic localization of the different nucleosome classes in human K562 cells. (a) Occupancy of nucleosomes from the different classes along the

gene body. The nucleosome occupancy profiles from a subset of genes in RefSeq have been rescaled to the same length and summed up. (b) Nucleosome

distribution at promoters of active genes. The profile has been obtained by computing the distribution of distances between CAGE tags and nucleo-

somes. (c) DNase I hypersensitivity levels in relation to nucleosomes. The profile for each nucleosome class is the average DNase I hypersensitivity

profile of all nucleosomes from that class
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In summary, we developed a new tool called NucHunter that is
able to identify positioned nucleosomes along the genome using
ChIP-seq data of histone modifications and annotates each nu-
cleosome with (i) a flag indicating presence or absence of a certain

histone modification and (ii) the number of contributing reads (if
one is interested in a more quantitative view). We demonstrated
that NucHunter performs better than currently available tools

and has some features not present in any of them. By focusing
on the nucleosome as information carrier, charting the epigenome
will become much more meaningful and will in the long run allow

for unraveling novel chromatin-mediated mechanisms.
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