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Abstract

Cytochomosome P450 enzymes (CYP) are heme-containing monooxygenases responsible for oxidative metabolism of many
exogenous and endogenous compounds including drugs. The species difference of CYP limits the extent to which data
obtained from animals can be translated to humans in pharmacodynamics or pharmacokinetics studies. Transgenic
expression of human CYP in animals lacking or with largely reduced endogenous CYP counterparts is recognized as an ideal
strategy to correct CYP species difference. CYP3A is the most abundant CYP subfamily both in human and mammals. In this
study, we designed a microRNA-based shRNA (miR-shRNA) simultaneously targeting four members of mouse CYP3A
subfamily (CYP3A11, CYP3A16, CYP3A41 and CYP3A44), and transgenic mice expressing the designed miR-shRNA were
generated by lentiviral transgenesis. Results showed that the CYP3A expression level in transgenic mice was markedly
reduced compared to that in wild type or unrelated miR-shRNA transgenic mice, and was inversely correlated to the miR-
shRNA expression level. The CYP3A expression levels in transgenic offspring of different generations were also remarkably
lower compared to those of controls, and moreover the inhibition rate of CYP3A expression remained comparable over
generations. The ratio of the targeted CYP3A transcriptional levels was comparable between knockdown and control mice
of the same gender as detected by RT-PCR DGGE analysis. These data suggested that transgenic miR-shRNA suppressed
CYP3A expression in a dose-dependent and inheritable manner, and transcriptional levels of the targeted CYP3As were
suppressed to a similar extent. The observed knockdown efficacy was further confirmed by enzymatic activity analysis, and
data showed that CYP3A activities in transgenic mice were markedly reduced compared to those in wild-type or unrelated
miR-shRNA transgenic controls (1.1160.71 vs 5.8561.74, 5.962.4; P,0.01). This work laid down a foundation to further
knock down the remaining murine CYP3As or CYPs of other subfamilies, and a basis to generate CYP knockdown animals of
other species.
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Introduction

RNA interference (RNAi) is a post transcriptional gene silencing

mechanism, which is conserved among a broad variety of

eukaryotic organisms including mammalian species [1–4]. Mam-

malian models specifically lacking target gene expression are

powerful tools for deciphering gene functions and generating bio-

medical models. Traditional method for generating gene-disrupted

animals is through ES cell-based homologous recombination.

Although this method is effective, it is limited by the low efficiency

of DNA homologous recombination, time-consuming and labor-

intensive cross strategies for obtaining homozygous mutant

individuals, and more importantly, the lack of ES cells derived

from other mammalian species limits its application to other

important mammalian model animals such as rats, pigs and

monkeys. Since RNAi is a highly conserved gene silence

mechanism, RNAi provides an alternative method for specifically

disrupting mammalian gene expression on both cell and individual

level.

By transgenic expression of shRNA molecules, mammalian

endogenous gene expression can be specifically inhibited in vivo

[5–9]. Recently, a microRNA-based shRNA (miR-shRNA) system

has been developed and utilized to effectively knock down target

gene expression constitutively or conditionally [10–12]. Compared

to conventional shRNA molecules, gene silence mediated by

miRNA-shRNA has advantages. First, it has higher efficacy in

knock-down of target gene expression, for it works through the

existing natural mechanisms or pathways in cells which are used

by endogenous miRNA molecules [10]. Second, its expression can

be driven by polymerase II promoter, as that for endogenous
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miRNA molecules, which rendered the gene silence mediated by

RNAi to be more controllable.

Mammalian animals, such as mice, are extensively used

models for the studies of pharmacokinetics or pharmacodynam-

ics in drug development. However, the remarkable species

differences in biological activity of cyptochromosme P450 (CYP)

enzymes limits the extent to which data obtained from animals

can be translated to humans [13–18]. CYP enzymes are heme-

containing monooxygenases responsible for the oxidative me-

tabolism of many endogenous and xenobiotic compounds, which

play critical roles in drug metabolism and are closely related to

toxicity or inefficacy of drugs [19–21]. Transgenic expression of

human CYP enzymes in animals has been recognized as an

effective method to correct the inter-specie disparity of CYP

enzymatic activity [16,18,22], however the counterparts of

animal endogenous CYPs usually show extensive overlaps in

substrate specificity and tissue distribution compared to that of

human [22,23]. Therefore, transgenic expression of a human

CYP in a background lacking or with largely reduced expression

of the orthologous counterparts of animal endogenous CYP

enzymes is considered to be an ideal strategy to analyze its

involvement in metabolism of target drugs, or its correlation to

drug toxicity or inefficacy [23].

Human cytochromose P450 3A (CYP3A), a subfamily of

cytochromosme P450 enzymes, is involved into the metabolism

of more than 50% of clinically available drugs, and exhibits

extensive overlaps in enzymatic activity compared to the

orthologous counterparts of mammalian animals. Therefore,

transgenic expression of human CYP3A in animals lacking the

expression of endogenous counterparts is of great value for drug

development [23,24]. Recently, a knock-out mouse lacking all the

muring CYP3A genes was generated by ES cell-based DNA

homologous recombination [23]. However, the CYP enzyme is a

superfamily consisting of many subfamilies and dozens of

members, it would be a highly costly, time-consuming and

labor-intensive process to knock-out CYP genes one by one

though ES cell-based technology. And beside, the ES cell-based

technology is currently not applicable to other mammalian species

of great importance in pharmacokinetics or pharmacodynamics

studies, such as rat, dog and monkey, mainly due to the lack of

established ES cell lines derived from these species. In contrast,

since RNAi is a conserved mechanism among eukaryotic

organisms, the RNAi-based gene knock-down technology, which

is at least theoretically applicable to all mammalian species,

provides an alternative method to disrupt endogenous CYP

enzyme expression.

This study was intended to try to knock down mammalian

endogenous CYP3A enzyme expression by RANi-based technol-

ogy in vivo using a miR-shRNA system, and thereby to find a

simple, effective and general method to generate mammalian

models lacking or with largely reduced endogenous CYP enzyme

expression. In this study, using a designed miR-shRNA simulta-

neously targeting four members of CYP3A, knock-down mice with

markedly reduced expression of CYP3A, the most abundant CYP

enzyme subfamily in mice which is considered to be the

orthologous counterpart of human CYP3A, was generated by

RNAi-based technology. We found that the transgenic miR-

shRNA targeting murine CYP3A, which was delivered by

lentiviral vector, suppressed CYP3A expression in a dose-

dependant and inheritable manner in mice. This work laid down

a foundation to further knock down other murine CYP3A genes or

other CYP subfamily genes, and also provide a basis to generate

CYP gene knock-down animals of other mammalian species of

biomedical importance.

Materials and Methods

Animals
Mice of FVBN inbred strain were used in this study, which were

purchased from SLAC Laboratory Animal Co.,Ltd (Shanghai,

China) and maintained under specific pathogen-free conditions in

Laboratory Animal Centre of our university. All the protocols

involving the use of animals were approved by the Institutional

Animal Care and Use Committee of Third Military Medical

University (Approval ID: SYXK-PLA-2007036).

Vector design and transgenic mouse production
The miR-shRNA sequences targeting CYP3A11, CYP3A16,

CYP3A41 and CYP3A44 were designed using the on-line RNAi

design algorithm at http://katahdin.cshl.org:9331_siRNA_RNAi.

cgi?type_shRNA as previously described [10]. To place the

shRNA sequences into miR30 context, a 97-mer sequence

containing the designed shRNA was retrieved through the RNAi

design algorithm, which was then subcloned into the site of pri-

miRNA area downstream the eGFP coding sequence (CDS) in

pRIME vector as previously described [10]. Then, the eGFP-

miRNA fragment was excised from the recombinant pRIME

vector and subcloned into the lentiviral vector FUW, and the

resulted recombinant vector was named FUW-eGFP-miR-shRNA

in this article.

To test the efficacy of designed shRNA sequences, lentiviral

vectors were packaged into lentiviral particles as previously

described [25] and infected primarily cultured mouse hepatic

cells derived from an adult female mouse. Each infection had three

duplicates. At 48 h post infection, using CellAmpTM Whole

Transcriptome Amplification Kit (Takara, Dalian, China), cDNA

samples were prepared from infected or uninfected hepatic cells as

well. A pair of degenerate real-time PCR primers complementary

to mRNA sequences of CYP3A11, CYP3A44 and CYP3A41 was

designed, of which the sequences were 59-CTCAATGGTGTG-

TATATCCCC-39 (forward) and 59-GATGTTCTTAGACAC-

TGCC-39 (reverse) respectively. Using the prepared cDNA as

templates, the expression of CYP3A and the internal control gene

Rps18 were simultaneously detected in one PCR system. The

mixed PCR products were subjected to gel electrophoresis, and

semi-quantitation of CYP3A expression was obtained by compar-

ing the band density of the PCR product for CYP3A and that for

Rps 18 using the software Gel Pro.4.0. The primers for detecting

Rps18 were 59-AAATAGCCTTCGCCATCAC-39 (forward) and

59-TCACTCGCTCCACCTCATC-39 (reverse) respectively. The

two primer pairs for CYP3A and Rps 18 both corresponded to

different exons, and the sizes of PCR products were 421 and

129 bp respectively. The PCR reaction conditions were: 95uC
5 min; then entered the circle: 94uC 30 s, 54uC 30 s, 72uC 30 s;

run 30 more circles, and then 72uC 8 min.

The shRNA with higher efficacy was selected to generate transgenic

mice using FVBN mice by lentiviral transgenesis as previously

described [26,27]. Transgenic founder mice were screened by PCR

using genomic DNAs as templates. The sequences of the primer pair

for founder mouse screen were 59-GCGGATCCTACCGGTCGC-

CACCATGGTGAGCAA-39 (forward) and 59-GCGGCGCGC-

CCAATTGAAAAAAGTGATTTAATTTATACC-39 (reverse) re-

spectively, and the size of PCR product was 1012 bp. The PCR

conditions were: 95uC 5 min; then entered the circle: 94uC 30 s, 60uC
30 s, 72uC 1 min; run 30 more circles; then 72uC 5 min.

Real-time RT-PCR
Total RNA samples were prepared from livers of adult mice at

8-week age, treated with DNaseI and reversely transcribed as

Transgenic miR-shRNA Suppressed Mouse CYP3A
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previously described [27]. To detect CYP3A expression and that

of the internal control Rps18 quantitatively, the resulted cDNA

samples were subjected to real-time PCR using the same primer

pairs as mentioned above. The real-time PCR reaction systems for

both CYP3A and Rps 18 included: PCR primers (10 mM) 1 mL

each; SYBRH Premix Ex TaqTM II(26)(Cat No.:DRR081A;

Takara, Dalian, China) 12.5 mL; cDNA preparation 2 mL; ddH2O

added up to 25 mL. The PCR conditions were: 95uC 3 min; then

entered cycles: 94uC 5 s, 60uC 30 s, plate read; run 39 more

cycles; then 72uC 3 min, 95uC 1 min, 60uC 1 min.

The relative expression of CYP3A was calculated using Pfaffl

equation: Ratio = (Etarget)
DCt(target)/(Eref)

DCt(ref), where Ratio stands

for the proportions of CYP3A expression of transgenic mice to that

of wild-type mice, Etarget for the E value (amplification efficiency)

of real-time PCR for CYP3A, Eref for the E value for internal

control (Rps 18) and DCt for the Ct difference value between the

Ct values for CYP3A(target) or Rps18(Ref) of transgenic and wild-

type mice.

To quantitatively detect the expression level of miR-shRNA

molecule in transgenic mice, using the same reversely transcribed

total RNA samples as above, real-time PCR was performed with

another primer pair corresponding to eGFP CDS and pri-miRNA

area of the transgene construct respectively. The primer sequences

were 59-CTACCTGAGCACCCAGTCCG-39 (forward) and 59-

TCCCAGCAAGTGTTTCCAAGAT-39 (reverse) respectively,

and the size of PCR product was 233 bp. The real-time PCR

system and reaction conditions for miR-shRNA were the same as

that for CYP3A, except that the melting temperature was 55uC.

To determine the copy numbers of miR-shRNA transcripts in

samples, the FUW-eGFP-miR-shRNA plasmid with defined copy

numbers diluted into cDNA samples prepared from wild-type

mouse livers at different concentrations was used as standard

sample to establish standard curve, thereby standard equation was

obtained. Based on the established standard equation, the copy

number of miR-shRNA transcript in each sample was calculated

using the corresponding Ct value. The copy number of Rps 18

mRNA in each sample was determined in the same way using the

primer pair as above. The miR-shRNA transcript copy number

was normalized to that of Rps 18 mRNA in the same sample, and

the resulted data was the relative miR-shRNA expression level.

Western blot analysis
Total protein was extracted from transgenic mouse livers using

Total Protein Extraction Kit (Promab, USA; Cat No.: SJ-200501)

as described in the manual. Total protein samples were subjected

to conventional SDS-PAGE electrophoresis, and then transferred

to NC membranes (PIERCE,USA; Catalog No.:88018) using a

transblot facility Mini Teans-Blot Elecreophoresis Transfer Cell

(Bio-Rad, USA; Catalog No:170- 3930). Western blot (WB) was

performed using Goat Anti-mouse CYP3A Antibody (Santa, USA;

Cat No.: sc-30621) as primary antibody to detect CYP3A

expression, and using Monoclonal Antibody to mouse GAPDH

(ProMab, USA; Cat No: Mab-2005079) as primary antibody to

detect the internal control GAPDH expression. The densities of

Western blot bands were detected using the software Gel Pro4.0.

Analysis of CYP3A enzymatic activity
Liver microsomes were prepared from untreated adult male

mice (aged 8–10 weeks) by differential centrifugation as previously

described [28,29], and the protein concentrations of the prepared

microsome suspensions were determined by Lowery method [30].

Using testosterone as the probe substrate, CYP3A activity in

mouse liver microsomes was measured through isocratic HPLC as

previously described [31]. Briefly, mouse liver microsome

suspensions were diluted with freshly prepared NAPDH genera-

tion system to be 1 mg/mL. Testosterone dissolved into DMSO

solution was added into 0.2 mL of the diluted liver microsome

suspension up to a final concentration of 100 mmol/L as the probe

substrate. After pre-incubation at 37uC for 5 min, 3 mL b-NADP/

b-NADPH solution containing 3% NaHCO3 was added to initiate

reaction. After incubation at 37uC for 30 min, 0.2 mL ice-cold

acetonitrile (Sigma, Cat No.: 34998; USA) was added into the

reaction mixture to terminate reaction. Thereafter, the reaction

mixtures were subjected to centrifuge and the supernatants were

used for HPLC analysis to detect the oxidative metabolite of probe

substrate. The CYP3A activity was assessed as concentrations of

the oxidative metabolite of probe substrate (6b-hydroxyl-testoster-

one).

Denaturing Gradient Gel Electrophoresis (DGGE) of RT-
PCR products of targeted CYP3A genes

The RT-PCR products subjected to DGGE were prepared

using the degenerate primer pair with complete complementarity

to all the three targeted CYP3A genes exhibiting expression in

adults (CYP3A11, CYP3A41 and CYP3A44) as mentioned above,

except that the reverse primer was fused 39 to a GC-clump. The

sequence of GC-clump was: 59-CGCCCGGGGCGCGCCCC-

GGGCGGGGCGGGGGCACGGGGGG-39. DGGE was per-

formed as previously described [32,33]. Briefly, DGGE was run

through 8% (wt/vol) polyacrylamide gels of the size 16-cm616-

cm61-mm. The gels contained a 30–50% gradient of urea and

formamide increasing in the direction of electrophoresis. The

100% denaturing solution was defined as 40% (vol/vol) formam-

ide and 7.0 M urea. Each lane was loaded with similar amount of

DNA. The gels were stained with AgNO3 after electrophoresis,

and then photographed using a digital camera (model D3100,

Nikone, Japan). After photographing, the DNA of each band was

extracted from gel, amplified by PCR using the degenerate primer

pair with no GC-clump and sequenced. The digital photo of the

gel was decolorized, and the intensities of DGGE bands were

detected using Quantity One 4.6.2 (Bio-rad) software as described

in the manual.

Results

shRNA design and generation of transgenic knock-down
mice

CYP3A is the most abundant subfamily of CYP enzymes in

mice [34]. In this study, shRNAs targeting several members of

CYP3A were designed using an on-line RNAi design algorithm as

described in Materials and Methods. Two shRNAs with high

scores were selected, of which the sequences were 59-AATTAA-

GAATGTGCTAGTGAAG-39 (shRNA1) and 59-AAGGTTTG-

CTCTCATGAATATG-39 (shRNA2) respectively. The unique-

ness of the two designed shRNAs was analyzed by BLAST. Data

showed that except the first nucleotide, which was included to

form the bubble structure of mature miRNA molecule, the 2–22nd

nucleotides of both shRNA1 and shRNA2 exhibited complete

complementarity to the mRNA sequences of CYP3A11,

CYP3A16 and CYP3A44, and moreover, that of shRNA1 showed

high complementarity to CYP3A41 with only one nucleotide

mismatch. In addition, the two shRNAs both exhibited no

homology to human CYP3A mRNA sequences, suggesting they

would not silence human CYP3A expression if human CYP3A

were transgenically expressed in the resulted knock-down mice.

The two shRNA sequences were placed into miR30 context

downstream eGFP CDS and thereby lentiviral vectors expressing

the miR-shRNAs, named as FUW-eGFP-miR-shRNA in this

Transgenic miR-shRNA Suppressed Mouse CYP3A
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article, were constructed (Fig. 1). To test the gene knock-down

efficacy of the two designed shRNAs in vitro, the FUW-eGFP-

miR-shRNA vectors expressing the miRNA-based versions of the

two designed shRNAs (miR-shRNA1 and miR-shRNA2) and an

unrelated miR-shRNA targeting luciferase gene (negative control)

were packaged into lentiviral particles, and infected primarily

cultured mouse hepatic cells. RT-PCR was performed to detect

CYP3A expression jn infected hepatic cells using a degenerate

primer pair complementary to all the three targeted CYP3As

which exhibit expression in adults (CYP3A11, CYP3A41 and

CYP3A44), and CYP3A16 expression was not detected because it

is not expressed in adults, but predominantly in fetus [35]. Results

showed that the CYP3A expression level in hepatic cells infected

with shRNA1 or shRNA2 was markedly lower than that of

uninfected cells (blank control) or cells infected with unrelated

miR-shRNA (negative control) (Fig. 2 A, B), suggesting that the

two designed shRNAs were both effective in inhibiting CYP3A

expression. The hepatic cells infected with shRNA1 exhibited the

lowest CYP3A expression level (Fig. 2 B), indicating that shRNA1

had a relatively higher efficiency in knock-down of target gene

expression. The CYP3A expression level of negative control was

comparable to that of blank control, suggesting that eGFP or

unrelated miR-shRNA expression did not disturb CYP3A

expression in cultured hepatic cells.

Figure 1. Structure of FUW-eGFP-miR-shRNA vector. The designed shRNA sequences targeting mouse CYP3A mRNAs were placed into human
miR30 context downstream eGFP coding sequence (CDS). The eGFP-miR-shRNA fragments were further inserted downstream the human Ubiquitin C
(UBC) promoter in the lentiviral vector FUW, as a result the eGFP-miR-shRNA fragment was under transcriptional control of human UBC promoter.
Arrows P1 and P2 indicates the positions of real-time PCR primers used to detect miR-shRNA expression, and P3 and P4 the primer positions for
transgenic founder mouse PCR screen.
doi:10.1371/journal.pone.0030560.g001

Figure 2. shRNA knock-down efficiency test in vitro and transgenic founder mouse production. A: CYP3A expression was detected by RT-
PCR in hepatic cells expressing the two designed shRNAs (shRNA1 and shRNA2), shRNA targeting luciferase gene (negative control) and untreated
hepatic cells (blank control) respectively. 1: DNA markers; 2: untreated hepatic cells (blank control); 3: hepatic cells infected with an unrelated shRNA
targeting luciferase gene (negative control); 4: hepatic cells infected with shRNA1; 5: hepatic cells infected with shRNA2. B: The CYP3A expression
level in hepatic cells expressing shRNA1 or shRNA2 was significantly lower than that of negative or blank control, and hepatic cells expressing shRNA1
exhibited the lowest CYP3A expression level. C: Transgenic mice were generated with the lentiviral vector expressing shRNA1, and four founder mice
were detected to be transgenic by PCR using genomic DNA as templates. D. The four transgenic founder mice displayed fluorescence of different
intensities. *: indicates statistic significance.
doi:10.1371/journal.pone.0030560.g002
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The shRNA1 was selected to generate transgenic mice using its

corresponding FUW-eGFP-miR-shRNA vector by lentiviral

transgenesis as previously described [26], and 4 founder mice

were detected to be transgenic by PCR (Fig. 2 C). The four

transgenic founder mice exhibited fluorescence of different

intensities as detected by exposing to 302 nm UV light emitted

from a UV light transmitter and observed through a red light filter

(Fig. 2 D). The founder mouse with the strongest fluorescence was

selected to breed for germline transmission. In parallel, the FUW-

eGFP-miR-shRNA vector expressing a miR-shRNA targeting

luciferase was also used to generate transgenic mice, which were

used as negative control (data not shown).

Transgenic miR-shRNA1 suppressed CYP3A expression in
a dose-dependent manner

Because miR-shRNA was co-transcribed with eGFP in one

transcript as a multi-cistron (Fig. 1), the eGFP expression level

should be quantitatively proportional to that of miR-shRNA

molecules. Therefore, stronger fluorescence should mean higher

miR-shRNA expression level and vice versa. On the basis of this

point, the four transgenic founder individuals, displaying fluores-

cence of different intensities, were all used to investigate the

correlation between the knock-down efficiency and miR-shRNA1

expression level.

The transgenic founder mouse exhibiting the strongest fluores-

cence was selected for breeding by mating with wild-type mice.

After germline transmission was confirmed, the four transgenic

founder individuals were all subjected to real-time RT-PCR

analysis (Fig. 3). Because mouse CYP3A expression exhibits

gender difference [35], two adult wild-type mice (one male and

one female) were included as blank controls for CYP3A expression

analysis, and the transgenic mice expressing an unrelated miR-

shRNA also included as negative control. Results showed that in

miR-shRNA1 transgenic mice, the relative CYP3A expression

level, which was normalized to that of wild-type control of the

same gender, was inversely correlated to the relative miR-shRNA1

expression level (Fig. 4A). Being consistent with our data for

cultured hepatic cells, the transgenic mice expressing an unrelated

miR-shRNA exhibited comparable CYP3A expression level to

wild-type mice, indicating that expression of eGFP or an unrelated

miR-shRNA did not disturb CYP3A expression in vivo either

(data not shown).

The CYP3A expression in the four transgenic founder

individuals was further detected by Western blot (WB). The

CYP3A protein expression level in each sample was calculated by

comparing the WB band density of CYP3A to that of the internal

control GAPDH. Data showed that the four transgenic founder

individuals, displaying fluorescence of different intensities, also

exhibited different levels of CYP3A protein (Fig. 4 B, C). The

relative CYP3A protein expression level, which was normalized to

that of the wild-type control of the same gender, was also inversely

correlated with the relative miR-shRNA1 expression levels (Fig. 4

D), being consistent with the data of real-time PCR analysis.

Transgenic miR-shRNA1 suppressed CYP3A expression
through germline transmission

The transgenic founder displaying the strongest fluorescence

was used for germline transmission by mating with a wild-type

individual before it was used for other analysis. F1 transgenic

individuals displaying variant intensities of fluorescence were

obtained as a result of lentiviral integrant segregation as previously

described [27,36]. Two F1 transgenic individuals, one male and

one female which displayed the strongest fluorescence among

littermates of the same gender, were selected for further germline

transmission by mating each other, and their offspring continued

to be bred in the same way over to F3 generation as previously

described [27]. The CYP3A expression levels in the breeding mice

of each generation were detected by WB. Data showed that the

CYP3A protein levels in the breeding mice of F1–F3 generations

were all markedly lower compared to those of controls (Fig. 5 A).

Moreover, the relative CYP3A protein expression level, which was

normalized to that of wild-type control of the same gender, was

comparable among different generations, but slightly decreased

over generations (Fig. 5 B). These data suggested that transgenic

miR-shRNA1 suppressed CYP3A expression in an inheritable

manner.

Lentiviral transgenesis usually results in multiple integrations,

and the expression level of transgene delivered by lentviral vector

is closely related to lentiviral integrant number[27]. Therefore, in

this study more lentiviral integrants might mean higher miR-

shRNA expression level and higher knock-down efficiency as a

result. For this reason, the knock-down efficiency per miR-

shRNA1 molecule was calculated by comparing the inhibition rate

of CYP3A expression to the relative miR-shRNA1 expression level

(the miR-shRNA1 transcript copy number normalized to that of

Rps 18 mRNA) in one individual. The inhibition rate of CYP3A

expression was calculated as the following: inhibition rate = (12-

CYP3A expression normalized to wild-type individual)6100%.

The inhibition rate per normalized miR-shRNA1 transcript copy

of each generation was the average value of the two breeding mice.

As shown in Fig. 5 C, the inhibition rate per normalized miR-

shRNA1 transcript copy remained relatively constant, but slightly

increased over generations (Fig. 5 C), further suggesting that

lentiviral transgenic miR-shRNA1 suppressed CYP3A expression

in an inheritable manner.

Because mouse CYP3A expression exhibits gender difference, to

investigate whether the knock-down efficacy observed in this study

also exhibited gender difference, we compared the inhibition rate

of CYP3A protein expression between male and female transgenic

mice using the data derived from the breeding mice of F1–F3

generations. Paired T-test was performed using the data of the two

breeding mice of each generation as a pair. Result showed that no

remarkable difference was observed for the inhibition rates

between male and female mice (P = 0.9192). Actually, female

and male transgenic mice exhibited a very similar inhibition rate

(0.6460.096 vs 0.6560.076), indicating that the transgenic miR-

shRNA1 reduced CYP3A expression to a defined degree

regardless of gender.

Transgenic miR-shRNA1 remarkably reduced CYP3A
enzymatic activity

To further investigate the knock-down efficacy of transgenic

miR-shRNA1, CYP3A enzymatic activity in knock-down mice

was measured. Untreated adult male miR-shRNA1 transgenic,

unrelated miR-shRNA transgenic and wild-type mice of 8 week

age were subjected to CYP3A enzymatic analysis in parallel (five

mice/each group). To measure the CYP3A activity, testosterone

was added into liver microsome suspensions up to a defined

concentration (100 mmol/L) as probe substrate. Data showed that

the concentrations (mg/mL) of the oxidative metabolite of

testosterone (6b-hydroxyl-testosterone) in the liver microsome

suspensions of miR-shRNA1 transgenic mice were significantly

lower than those of wild-type mice (1.1160.71 vs 5.8561.74,

P = 0.0005) or transgenic mice expressing an unrelated miR-

shRNA (1.1160.71 vs 5.962.4, P = 0.00047) (Fig. 6), indicating

that the CYP3A enzymatic activity was markedly reduced in the

knock-down mice. In addition, the 6b-hydroxyl-testosterone

Transgenic miR-shRNA Suppressed Mouse CYP3A
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concentrations in liver microsome suspensions were comparable

between unrelated miR-shRNA transgenic and wild-type mice

(5.8561.74 vs 5.962.4, P = 0.9786) (Fig. 6), further indicating that

the expression of eGFP or an unrelated miR-shRNA had no effect

on CYP3A enzymatic activity, which was consistent with the data

for CYP3A expression analysis.

The targeted CYP3A genes in knock-down mice
exhibited similar characteristics in RT-PCR DGGE analysis
to those in controls

To address whether the three targeted CYP3A genes which

exhibit expression in adults were all suppressed in the knock-down

mice, mixed RT-PCR products of the three genes were prepared

using the degenerate primer pair as described above from randomly

selected knock-down mice and control (wild-type and unrelated

miR-shRNA transgenic) mice at 5-week age of both genders (Fig. 7

B). The mice of 5-week age were used because it had been reported

that at this age the three CYP3As were expressed in both male and

female [33]. The selected knock-down mice exhibited markedly

reduced overall CYP3A protein level compared to controls of the

same gender (Fig. 7 A). The mixed RT-PCR products were

subjected to DGGE analysis, a regular method designed to separate

homologous DNA fragments of the same length with base-pair

difference [33]. Data showed that the knock-down mice exhibited

almost the same DGGE band profile as controls of the same gender

(Fig. 7 C). In female group, CYP3A11, CYP3A41 and CYP3A44

were all detected, while in male group CYP3A11 and CYP3A41

detected. The ratios of the RT-PCR products of different CYP3As

(CYP3A11/CYP3A41 in male group and CYP3A11/CYP3A41/

CYP3A44 in female), which were estimated by comparing the

corresponding DGGE band intensities of each gene, were

comparable between knock-down and control mice of the same

gender (Fig. 7 D). These data indirectly indicated that the

transcriptional levels of the three targeted CYP3As were reduced

to a similar extent in knock-down mice.

Figure 3. Melting and standard curves of the real-time PCR systems for CYP3A, miR-shRNA1 and Rps18. The real-time PCR was
performed using cDNA samples prepared from the livers as templates. The standard equation of each real-time PCR system was y = 20.3129x+8.19,
y = 20.3279x+10.66 and y = 20.3008x+8.18 respectively. The amplification efficiency (E value) of each system was 1.06, 1.18 and 1.00, and correlation
coefficients (r2 values) of the standard equations were 0.998, 0.997 and 0.994 respectively.
doi:10.1371/journal.pone.0030560.g003

Figure 4. Correlation between CYP3A expression level and that of miR-shRNA1. A: The correlation between the relative expression level of
CYP3A and that of miR-shRNA1 detected by real-time RT-PCR. The relative CYP3A expression was calculated by Pfaffl equation, and the resulted data
referred to the ratio of CYP3A expression in miR-shRNA1 transgenic mice to that of wild-type individual of the same gender. The relative miR-shRNA1
expression level was detected as the copy number of miR-shRNA1 transcript normalized to that of Rps 18 mRNA in the same sample. B: CYP3A
protein detected by Western blot in the livers of wild-type and miR-shRNA1 transgenic mice. The GAPDH protein was simultaneously detected as
internal control. WT-F: female wild-type mouse; WT-M: male wild-type mouse; 1–4: the four transgenic founder individuals displaying fluorescence of
different intensities. C: CYP3A protein levels in the four transgenic founders and wild-type mice. CYP3A protein level in each sample was calculated
by comparing the WB band density of CYP3A to that of GAPDH. D: The correlation between relative CYP3A protein expression level and that of miR-
shRNA1. Relative CYP3A protein expression level was the CYP3A protein level normalized to that of wild-type control of the same gender, which was
set as 1.
doi:10.1371/journal.pone.0030560.g004

Transgenic miR-shRNA Suppressed Mouse CYP3A

PLoS ONE | www.plosone.org 7 January 2012 | Volume 7 | Issue 1 | e30560



Discussion

CYP3A is the most abundant CYP enzyme subfamily both in

human and mammalian animals, which are involved in the

metabolism of more than 50% of clinically available drugs for

humans. Therefore, CYP3A is the prior target to disrupt for

generation of animals lacking or with largely reduced endogenous

CYP expression. In this study, we designed a microRNA-based

shRNA (miR-shRNA) molecule simultaneously targeting four

members of mouse CYP3A subfamily: CYP3A11, CYP3A16,

Figure 5. Lentiviral transgenic miR-shRNA1 suppressed CYP3A expression through germline transmission. A: CYP3A protein detected
by WB in the two breeding mice of each generation. WT-1: female wild-type mouse; WT-2: male wild-type mouse; F1-1, F1-2: the two breeding mice
of F1 generation; F2-1, F2-2: the two breeding mice of F2 generation; F3-1, F3-2: the two breeding mice of F3 generation. B: Relative CYP3A
expression level in the breeding mice of F1–F3 generations. The relative CYP3A expression levels were calculated as described above, and the value
of each generation was the average of the two breeding mice. C: The inhibition rate of CYP3A expression per normalized miR-shRNA1 transcript copy
over generations. The value of each generation was also the average of the two breeding mice.
doi:10.1371/journal.pone.0030560.g005
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Figure 6. CYP3A enzymatic activity analysis. Five adult male miR-shRNA1 transgenic mice, unrelated miR-shRNA transgenic mice and wild-type
mice were subjected to CYP3A enzymatic activity analysis in parallel. The ages of used mice were 8–10 weeks. Analysis was performed using liver
microsome systems prepared from each group, and testosterone was added into the systems up to a defined concentration as the probe substrate.
The concentration of the oxidative metabolite of probe substrate (6b-hydroxyl-testosterone) was detected by HPLC analysis. Wild-type: wild-type
mice of FVBN strain; unrelated miR-shRNA: transgenic mice expressing a miR-shRNA targeting luciferase; miR-shRNA1: transgenic mice expressing the
miR-shRNA1 targeting CYP3A. * indicates statistic significance.
doi:10.1371/journal.pone.0030560.g006

Figure 7. DGGE analysis of the mixed RT-PCR products of targeted CYP3A genes. The mixed RT-PCR products were prepared using a
degenerate primer pair from randomly selected knock-down and control mice of 5-week age, and subjected to DGGE with similar amount of DNA
loaded into each lane. A: Overall CYP3A protein detected by WB in knock-down, wild-type (blank control) and unrelated miR-shRNA transgenic
(negative control) mice. B: The mixed RT-PCR products prepared from knock-down and control mice. C: The mixed RT-PCR products were subjected
to DGGE. D: The ratio of targeted CYP3A expression levels, estimated by comparing the corresponding DGGE band intensities of each gene. 1,3:
male knock-down mice; 4,6: male unrelated miR-shRNA transgenic mice; 7,9: male wild-type mice; 10,12: female knock-down mice; 13,15:
female unrelated miR-shRNA transgenic mice; 16,18: female wild-type mice.
doi:10.1371/journal.pone.0030560.g007
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CYP3A41 and CYP3A44, of which the sequence exhibited no

homology to human CYP3A genes. Knock-down mice with

markedly reduced CYP3A expression were generated by trans-

genic expression of the designed miR-shRNA driven by a PolII

(human Ubiquin C) promoter. Using the four transgenic founder

individuals exhibiting different levels of miR-shRNA expression,

the correlation between the knock-down efficiency and miR-

shRNA expression level was directly investigated. Our data

showed that the transgenic miR-shRNA molecule suppressed

CYP3A expression in a dose-dependent manner in vivo,

suggesting that to generate knock-down animals with efficient

inhibition of target gene expression using this system, in addition

to design potent shRNA molecules, establishment of a transgenic

line with high miR-shRNA expression level is also necessary.

Germline transmission of knock-down efficacy is the perquisite

to establish a knock-down animal line lacking or with largely

reduced target gene expression. Our data showed that the CYP3A

expression levels in the transgenic offspring of F1–F3 generations,

which were all markedly lower than those of wild-type mice, were

comparable and moreover slightly decreased over generations. In

addition, the knock-down efficiency per miR-shRNA transcript

copy also slightly increased over generations. These results

confirmed that the lentiviral transgenic miR-shRNA suppressed

CYP3A expression in an inheritable manner, suggesting that the

lentiviral integrants expressing miR-shRNA were not subjected to

silence through germline transmission, which was consistent with

our previous data of lentviral transgene expression analysis [27].

The slight increase of knock-down efficiency over generation may

be due to the breeding strategy used in this study, through which

the lentiviral integrants exhibiting higher miR-shRNA expression

level were preferred to be transmitted through germline. On this

basis, this work provided a strategy to establish a transgenic line

with an inheritable and efficient knock-down of target gene

expression using lentiviral transgenic animals.

The knock-down efficacy observed in this study was further

confirmed by CYP3A enzymatic activity analysis. The average

CYP3A enzymatic activity in liver microsome suspensions of

knock-down mice was reduced to about twenty percent of that of

wild-type mice or transgenic mice expressing unrelated miR-

shRNA. The degree of CYP3A enzymatic activity reduction was

slightly higher than that of CYP3A protein reduction. One reason

for this may be that different members of CYP3A subfamily may

exhibits different activity or reaction kinetics in the metabolism of

substrates, which has already been observed in human [37].

Therefore, a certain degree of CYP3A protein reduction may

result in a higher degree of CYP3A enzymatic activity reduction if

the inhibited CYP3A enzymes exhibited a relatively higher

activity. Being consistent with the data of CYP3A expression

analysis, the expression of eGFP or unrelated miR-shRNA did not

affect mouse CYP3A enzymatic activity either, indicating that the

reduction of CYP3A enzymatic activity in knock-down mice was

exactly mediated by the designed transgenic miR-shRNA

molecule.

Due to the high homology of the three targeted CYP3A genes

which exhibit expression in adults (CYP3A11, CYP3A41 and

CYP3A44), we failed to design gene-specific primer pairs or

Taqman probes to detect each gene expression quantitatively one

by one. Besides, semi-quantitative analysis of each gene expression

by WB was not achieved either due to the lack of antibodies

targeting the three CYPs individually. By DGGE of the mixed

RT-PCR products of the three CYP3As prepared using a

degenerate primer pair, we separated the RT-PCR products of

the three genes. Data showed that the mixed RT-PCR products of

knock-down mice exhibited almost the same DGGE band profile

to those of control mice, and the ratios of RT-PCR products of the

three CYP3As were comparable between knock-down and control

mice. This result provided indirect evidence that the transcrip-

tional levels of the targeted CYP3As may be suppressed to a

similar extent in knock-down mice, even though the designed

transgenic miR-shRNA molecule had one nucleotide mismatch

with CYP3A41. However, this indirect evidence did not mean that

the targeted CYP3As were all actually reduced to a similar extent

on protein level. By DGGE analysis, CYP3A44 were not detected

in male group, which was not consistent with a previous report

[33] demonstrating that both CYP3A41 and CYP3A44 were

expressed in male C57BL6 mice of 5-week age. This inconsistence

may be due to the fact that a different mouse strain (FVBN) was

used in this work, and the CYP3A44 expression level in male

FVBN mice of 5-week age may be too low to be detected by

DGGE analysis.

Generation of knock-down animals lacking or with largely

reduced endogenous CYP3A expression is the ultimate goal of this

study. In this study, we designed a miR-shRNA simultaneously

targeting four members of CYP3A subfamily, but the remaining

three CYP3A members (CYP3A25, CYP3A57 and CYP3A59)

were not targeted, which may be the main reason for the residual

level of CYP3A protein or CYP3A activity. Among the remaining

three CYP3A members, CYP3A25 is considered to be the second

most abundant CYP enzyme in mice which exhibits a constitutive

expression with no gender or organ difference. Future work can be

focused on the knock-down of the remaining three CYP3A

members by the same strategy described in this work. Sequence

comparison indicates that the three mouse CYP3A genes exhibit

homology of a similar degree to that of the four CYP3A members

targeted in this study. Thus, one miR-shRNA can be designed to

disrupt the three CYP3A gene expressions. On this basis, a

‘‘bigenic’’ line simultaneously expressing two designed miR-

shRNA molecules can be established, and a knock-down mouse

line lacking or with largely reduced expression of all the CYP3A

genes can be obtained. In addition, considering that RNAi is a

highly conserved mechanism, and lentviral transgenesis is an

extremely efficient method for transgenic animal production

which has been proved to be applicable to a variety of mammalian

species including non-human primates [26,38–41], the strategy

described in this study can be further applied to other mammalian

species, especially those species of great value for drug develop-

ment which are highly refractory to traditional ES cell-based gene

knock-out technology, such as dog, minipig and non-human

primates. However, to use this system for these purposes, one point

should be taken into consideration that lentiviral transgenic miR-

shRNA can suppress endogenous CYP expression largely, but not

entirely. For many pharmacokinetic or pharmacodynamic studies

to evaluate drugs or investigate the relation of a particular human

CYP to a specific drug toxicity or inefficacy, low residual level of

endogenous CYP may not be a big hurdle. But for those

experiments requiring no endogenous CYP expression, this system

is not an optimal choice. Another limitation of this system is

multiple integrations of lentiviral transgene, which limits to

establish homozygous transgenic line with stable transgene

expression. However, our previous data [27] indicated that, by

selecting the individuals exhibiting the strongest transgene

expression as the breeding animals for each generation, a

‘‘transgenic colony’’ with relatively constant and high transgene

expression can be established after several generations of breeding

in this way consecutively. Therefore, on this basis a homozygous

line was not required. In addition, because this system contains a

marker gene being co-transcribed along with miR-shRNA

molecules, it would be convenient to use the transgenic animals
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derived from this system for this purpose, which was also suggested

by the data of this work.
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