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Abstract

Organisms have to continuously adapt to changing environmental conditions or undergo developmental transitions. To
meet the accompanying change in metabolic demands, the molecular mechanisms of adaptation involve concerted
interactions which ultimately induce a modification of the metabolic state, which is characterized by reaction fluxes and
metabolite concentrations. These state transitions are the effect of simultaneously manipulating fluxes through several
reactions. While metabolic control analysis has provided a powerful framework for elucidating the principles governing this
orchestrated action to understand metabolic control, its applications are restricted by the limited availability of kinetic
information. Here, we introduce structural metabolic control as a framework to examine individual reactions’ potential to
control metabolic functions, such as biomass production, based on structural modeling. The capability to carry out a
metabolic function is determined using flux balance analysis (FBA). We examine structural metabolic control on the example
of the central carbon metabolism of Escherichia coli by the recently introduced framework of functional centrality (FC). This
framework is based on the Shapley value from cooperative game theory and FBA, and we demonstrate its superior ability to
assign ‘‘share of control’’ to individual reactions with respect to metabolic functions and environmental conditions. A
comparative analysis of various scenarios illustrates the usefulness of FC and its relations to other structural approaches
pertaining to metabolic control. We propose a Monte Carlo algorithm to estimate FCs for large networks, based on the
enumeration of elementary flux modes. We further give detailed biological interpretation of FCs for production of lactate
and ATP under various respiratory conditions.
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Introduction

Organisms perpetually face changes in environmental condi-

tions. Bacteria may be confronted with variations in oxygen [1] or

carbon sources [1,2], while plants may be exposed to changes in

light quality [3] and intensity [4] as well as in availability of carbon

[5] and nitrogen [6]. Animals, on the other hand, may have to

cope with shifts in temperature [7]. To ensure survival, growth,

and reproduction, organisms adapt to these perturbations. The

adaptation is likely to be reflected in physiological changes across

some or all levels of biological organization, from single cells to

tissues, organs, and the organism itself. The molecular mecha-

nisms of adaptation involve concerted action through gene

regulatory and signaling interactions which ultimately induce the

modification of the metabolic state to meet the change in

metabolic demands [8–10]. Such transitions in metabolic state

are not only the response to shifts in environmental conditions, but

also occur upon changing demands during development, e.g., in

the switch from sink to source leaf [11] or during the cell cycle

[12], as well as during metabolic cycles [13].

The metabolic state is determined by the concentration of

metabolites and fluxes of biochemical reactions interconverting the

metabolites. Changes in metabolite concentrations are governed

by alterations of reactions’ fluxes which depend on the concen-

tration of reactants themselves. Moreover, fluxes are often under

tight condition-specific regulation by means of varying enzyme

concentrations/activities via transcriptional and (post)translational

modifications [14,15] as well as through metabolic and allosteric

regulation via various effectors (i.e., activators and inhibitors) [16].

However, reaction fluxes are not equally regulated. For instance,

regulation targeted at specific enzymes has been observed in

facultative anaerobic bacteria upon change from oxic to anoxic

environment [17]. The adaptation processes resulting in a

preferable metabolic state are crucial to guarantee functioning

and, hence, survival. Therefore, the ability of metabolism to adapt

to changing conditions, via regulation of its state, can be regarded

as a potential for controlling this complex dynamical system.

A dynamical system is called controllable if it can be driven

from an initial state to a desirable state by the manipulation of a

suitable set of variables [18]. Since regulation of the transition

between metabolic states is targeted at enzymes and corresponding

reactions, reaction fluxes can be considered as the metabolic

control variables. Biochemical reactions do not act in isolation

and, hence, the process of metabolic adaptation is a result of

complex interactions among the system components (i.e., metab-

olites and enzymes). Therefore, assessing the extent to which

reaction fluxes have to be manipulated to control the metabolic

state is a nontrivial task, as metabolic control is a systemic

phenomenon [19].

A recent study has shown that, in general, multiple metabolites

have to be manipulated to control metabolic networks [20]. While

it remains unclear to what extent this holds if control is exerted on

reaction fluxes obeying stoichiometric and physiochemical con-

straints, it indicates that metabolic control is the result of
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cooperative action. Furthermore, metabolic control can be

assumed to depend on the preferred metabolic state an organism

aims to attain, which may exhibit altered concentrations [21] or

modified fluxes [22].

Mathematical models, capturing the interactions of the most

relevant components, provide tractable means for understanding

metabolic control [23,24]. A frequently utilized framework is

metabolic control analysis (MCA) [25–27] which enables the

examination on the basis of kinetic modeling. It has generated

diverse insights in metabolic control and served as the basis of

rational strain design in metabolic engineering [28–31]. However,

the limited availability and accuracy of condition-specific kinetic

parameters render the applicability of kinetic models to metabolic

processes of small scale [32].

On the other hand, structural modeling, although neglecting the

details of the kinetics, has proven to be successful in describing and

predicting phenotypes across different organisms, from bacteria to

plant and human [33–40]. Nevertheless, a computational frame-

work for quantifying and investigating metabolic control based on

structural models is currently lacking.

Here, we introduce structural metabolic control as a framework to

examine the effect of the manipulation of a metabolic network (via

enabling and disabling the utilization of reactions) on the

operation of selected metabolic functions.

In structural modeling, metabolic functions are equivalent to

combinations of fluxes and can correspond to the objective

function of flux balance analysis (FBA). The synthesizing capacity

of a metabolic function can then be determined by optimizing the

objective upon the given constraints [33,41]. We examine

structural metabolic control by employing functional centrality

(FC) [42] which quantifies a reaction’s contribution to the

synthesizing capacity of a metabolic function via a modified

version of the Shapley value from cooperative game theory

[43,44]. This framework integrates the potential interactions

between reactions by considering the multiplicity of subnetworks

capable of performing the metabolic function. We demonstrate

that FC is suitable for elucidating metabolic control and for

identifying reactions as potential sites of control. Moreover, this

framework allows investigations of the dependency of metabolic

control on the environmental conditions, providing insights in the

environment-specificity of the distribution of control among

reactions. From a computational point of view, we propose an

approximation algorithm based on Monte Carlo sampling which

extends the applicability of FC to metabolic networks of large size.

The algorithm is based on the calculation of elementary flux

modes (EFMs), inheriting its computational complexity.

In addition, we provide a comparative analysis of FCs and other

structural approaches related to metabolic control, namely,

control-effective fluxes (CEFs) [45], reaction participation in

EFMs [46] and flux couplings [47]. To this end, we use a model

of central carbon metabolism of Escherichia coli (E. coli) [22] in

combination with a Monte Carlo multiple knockout study.

Furthermore, we examine structural metabolic control with

respect to lactate and ATP production in E. coli for different

respiratory states by FC, and discuss and biologically interpret the

variation due to metabolic functions and environmental condi-

tions. Our results indicate that FC can further expand the current

understanding of metabolic control.

Results

We first discuss the available approaches to examine control of

metabolic flux in the established modeling frameworks. Metabolic

control analysis, in particular flux control coefficients, is consid-

ered and the framework of structural metabolic control is

introduced. We briefly describe structural approaches related to

metabolic control, i.e., flux couplings, reaction participation in

EFMs, CEFs, and provide a more detailed description of FC. The

latter is shown to be superior to examine structural metabolic

control compared to the other structural approaches in an FBA-

based multiple knockout study. We then analyze the dependency

of FC on metabolic function as well as on environmental

conditions. Finally, we compare predictions of transcript level

alterations by FCs and CEFs, and analyze the association of the

two measures with the number of transcription factors acting on

individual enzyme catalyzed reactions.

Examination of metabolic control
Mathematical modeling of metabolic processes can be divided

essentially into two distinct conceptual approaches: kinetic modeling

and structural modeling [48–50].

Kinetic modeling provides the means to describe and predict

both steady-state and transient behavior of metabolite concentra-

tions and reaction fluxes prevalently via ordinary differential

equations. However, kinetic models are based on largely

unavailable or unreliable information on kinetic rate laws, on

the nature of regulation processes and on values for the kinetic

parameters [32,51]. Already the modeling of small and well-

investigated pathways, such as the Calvin-Benson cycle, has shown

to be challenging [51].

Structural modeling circumvents the problem of uncertainties

with regard to kinetic information by relying only on structural

information. It utilizes reaction stoichiometry, reaction direction-

alities obtained from basic thermodynamics, and flux boundaries

[49,50,52], which could often be confined through integration of

condition-specific high-throughput data [53]. The resulting

metabolic network then is prevalently examined either by

determining particular steady-state flux distributions guided by

optimization principles [33,41] or by characterizing all steady-state

fluxes via the set of all minimal nondecomposable functional (i.e.,

flux carrying) pathways [45,46]. It is apparent that the price for

this simplification is the restriction to steady-state behavior and the

potential occurrence of physiologically unrealistic flux distribu-

tions.

Metabolic control analysis. Metabolic control analysis

(MCA) is a mathematical framework which facilitates investiga-

tions of metabolic control in kinetic models by a sensitivity analysis

Author Summary

Insight into the functioning of metabolic control to meet
changing demands is a first step in rational engineering of
biological systems towards a desired behavior. Metabolic
control analysis provides the means to examine the impact
of change of reaction fluxes on a specific target flux based
on kinetic modeling, but suffers from limitations of the
kinetic approach. Here, we introduce and analyze struc-
tural metabolic control as a framework to overcome these
limitations. We utilize functional centrality, a framework
based on the Shapley value from cooperative game theory
and flux balance analysis, to determine the contribution of
individual reactions to the functions accomplished by a
metabolic network. These contributions, in turn, depend
on the control exerted on the remaining network.
Functional centrality provides the mathematical means
to gain further understanding of metabolic control. The
potential applications range from facilitating strategies of
rational strain design to drug target identification.

Structural Control of Metabolic Flux

PLOS Computational Biology | www.ploscompbiol.org 2 December 2013 | Volume 9 | Issue 12 | e1003368



of a reference steady state [25–27]. It defines flux control coefficients

(FCCs) which quantify the effect of change in an enzyme’s activity

on metabolic flux and which have been proposed as a measure of a

reaction’s potential to control the flux [27].

FCCs possess various properties facilitating the examination of

metabolic control. Most important, FCCs capture system-wide

interactions as they are determined by evaluating the systemic

response on local perturbations. By the choice of a reference state,

environmental conditions and metabolic demands are incorporat-

ed, such that, in principal, FCCs enable a systematic analysis of the

specificity of metabolic control. The main result of MCA tying

FCCs to metabolic control is the summation theorem which states

that the whole of FCCs pertaining to a specific metabolic flux sum

up to one [27,50]. Thus, FCCs have been suggested to quantify

‘‘share of control’’ [25,27].

The application of MCA to kinetic models has generated

valuable insights and predictions for the control of metabolic flux

[28,29]. Moreover, FCCs have successfully been utilized for

targeted metabolic engineering strategies to improve production of

certain biochemicals, e.g., increasing diacethyl production in

Lactococcus lactis [30] or ethanol production from glycerol in E.

coli [31]. Nevertheless, despite the appealing properties of FCCs,

successful applications to rational strain design are scarce.

Some critical problems exist in the utilization of MCA. The

choice of a reference state in accordance with experimental results

is a prerequisite for its application. Therefore, and due to the

inherently nonlinear nature of metabolism (and of the abstracted

kinetic models), the results are only valid for small perturbations

around the reference state which hampers elucidating general

system properties. Furthermore, while it is possible to built large-

scale kinetic models and even kinetic models of genome scale

[54,55], these models predominantly rely on the estimation of a

large set of parameters and apply usually generalized kinetics such

as linlog kinetics [54–56]. The dynamics of these models then

normally pertain only very closely to the chosen reference state

[54] which undoubtedly results in a bias of MCA outcomes.

Besides, FCCs can attain negative values and, due to the

summation theorem, other reactions can then be assigned FCCs

larger than one [57]. This renders the interpretation of FCCs as a

share of control difficult.

Structural metabolic control. Examination of metabolic

control based on structural modeling constitutes a possibility to

transcend the inherent problems of kinetic modeling. Up to now,

there exists no framework for systematic analysis of metabolic

control based on structural modeling, but there are several

approaches which examine structural properties that can be

related to metabolic control.

Identifying sites of control in a given metabolic network requires

quantification of the contribution of the network components to

the functionality of the network as a whole. Here, the sites of

control are reactions, since structural approaches deal with and

can quantify the distribution of reaction fluxes in the network. The

notion of control varies with the considered network functionality.

Thus, examination of structural metabolic control requires

specification of metabolic functions representing fluxes, ranging from

flux through single reactions, like the synthesis of a specific target

metabolite, to composite fluxes, e.g., the sum of fluxes through

ATP producing reactions. The degree of a specific metabolic

functionality of a network is given by the corresponding

synthesizing capacity. Here, the metabolic function corresponds

to the objective function of FBA (see Methods section) and we

determine the synthesizing capacity by maximizing this function.

In the framework of structural metabolic control, the control of

a metabolic function is exerted by activation and deactivation of

reactions. Each reaction is then described by its status, i.e., active or

inactive. While an active reaction may carry nonzero flux, this is

not the case for an inactive reaction. By deactivation of a reaction

its status switches from active to inactive, which is equivalent to its

removal from the network. Activation of a reaction denotes the

reverse process. Note that activation of a reaction does not imply

that its flux is forced to be nonzero.

A subnetwork of the investigated network is then an assignment

of particular status (i.e., active/inactive) to each reaction in the

metabolic network. Given a metabolic function, a subnetwork is

called functional if it is capable to carry nonzero flux with respect to

the metabolic function and the environmental conditions.

The aim of this study is to identify the reactions with the largest

influence on a metabolic function. These reactions are potential sites

of control, since the effect of the manipulation depends on the

distributed action on several reactions. The potential effect of a

reaction on metabolic function is referred to as its structural metabolic

control capability.

Approaches related to structural metabolic

control. Several structural modeling approaches exist which

describe properties of reactions that are linked to structural

metabolic control.

Flux coupling analysis derives dependencies between pairs of

fluxes due to steady-state constraints employed in FBA, a detailed

description is given in [47]. Two reactions are said to be coupled,

if a nonzero flux through one reaction implies a nonzero flux

through the other reaction. Coupled reactions have been shown to

exhibit significantly higher correlations of their in vivo fluxes in

comparison to uncoupled reactions [58]. We examine the extent to

which the coupling degree, the number of fluxes coupled to the flux of

a specific reaction, is related to structural metabolic control

capabilities.

EFM analysis allows a unique decomposition of a metabolic

network into minimal nondecomposable pathways capable of

carrying nonzero flux at steady state [38,46,59]. They can be

considered as a functional decomposition which allows identification of

relations between the reactions and the metabolic functions. EFMs

indicate which reactions may cooperatively interact to accomplish

a metabolic function of the network. Deactivation of a reaction

results in the deactivation of all EFMs utilizing that reaction [59].

Reaction participation in extreme pathways, which are closely

related to EFMs, has already been proposed as a potential

indicator of metabolic regulation [60]. We examine the frequency

of reaction participation in EFMs restricted to a metabolic

function and specific environmental conditions. Furthermore, we

consider weighting EFMs by the production yield to increase the

contribution of more productive routes.

CEFs utilize EFMs to quantify the importance of individual

reactions for efficient and flexible operation of metabolic functions

and have been introduced to elucidate cellular regulation [45].

The calculation of CEFs is described in the Methods section.

Correlations have been found between ratios of transcript levels

and ratios of CEFs upon substrate change, indicating their utility

for the identification of regulatory patterns [45,61,62].

FC is a framework to quantify the relevance of a reaction to the

synthesizing capacity of a metabolic function which is determined

by FBA [42]. To this end, it integrates the change in optimal

production upon activation/deactivation of the reaction for all

functional subnetworks, thus capturing all possible interactions

with the remaining system. Integration of the individual contri-

butions by FC is required to fulfill axiomatic properties to

guarantee a fair assignment of the reaction’s relevance for optimal

operation: efficiency, marginalism and internal symmetry (see Supple-

mentary Text S1). These requirements result in a mapping of the

Structural Control of Metabolic Flux
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contributions on a scalar value which is equivalent to a modified

version of the Shapley value [44] from cooperative game theory.

The Shapley value has been applied in its original version to

determine the contribution of individual entities in diverse fields of

science [63–65]. The calculation of FCs is described in the

Methods section. The framework has been successfully applied to

quantify the relevance of reactions for the metabolic function of

ATP production in a model of monosaccharide metabolism of E.

coli [42].

FC represents a division of the synthesizing capacity of a

metabolic function among the considered reactions with respect to

their contribution. Therefore, it can be interpreted as an

assignment of ‘‘share of control’’ in analogy to MCA’s summation

theorem [27]. High FC of a reaction then suggests large structural

metabolic control capability.

The application of FCs has been limited to small networks due

to the combinatorial complexity arising from the number of

functional subnetworks. Here, we present an estimation algorithm

that enables computation of FCs for large networks based on

Monte Carlo sampling (see Methods section). We utilize resam-

pling to determine the errors.

The estimation of FCs exploits the fact that the set of functional

subnetworks can be derived from the set of EFMs (see Methods

section). Hence, it initially requires the enumeration of the EFMs

which are capable of the examined metabolic function and in

accordance with environmental conditions. This usually implies

computation of all EFMs. The calculation of EFMs in genome-

scale networks is hampered due to combinatorial explosion and,

therefore, represents a bottleneck to the estimation of FCs as it is

presented in this study (which is also the case for the other EFM

based measures). To our knowledge, the largest set of EFMs has

been calculated for a compartmentalized model of central

metabolism of Saccharomyces cerevisiae. That model comprises central

carbon metabolism and amino acid synthesis pathways, which

altogether encompass 230 reactions [66]. In the discussion, we

briefly describe potential extensions and modifications to push the

limit of the approach up to genome scale but which are out of the

scope of this study.

Analysis of structural metabolic control
We examine structural metabolic control on the example of

central carbon metabolism of E. coli. For this purpose, we utilize a

stoichiometric model introduced by Schütz et al. [22] (see Methods

section and Figure 1). We analyze the potential of the presented

structural measures, i.e., coupling degree, reaction participation in

EFMs, CEFs and FC, to identify potential sites of control. To this

end, we conduct a comparative in silico knockout study for all

described measures, demonstrating the superior capability of FC

to identify potential sites of control.

Structural metabolic control ought to depend on metabolic

function. We determine FCs for two metabolic functions, lactate

and ATP production, under aerobic conditions and give a detailed

biological interpretation of the results. Environmental conditions

should also be reflected in the structural metabolic control

capabilities. We examine the changes in FCs upon change in

environmental conditions for lactate and ATP production and give

detailed biological interpretation. Furthermore, we utilize CEFs

and FCs to predict changes of transcript levels upon switch of

substrate, and analyze the association of the two measures with

number of transcription factors.

Figure 1. Metabolic network of central carbon metabolism of E. coli. Reactions and metabolites are listed in Supplementary Tables S11 and
S12.
doi:10.1371/journal.pcbi.1003368.g001

Structural Control of Metabolic Flux
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Multiple knockout study. We conduct an in silico Monte

Carlo multiple knockout study to quantify the capability of the

various measures to examine structural metabolic control. Reaction

activation/deactivation has already been proposed as the means of

controlling metabolic flux in the framework of structural metabolic

control. The analysis of random reaction deactivation offers an

unbiased way to statistically infer the effect of controlling reactions.

Reaction activation, on the other hand, would require uniform

sampling of random functional subnetworks which is difficult to

achieve. Multiple knockouts enable quantifying the synergetic effect

of controlling several reactions simultaneously. The reactions to be

knocked out are chosen with probabilities proportional to the values

assigned by the various measures.

We examine production of biomass as metabolic function under

conditions of aerobic respiration, nitrate respiration and fermen-

tation (see Methods section). The biomass reaction is a composite

drain comprising all biomass constituting metabolites or biomass

precursors in experimentally determined proportions [67]. It can

be linked to growth rate in unicellular organisms and has been

shown to yield good predictions of prokaryotic phenotypes [22,35–

37,67]. It is a natural objective of central carbon metabolism and

incorporates a wide range of the model’s complex functionality.

Knockouts are sampled without replacement from the proba-

bility distributions

fm
i ~

am
iP

i am
i

, ð1Þ

whereby i[N denotes a reaction from the set of considered

reactions N and am
i its value assigned by the measure m:

functional centrality (FC), number of reaction participations in

biomass producing EFMs (unweighted: EFM, and weighted by

biomass yield: EFMyield), coupling degree with respect to flux

coupling analysis (FCA) and control-effective fluxes (CEF); further,

we utilize funiform, denoting a probability distribution assigning the

knockout of every considered reaction the same probability

(auniform
i ~1). The values obtained by the respective measures

are to be found in Tables S1, S2 and S3.

Knockouts are realized in silico by constraining the respective

reactions to zero flux in the FBA. This is equivalent to FBA on the

subnetwork resulting from removing the knockout reactions from

the network. We record biomass production for up to 25

simultaneous knockouts with a sample size of 200,000. A knockout

resulting in no FBA solution corresponds to a nonfunctional

subnetwork. In that case, we assign zero biomass production.

We define a new statistical measure to quantify the effect of

multiple reaction deactivations on a metabolic function, here

biomass production. In particular, we examine the relative

synthesizing capacity of the metabolic function, meaning the

synthesizing capacity after k knockouts divided by the synthesizing

capacity for zero knockouts. The KO-reduced functionality rm(k)
denotes the average of the relative synthesizing capacity of a

metabolic function per functional subnetwork after k knockouts for

measure m,

rm(k)~

relative synthesizing capacity

after k knockouts summed overall samples

number of functional subnetworks

after k knockouts

:
ð2Þ

If knockouts of genes are chosen with probabilities fm according to

the measure m of structural metabolic control capabilities, rm(k)
captures the reduction of the synthesizing capacity of a metabolic

function in a functional system with respect to the considered

measure. The KO-reduced functionality rm(k) is an estimate of

the expectation value which would be obtained for infinite

sampling. Therefore, the accuracy of rm(k) depends on the

utilized sample size. We provide a detailed statistical derivation of

confidence intervals of rm(k) in Supplementary Text S2. The

deviation of calculated values is considered significant if the 95%

confidence intervals do not overlap. The confidence intervals are

shown in Figures 2, 3 and 4 in terms of error bars. The uniform

Figure 2. KO-reduced functionality of biomass production
under conditions of aerobic respiration. Errorbars are provided for
all rm(k) and indicate 95% confidence intervals. Results are only
depicted for a relative standard error smaller than 10%.
doi:10.1371/journal.pcbi.1003368.g002

Figure 3. KO-reduced functionality of biomass production
under conditions of nitrate respiration. Errorbars are provided for
all rm(k) and indicate 95% confidence intervals. Results are only
depicted for a relative standard error smaller than 10%.
doi:10.1371/journal.pcbi.1003368.g003

Structural Control of Metabolic Flux
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sampling serves as the reference: KO-reduced functionality

indicates that the examined measure captures structural metabolic

control capabilities with respect to the examined metabolic

function, if the decrease is significantly larger than observed for

uniform sampling. The extent of the deviation serves as a

benchmark of the capability to identify potential sites of control.

In the following we describe the effects of utilizing the various

measures on the KO-reduced functionality and, therefore, their

capability to capture structural metabolic control.

The KO-reduced functionality according to the coupling degree

shows larger values compared to uniform sampling for up to 13

knockouts under aerobic conditions (Figure 2). For higher

numbers of knockouts the values are smaller than the values for

uniform sampling; however, as the confidence intervals overlap,

the differences are not significant. Under conditions of nitrate

respiration, KO-reduced functionality is constantly smaller than

for uniform sampling (significant deviation up to 11 knockouts),

but the difference is minor compared to the other measures

(Figure 3). In the fermentative environment, no major significant

differences to uniform sampling can be observed, the curves are

overlaid (Figure 4). Together this indicates low potential of

coupling degree to capture structural metabolic control capabil-

ities. (Flux couplings are determined with the requirement for

nonzero biomass formation larger than 1% of the optimal value.)

Knockouts with respect to participation in biomass producing

EFMs result in a KO-reduced functionality significantly below that

of uniform sampling for k§1 in all settings (Figures 2, 3 and 4).

The results are comparable for the three environmental condi-

tions. Additional weighting by biomass yield results in smaller

values of KO-reduced functionality compared to the unweighted

case. Both variants of reaction participation indicate some

potential to capture structural metabolic control capabilities.

KO-reduced functionality for knockouts with respect to CEFs

shows significantly smaller values compared to the results of the

reaction participation measures under conditions of aerobic and

nitrate respiration (Figures 2 and 3). Under fermentative

conditions the difference to reaction participation is less pro-

nounced (Figure 4). Nevertheless, CEFs show considerable

potential to capture structural metabolic control capabilities.

Knockouts with respect to FC yield almost significantly smaller

values of KO-reduced functionality compared to all other

measures under all considered environmental conditions

(Figures 2, 3 and 4). The only exception is found for aerobic

conditions where the difference to CEFs is not significant for more

than 16 knockouts. The stability of outcomes together with the

large decline in synthesizing capacity indicates its potential to

capture the structural metabolic control capabilities of individual

reactions.

Comparing the impact of the various measures on KO-reduced

functionality indicates FC to be the preferential measure to

examine structural metabolic control.
Dependence on metabolic function. The reactions’ struc-

tural metabolic control capabilities should depend on the

metabolic function. We calculate FCs with respect to two different

metabolic functions to examine the relationship. We analyze

Figure 4. KO-reduced functionality of biomass production
under conditions of fermentation. Errorbars are provided for all
rm(k) and indicate 95% confidence intervals. Results are only depicted
for a relative standard error smaller than 10%.
doi:10.1371/journal.pcbi.1003368.g004

Table 1. Reactions with highest ranking according to functional centrality.

LAC (O2) ATP (O2) ATP (NO3) ATP (Ferm)

Rank Reaction ID Rank Reaction ID Rank Reaction ID Rank Reaction ID

1 eno 1 atp 1 no2 1 fba

gapA 2 co2 narGHI 2 pfk

gpm 3 o2 no3 tpiA

lac 4 nuo 2 atp 3 pgi

ldhA 5 cyoABCD 3 co2 4 pyk

pgk 6 gltA 4 nuo 5 eth

ptsGHI acnA 5 acnA_r2 adhE

2 fba acnA_r2 acnA adhE_r2

pfk 7 fum 6 gltA 6 ac

pgi 8 ac 7 fum ack

pta

Rankings are shown for the metabolic functions of lactate production (LAC) and ATP production (ATP) under conditions of aerobic respiration (O2), nitrate respiration
(NO3) and fermentation (Ferm). Reactions with highest FCs obtain lowest numbering.
doi:10.1371/journal.pcbi.1003368.t001

Structural Control of Metabolic Flux
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lactate production and ATP production under aerobic conditions

and compare both to each other and to biomass production. In the

examination of metabolic functions other than biomass produc-

tion, we disable the biomass reaction since it constitutes an

artificial drain.

Lactate is a major fermentation product in E. coli [68] and its

production is also of biotechnological relevance [69]. The

synthesis of lactate is relatively simple compared to other

metabolic functions such as biomass production.

We observe that the reactions with highest FCs form a minimal

pathway with glycolysis at its core (Figure S1; highest ranked

reactions are given in Table 1, all ranks are shown in Table S4 and

the complete values are given in Table S5). All participating

reactions obtain similar FCs. Initially, glucose is incorporated and

converted to glucose 6-phosphate by the phosphotransferase

system ptsGHI. The glucose 6-phosphate is then converted to

triose phosphates, dihydroxyacetone phosphate and glyceralde-

hyde 3-phosphate, by the glycolytic reactions pgi, pfk and fba. The

glyceraldehyde 3-phosphate follows glycolysis down via gapA, pgk,

gpmA and eno to phosphoenolpyruvate which is further transformed

to pyruvate by ptsGHI. The pyruvate then is converted to lactate

by lactate dehydrogenase ldhA. The dihydroxyacetone phosphate

is directly converted to lactate via mgsA (in the utilized model [22]

the reaction mgsA denotes a lumped reaction converting dihy-

droxyacetone phosphate directly to lactate with methylglyoxal as

intermediate). The utilization of ptsGHI enables a shorter pathway

accounting for the same overall reaction as the combination of

mglABC, glk and pyk. It is apparent that manipulation of reactions of

this minimal pathway will largely affect lactate production. It

should be noted that lac is the only essential reaction for lactate

production in this model with glucose as a substrate.

The observed FCs are similar for other respiratory conditions

(see below) and in line with the experimental results of Zhou et al.

[70] and Tian et al. [71], associating reactions showing low FC

with reactions whose knockouts do not affect or even increase

lactate production. Zhou et al. could show that the deletion of

genes corresponding to reactions accounting for production of

competing by-products (i.e., ack, pta, pps, pflB, dld, poxB, adhE, frdA)

leads to an increase in lactate production [70]. All of these

reactions obtain extremely low FCs. For the same E. coli strain and

experimental conditions, Tian et al. have shown that overexpres-

sion of ldhA, which is among the reactions obtaining highest FCs,

further increases lactate production [71].

ATP is the prevalent energy equivalent in metabolism and its

production, meaning the formation from ADP and Pi, is a vital

metabolic function. The energy which is set free in specific

reactions is used to produce ATP, as it is the case in glycolysis. On

the other hand, the such stored energy can be utilized to drive

energy demanding processes like amino acid synthesis and

polymerization [72–74]. Aerobic respiration represents in E. coli

the most efficient way to produce ATP from carbohydrates which

are fully oxidized to carbon dioxide [8]. It has been shown in E.

coli, that ATP production is linearly correlated with growth rate

under certain conditions [75,76]. Maximization of ATP produc-

tion has also successfully been applied to predict physiological

states via FBA [22,34].

We observe that the ATP synthase reaction atp obtains by far

the highest FC followed by carbon dioxide export co2, oxygen

import o2, NADH dehydrogenase I catalyzed reaction nuo and

cytochrome bo3 oxidase catalyzed reaction cyoABCD (Figure S2;

highest ranked reactions are given in Table 1, all ranks are shown

in Table S4 and the complete values are given in Table S6).

Despite carbon export, all of these are involved in the electron

transport chain (ETC), which is central to efficient ATP

production in aerobic respiration. In the ETC, electrons are

transferred from the reducing equivalents NADH, which have

been generated during carbohydrate oxidation, e.g., by pyruvate

dehydrogenase aceEF, to a terminal electron acceptor. The free

energy of this process is used to pump protons from cytoplasm to

periplasm creating a proton gradient. Here, ATP synthase atp is

the central reaction which uses the resulting proton-motive force

to produce ATP from ADP [77].

The reaction co2 obtains the second highest FC. It exports

carbon dioxide which is the end product of carbohydrate

oxidation. Carbohydrates cannot be fully oxidized if the resulting

carbon dioxide is not excreted. In that case, other end products

which still contain extractable chemical energy like ethanol would

have to be released.

In the ranking, the carbon dioxide export is followed by the

oxygen import reaction o2. The reaction provides the oxygen

which is utilized as terminal electron acceptor in the ETC enabling

full oxidization of carbon hydrates to carbon dioxide.

It should be noted that oxygen and carbon dioxide diffuse across

the periplasmic membrane. Therefore, while the transport of these

metabolites is important to ATP production, it is no object of

active metabolic control.

The reaction nuo (NADH dehydrogenase I) obtains the fourth

highest FC. It is one of two reactions which oxidize NADH to

NAD and transfer the electrons to ubiquinone reducing it to

ubiquinol. The free energy is utilized by nuo to pump four protons

from cytosolic to periplasmic space generating proton-motive

force. The other reaction ndh (NADH dehydrogenase II) fulfills the

same function without pumping any protons. It obtains low FC.

The reaction cyoABCD (cytochrome bo3 oxidase) obtains highest

FC following nuo. The reaction cyoABCD converts ubiquinol back

to ubiquinone and transfers the electrons to oxygen as the terminal

electron acceptor which is reduced to water. Simultaneously, it

pumps four protons from cytoplasmic to periplasmic space. The

reaction cydAB (cytochrome bd oxidase) fulfills the same function

while pumping two instead of four protons. As nitrate is available

in the examined setting, the reaction narGHI can backup the

function of cydAB and convert ubiquinol to ubiquinone while

pumping two protons but utilizing nitrate as terminal electron

acceptor instead of oxygen. The reaction cydAB obtains a low FC.

The other reactions with high FC are fum, gltA, acnA and acnA_r2

which are all part of the tricarboxylic acid (TCA) cycle. The

reducing equivalents NADH and NADPH are prevalently

generated in the TCA cycle. NADPH is converted to NADH by

the reaction udhA, such that it can be utilized for ATP production

in the ETC. The reactions fum, mdh, mqo, gltA, acnA, acnA_r2 can be

short-circuited by the glyoxylate bypass utilizing aceA and aceB.

Table 2. Pairwise correlation between functional centralities
for different metabolic functions.

Function
O2-
respiration

NO3-
respiration Fermentation

# 1 # 2 Kendall’s t Kendall’s t Kendall’s t

BM ATP 0.426* 0.498* 0.59*

BM LAC 0.167 0.09 0.168

ATP LAC 20.148 0.015 0.427*

Examined metabolic functions: biomass production (BM), ATP production (ATP),
lactate production (LAC). Significant correlations (p-valuev0:05) are marked by *.
doi:10.1371/journal.pcbi.1003368.t002
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This enables partial functioning also when icd or sucABCD are

inactive. The reactions mdh and mqo obtain much lower FCs since

each one backups the other’s function in the TCA cycle.

Metabolic functions exhibit specific FCs as shown in the

previous sections. We compare FCs of biomass, ATP and lactate

production under aerobic conditions by utilization of Kendall’s

rank correlation on FC rankings obtained as described in the

Methods section. The values are provided in Table 2.

Related metabolic functions should show correlated FCs. The

production of biomass is related to the production of ATP for two

reasons. First, ATP is a major biomass component, which implies

that maximization of biomass production necessitates high

production of ATP. Second, ATP is the metabolism’s major

energy currency involved in many energy demanding reactions in

central carbon metabolism. Therefore, maximization of biomass

production requires high production of ATP to fuel the ATP

demand of several biomass synthesizing reactions. The close

relation between the two metabolic functions is reflected in a

significant high correlation of the respective FCs (Table 2).

On the other hand, unrelated metabolic functions should show

un- or lowly correlated FCs. Lactate production is largely

unrelated to biomass production, since lactate is not a biomass

component. Furthermore, it is a simple metabolic function

compared to both, ATP and biomass production: it is produced

and consumed only by a small number of reactions whereas the

biomass component ATP is produced and consumed by multiple

reactions all over central carbon metabolism. In line with this, we

observe that biomass production as well as ATP production are

not significantly correlated with lactate production with the

exception of ATP production and lactate production under

fermentative conditions (see Table 2). Under fermentative

conditions, production of lactate as a major fermentation product

is important for the production of ATP which is reflected in a large

positive correlation between the two metabolic functions.

Dependence on environment. Environmental conditions

shape metabolic states [78,79] and should therefore be reflected in

the structural metabolic control capabilities of individual reactions.

E. coli is a facultative anaerobe bacterium which means that it is

able to drive ATP production via aerobic respiration but also to

respire anaerobically or even to switch to fermentation if oxygen is

absent [17]. The respiratory state depends on the available

terminal electron acceptors. If oxygen is available E. coli converts

glucose to carbon dioxide for ATP production using oxygen as

terminal electron acceptor in aerobic respiration. If nitrate is

available and oxygen is not, E. coli switches to nitrate respiration

which then is utilized as terminal electron acceptor instead. If

exogenous terminal electron acceptors are unavailable, E. coli

switches to fermentation. Aerobic respiration is the preferred

mode of operation with oxygen having the highest redox potential

followed by nitrate [8].

The structural metabolic control capabilities of individual

reactions should be unaffected by the environmental conditions

if these do not affect metabolic function. Exogenous terminal

electron acceptors like oxygen or nitrate are needed for efficient

ATP production from carbohydrates, as pointed out above. The

metabolic function of lactate synthesis does not need any ATP

generated by respiration: degradation of one molecule of glucose

to pyruvate utilizing the phosphotransferase system ptsGHI actually

consumes one molecule of ATP but produces four. Pyruvate then

can be converted to lactate in one step utilizing lactate

dehydrogenase ldhA without requiring any ATP. Hence, the

maximum of lactate production does not depend upon the

available terminal electron acceptor and, therefore, not on the

examined environmental condition. In line with this, we observe

that FCs for lactate production are perfectly correlated between

environmental conditions (Table 3, the complete values obtained

for FC can be found in Tables S5, S7 and S8).

Environmental changes largely affecting the operation of a

metabolic function should have significant impact on individual

reactions’ structural metabolic control capabilities. FCs for aerobic

and nitrate respiration should be related, since the redox potential

of nitrate is relatively large and its utilization theoretically enables

respiring glucose completely to carbon dioxide (implying maximal

production of reducing equivalents) [8,17]. Indeed, we obtain a

large correlation between the two environmental conditions

(Table 3).

We find significant differences in FCs of the ETC, where the

available terminal electron acceptors have effect (Figures S2 and

S3; highest ranked reactions are given in Table 1, all ranks are

shown in Table S4 and the complete values are given in Tables S6

and S9). The remaining reactions obtain similar FCs. The oxygen

import o2 as well as the cytochrome oxidases cydAB and cyoABCD,

which obtain high FCs under aerobic conditions, cannot carry any

flux under conditions of nitrate respiration. They obtain zero FC.

Instead, the reactions with highest FC are the nitrate import no3,

nitrate reductase narGHI, which oxidizes ubiquinol while pumping

two electrons from cytosolic to periplasmic space using nitrate as

terminal electron acceptor, and no2 which exports the resulting

nitrite. These three reactions exhibit low FCs under aerobic

conditions.

FCs are substantially different under fermentative conditions

(Figure S4; highest ranked reactions are given in Table 1, all ranks

are shown in Table S4 and the complete values are given in Table

S10). Here, no exogenous terminal electron acceptors are

available, which implies that there is no possibility to oxidize

NADH in the ETC to pump protons. Therefore, ATP production

is drastically decreased under this condition. The reactions with

highest FC follow the path leading from glucose import by ptsGHI

down glycolysis to pyruvate. This path already enables a

maximum production of three ATP achievable under fermentative

conditions. The export of ATP maint also obtains high FC. The

remaining reactions with high FC lead from pyruvate to acetate,

ethanol, formate and lactate. Excretion of one or more of these

products is mandatory for ATP production, since without oxygen

or nitrate as terminal electron acceptors, it is not possible to

oxidize glucose fully to carbon dioxide. All of these metabolites are

major fermentation products of E. coli [68].

Altogether, we observe that FCs and, therefore, structural

metabolic control capabilities, change largely between respiratory

conditions and fermentation. FCs shift from TCA to glycolysis,

from the export of carbon dioxide to export of fermentation

Table 3. Pairwise correlation between functional centralities
under different environmental conditions.

Env. condition
ATP
production LAC production

# 1 # 2 Kendall’s t Kendall’s t

O2 NO3 0.686* 1*

O2 Ferm 20.011 1*

Ferm NO3 0.217* 1*

Environmental conditions: aerobic respiration (O2), nitrate respiration (NO3)
and fermentation (Ferm). Significant correlations (p-valuev0:05) are marked
by *.
doi:10.1371/journal.pcbi.1003368.t003
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products and away from the ETC. The ETC is central to efficient

ATP production. Apparently, its manipulation must have serious

impact. In the case of fermentation, oxygen and nitrate are not

available and the respective reactions of the ETC driven by these

electron acceptors cannot be utilized. Therefore, control of ETC

must have far less impact on ATP production in that case.

Application to data
Stelling et al. [45] have shown for E. coli that changes in CEFs

with respect to growth on different substrates are correlated to

changes in messenger RNA levels which predominantly account

for physiological changes on longer timescales. To compare the

capability to predict changes in transcript levels, we repeat the

respective analysis [45] and calculate CEFs and FCs for the

substrates acetate and glucose and relate the differences to

transcript data [80].

CEFs are calculated for biomass and ATP production and

averaged with weighting by maximal yield as described in the

Methods section. Accordingly, we calculate FCs for biomass and

ATP production and average the normalized FCs.

Graphical analysis exhibits good agreement for the ratio of

transcript levels with the ratio of CEFs (Figure 5) and also

reasonably good agreement with the ratio of FCs (Figure 6).

We find for CEFs as well as for FCs three reactions exceeding

two-fold deviation of the regression line: pfk, ack and pta. The

reactions ack and pta account for acetate production and should

not have large relevance for ATP and biomass production under

aerobic conditions for either utilization of acetate or of glucose. In

line with this, transcript levels differ only slightly for the two

substrates. In contrast, CEFs and FCs change largely between the

conditions. This shift to larger values for growth on glucose is

reasonable: while utilization of these reactions has no advantage

for growth on acetate (because acetate is imported and therefore

does not have to be produced), acetate production can make sense

for growth on glucose, e.g., in the course of fermentation to adapt

to fluctuations of the availability of exogenous electron acceptors.

CEFs and FCs suggest an upregulation of pfk, which is part of

glycolysis, upon switch from acetate to glucose. The reason that

transcript levels of pfk change only slightly might be a strategy of

anticipation, enabling quick response if glucose, the preferred

carbon source, is available again. The discrepancies between

predictions based on structural metabolic control capabilities and

experimental data may indicate that realization of control through

manipulation of potential control sites is not necessarily unique.

Kendall rank correlation of the average of transcript ratios with

CEFs (t&0:59, p-valuev1:62|10{6) is larger than with FCs

(t&0:38, p-valuev10{3). The reason may be that CEFs, in

contrast to FCs, incorporate an efficiency criteria aiming at the

minimization of total flux. Minimal metabolic investment might be

another important factor in the realization of metabolic control,

which has also been proposed as a design principle of metabolism

elsewhere [81,82].

Changes of CEFs between conditions show larger association

with transcript ratios compared to FCs. However, it is unclear how

the shift in transcript expressions affect metabolic flux, which

finally is the target of FCs.

We further tested the hypothesis of an association between

structural metabolic control capabilities and the number of

transcription factors affecting individual enzyme catalyzed reac-

tions. CEFs as well as FCs are dependent on the environment and

on the metabolic function. As the number of transcription factors

is a static feature, we expect an association only in a metabolic

function that is vital to the survival of E. coli. The composition of

biomass may change with conditions, e.g., with growth rate [83].

Therefore, we choose ATP production, whose control is vital and

which does not exhibit a problem of likely condition-dependent

composition. We examine consumption of glucose under condi-

tions of aerobic respiration, which is the environment with largest

scope in controlling ATP production. The number of transcription

factors associated to individual enzymes where derived from

Figure 5. Prediction of gene expression patterns by control-
effective fluxes (CEFs). Calculated ratios between transcript levels
during exponential growth on glucose (GLC) and growth on acetate
(AC) under conditions of aerobic respiration based on CEFs versus
experimentally determined transcript ratios. Lines indicate 95%
confidence intervals for experimental data (horizontal lines), linear
regression (solid line), perfect match (dashed line) and two-fold
deviation (dotted line).
doi:10.1371/journal.pcbi.1003368.g005

Figure 6. Prediction of gene expression patterns by functional
centralities (FCs). Calculated ratios between transcript levels during
exponential growth on glucose (GLC) and growth on acetate (AC) under
conditions of aerobic respiration based on FCs versus experimentally
determined transcript ratios. Lines indicate 95% confidence intervals for
experimental data (horizontal lines), linear regression (solid line), perfect
match (dashed line) and two-fold deviation (dotted line).
doi:10.1371/journal.pcbi.1003368.g006
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RegulonDB [84]. We obtain a Kendall rank correlation coefficient

of t&0:22 (p-valuev0:023) in the case of CEFs and t&0:19
(p-valuev0:048) in the case of FCs. Both measures yield a

comparable significant association between number of transcrip-

tion factors affecting reactions and their ranking in the respective

measure of structural metabolic control. We conclude that both

measures capture to some degree the feature of regulatory

effectors. However, the association is relatively small. This is in

line with our expectation as metabolic control is a dynamic feature

depending on environment and physiological state in contrast to

the number of transcription factors.

Discussion

FC has proven to be suitable to identify potential sites of control

using structural modeling. Knockout of reactions chosen with

respect to FCs have shown the largest effect on the metabolic

function of biomass production compared to the other measures

and uniform sampling as a reference in the multiple knockout

study. The results are stable across environmental conditions.

Furthermore, the structural metabolic control capabilities, deter-

mined by FC, have shown to be shaped by environmental

conditions as well as by metabolic function. This implies that the

quality of predictions for complex composite metabolic functions,

such as biomass production, depends on the accuracy of the

experimental data the composition is based on. The composition

of biomass may also change with conditions, e.g., with growth rate

[83].

CEFs have been introduced to link EFM properties to

regulation patterns of transcripts and have shown good capability

to identify potential sites of control in the multiple knockout study.

Strikingly, while FCs and CEFs have shown the best results among

the examined measures, both are only weakly correlated. FCs

exhibit by far larger correlation to EFMs than to CEFs (Table 4).

This suggests, that both measures capture important but different

aspects of (structural) metabolic control. The most obvious

distinction is that CEFs, in contrast to FCs, integrate weighting

of minimal metabolic expenditures to realize a specific flux with

respect to a metabolic function. A modification of FCs to

incorporate such weighting might improve its predictive power

and is described below. While deciphering the differences of the

two approaches is difficult due to their complexity, it promises

further valuable insights. The two approaches demonstrate that

the complex nature of metabolic control is hard to capture already

in the strongly simplified perspective of structural metabolic

control.

Pathway yield has a significant impact on the structural

metabolic control capabilities of participating reactions. Weighting

by yield improved the identification of potential sites of control in

the case of reaction participation and is also incorporated in the

efficiency weighting of CEFs and implicitly in the calculation of

FCs.

The compliance with transcript data was better for CEFs than

for FCs. However, it is difficult to determine how the changes of

transcript expressions affect metabolic flux. A potential reason for

the difference could be the aforementioned preference of CEFs for

short pathways accounting for a minimization of cellular resource

expenditures. FCs could be modified to incorporate such a criteria

by utilization of quadratic programming. We propose two

procedures: (i) maximizing metabolic function per total flux,

and, (ii) maximizing metabolic function and subsequently mini-

mizing total flux with fixed optimal flux of the metabolic function,

then utilizing the ratio of the two optimization outcomes. On the

other hand, the association of CEFs and FCs, respectively, with the

number of transcription factors acting on the reaction catalyzing

enzymes indicated comparable potential of the two measures to

explain such static regulatory features, although the association

was minor.

The flux coupling degree of reactions has shown to be largely

unable to predict potential sites of control in the multiple knockout

study. The reason most likely is that flux coupling analysis

quantifies only pairwise interactions of reactions and that in

systems with high flexibility fluxes are widely disentangled. This

highlights that structural metabolic control capabilities predomi-

nantly arise from interactions on the system level which is further

corroborated by the results from the remaining measures. All of

which integrate system level interactions and exhibit significant

qualification to identify potential sites of control.

The estimation of FCs is based on EFM enumeration, which

limits the accessible network size. The combination of our

algorithm with sampling of EFMs or enumeration of a specific

subset could enable the approximation of FCs for up to genome-

scale metabolic networks. We describe three approaches in the

following.

EFMs with low numbers of participating reactions have higher

weights in the sampling procedure of the FC estimation than long

ones (see Methods section). Therefore, short EFMs are expected to

dominate the sampling procedure. De Figueiredo et al. have

described an algorithm to compute the k-shortest EFMs which

could be utilized with this respect [85]. However, the accuracy

would eventually depend on the (unknown) length distribution of

EFMs and the bias introduced by this approach would be difficult

to analytically specify.

Another possibility is to determine the specific subset of EFMs

with respect to a certain metabolic function and in accordance

with environmental conditions which would enable estimation of

the corresponding FCs. Kaleta et al. combine linear programming

with a genetic algorithm [86] to enable targeted sampling of EFMs

in genome-scale metabolic networks. The authors argue to

enumerate a significant portion of EFMs capable of the synthesis

of specific amino acids in a genome-scale model of Corynebacterium

glutamicum comprising 641 reactions growing under aerobic

conditions with glucose as substrate. If a large fraction of

functional EFMs can be determined, it might enable estimation

of FCs with minor bias. Nevertheless, such computation for

networks comprising several thousands of reactions is likely to be

too demanding regarding computational resources and time

consumption.

Table 4. Pairwise correlation between measures of structural
metabolic control capabilities for the metabolic function of
biomass production.

Measure
O2-
respiration

NO3-
respiration Fermentation

# 1 # 2 Kendall’s t Kendall’s t Kendall’s t

FC FCA 0.107 0.228* 20.15

FC EFM 0.45* 0.348* 0.507*

FC EFMyield 0.443* 0.334* 0.523*

FC CEF 0.184* 0.229* 0.379*

Pairwise correlation of functional centralities (FC), coupling degrees (FCA),
reaction participations in biomass producing EFMs unweighted (EFM) and
weighted by biomass yield (EFMyield) as well as of control-effective fluxes
(CEFs). Significant correlations (p-valuev0:05) are marked by *.
doi:10.1371/journal.pcbi.1003368.t004
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Unbiased sampling of EFMs, meaning sampling which resem-

bles the length distribution of the full set of EFMs, would facilitate

unbiased estimation of FCs (see Methods section). This seems to be

most promising to enable estimation of FCs on genome-scale.

Machado et al. have described an algorithm to draw a sample from

the full set of EFMs which they claim to be unbiased as long as the

sample size is large [87]. While this approach is in principal

applicable to genome-scale networks, its current implementation is

presumably not fast enough to obtain a sample of sufficient size in

reasonable time. Furthermore, it is unclear if a sample size

guaranteeing unbiased sampling is accessible for genome-scale

networks. A promising approach to sample EFMs has recently

been described by Tabe-Bordbar and Marashi who utilize an

algorithm based on linear programming [88]. Their approach is

applicable to genome-scale metabolic networks and is claimed to

be unbiased irrespective of the sample size. While we present an

accurate derivation of the estimation errors of FCs in this study, it

is unclear at the moment how these errors are to be determined

when utilizing a representative sample of EFMs instead of the full

functional set.

In addition, it is equally important to apply preprocessing steps

aimed at reducing the complexity of the enumeration problem. Jol

et al. employed a preprocessing strategy to reduce the complexity

of the EFM calculation by checking reversibilities of reactions by

flux variability analysis [66] in advance and by incorporation of

metabolomics data to further restrict reaction reversibilities to

physiological ones. Furthermore, they integrated the obtained

EFMs with metabolomics data to reduce the set of EFMs to

comprise only thermodynamically feasible EFMs. While the latter

does not reduce the complexity of EFM enumeration, it is

expected to increase the predictive power of FCs.

Eventually, developments with respect to hardware and

software are underway, together exhibiting the potential to enable

EFM enumeration for considerably larger networks than possible

at present [89].

Concluding remarks
In this study, we have presented an algorithm to estimate

functional centralities (FCs) for large metabolic networks. Moreover,

we have demonstrated the potential of FCs to determine structural

metabolic control capabilities of individual reactions. FC accom-

plishes this by explicitly integrating the potential interactions of

reactions with the remaining system, covering interactions with

individual reactions, with pathways and with subnetworks. The

study exemplifies that important properties of metabolic control can

be accessed from structural information of a metabolic network.

The results of FBA can be improved by integration of additional

information about physiological flux boundaries obtained from

high-throughput measurements [90]. This may, in turn, also

improve the predictions obtained by FC. Moreover, while FC

cannot directly integrate kinetic parameters, it is possible to modify

the framework to incorporate extensions of FBA accounting for,

e.g., molecular crowding [91] or membrane economics [92].

Currently, the most established measure to capture control in

metabolic networks are flux control coefficients (FCCs) of MCA.

Besides the discussed drawbacks of this approach, we want to

highlight that FC captures the potential effect of the manipulation

of multiple reactions, while FCCs only describe the effect of

individual manipulations.

FC enables the design of knockout and overexpression

strategies, taking into account the complexity of metabolic control.

For instance, FC can be utilized to suggest targets of metabolic

engineering to decrease the production of an unwanted byproduct

which limits the yield of a desired product. To this end, the two

production processes are defined as metabolic functions and FCs

are calculated individually. Those reactions which are functionally

central for the production of the unwanted byproduct but not for

the production of the desired product are suggested as knockout

candidates. A similar strategy could be applied in the identification

of drug targets.

We have shown that FCs are shaped by environmental

conditions and the physiology of metabolic functions. It would

be of further interest to examine if an association between FCs and

synthesis costs of the corresponding enzymes [73] exists, as it is

reported for utilization of EFMs and their resource requirements

under certain conditions [93]. Such analysis could also provide

insights into how a manipulation pattern of potential sites of

control, which is not necessarily unique, might be chosen.

We have formulated the calculation of estimated FCs such that

the calculation can be performed for only a subset of reactions.

While an application would have been out of scope of this study, it

provides the means to examine control exerted by a subset of

reactions on an enclosing system. In that case, elementary flux

pattern calculation [94] could serve to determine the elemental

coalitions, which would even enable the examination of control for

the case that the enclosing system is of genome scale. This may

enable, e.g., the calculation of structural metabolic control

capabilities of the reactions of the central carbon metabolism on

biomass production of the genome-scale network.

FCs do quantify the relevance of reactions to a metabolic

function considering all possible interactions, but they do not

quantify the interactions themselves. Grabisch and Roubens have

defined a measure extending the classical Shapley value to capture

interactions among any set of elements [95]. This approach has

been utilized to determine interactions between any two elements

to examine perturbation experiments in the setting of neuroscience

[96] and gene regulation [97]. While extension of FC in

accordance to this measure is appealing, it is unclear if the

approach can be modified to apply to the restriction to functional

subnetworks only. Furthermore, it is ambiguous if the accompa-

nying increase in computational demands can be met.

Linking metabolism and regulatory events is inherently difficult

and by far from being completely characterized. Regulatory

mechanisms act on multiple levels, such as transcriptional

regulation, post-translational modifications and metabolite-protein

interactions; all of which ultimately exerting control on metabolic

flux [98,99]. Functional centralities have shown to be a prospective

approach for deeper understanding of metabolic control. To

analyze the association between regulatory events and potential

sites of control, sophisticated and targeted experiments are needed.

Methods

Flux balance analysis
Flux balance analysis (FBA) is a structural modeling framework

developed to characterize the synthesizing capabilities of metabolic

networks at steady state [67]. A metabolic network consists of M

metabolites Xi (i~1, . . . ,M) and N reactions. The change of the

concentration xi of a metabolite Xi can be described as
dxi

dt
~
P

j sij fj{bi, where sij is the stoichiometric coefficient

associated with the flux fj through reaction j and bi is the net

transport flux of metabolite Xi. The mass conservation relation

under steady-state conditions, i.e., dxi

dt
~0, results in the following

expression:

S:f{b~0, ð3Þ
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where S is the stoichiometric matrix (with M rows and N
columns), f is the vector of metabolic fluxes of the N reactions and

b is the vector representing consumption/production fluxes of the

M metabolites. The consumption/production fluxes are set to

zero for internal metabolites. In contrast, external metabolites

constitute an interface to the environment and do not have to obey

the steady-state condition. A metabolic flux crossing the system

boundary is normally realized by a transporter reaction which

converts an internal metabolite into an external metabolite.

Constraints on the fluxes of the transporter reactions importing or

exporting metabolites across the system boundary are utilized to

establish environmental conditions, e.g., determining the availabil-

ity of nutrients. As the system of equations described in (3) is

usually under-determined (NwM ), there exist multiple solutions

corresponding to feasible flux distributions, each representing a

particular metabolic state (with respect to fluxes) satisfying the

stoichiometric constraints. The question usually addressed by FBA

is that of determining which of the feasible metabolic states is

manifested in the studied metabolic network.

FBA relies on the assumption that the metabolic system exhibits

a state that is optimal with respect to some objective. Usually, the

objective is expressed as a linear combination of fluxes in f, which

leads to a linear programming problem:

min(max)z~
X

i
cifi, s:t:

S:f{b~0,

fmin(i)ƒfiƒfmax(i),

ð4Þ

with z representing the phenotypic property to be optimized, and c
being a vector of coefficients quantifying the contribution of each

flux to this objective. The bounds fmin(i) and fmax(i), represent

constraints on the fluxes, i.e., the minimum and maximum values

for the fluxes and, thus, determine reaction reversibility.

A common choice for the objective function is the maximization

of biomass production, which allows a wide range of predictions

consistent with experimental observations for simple model

organisms [35–37]. This function could be employed for

environments with nutrient excess. Another possible choice is

minimization of ATP production which can be used to determine

the conditions for energy efficiency and minimization of nutrient

uptake, and is usually applied in modeling the case of nutrient

scarcity (an overview of objective functions can be found in [22]).

We identify a metabolic function with the objective function z
and calculate the synthesizing capacity of the metabolic function

by maximizing the objective. It should be noted that this does not

necessarily coincide with the objective responsible for a specific

phenotype.

Functional centrality
Functional centrality (FC) aims at assigning individual reactions

of a metabolic network their contribution to a metabolic function

[42]. Technically, it combines a solution concept from cooperative

game theory with FBA.

A cooperative game is defined by a set of players

N~f1,2, . . . ,Ng and a characteristic function v : 2N.R with

v(1)~0 which assigns every subset S(N of the player set the

worth it generates by cooperation. To find a fair and unique

distribution of the cooperatively gained worth v(N ) amongst the

set of players, the solution concept of the Shapley value [43] has been

introduced. The Shapley value is axiomatically founded and

associates with every game (N ,v) with transferable utility, i.e., without

restrictions on the division of v(N ), a unique and fair payoff

vector. Thereby, the property of fairness of this solution is implied

by the required axioms. The Shapley value of a single player i is

given by the weighted sum of the player’s contribution to all

subsets of players.

We identify N with the set (or a subset) of reactions forming the

metabolic network and v with the optimal value of the objective

function determined by FBA for a subnetwork formed by the

members of S (if not all reactions of the network are considered,

the subnetwork is formed by the members of S and the not

considered reactions; in that case the objective function has to be

formulated such that v(1)~0 is valid). An extensive derivation is

to be found in [42].

The classical Shapley value incorporates all 2N{1 subsets ofN .

With respect to metabolic networks, some of these subsets

correspond to nonfunctional subnetworks which are incapable of

carrying nonzero flux with respect to the objective function. There

are two possibilities to address the issue: (i) assigning zero worth to

the nonfunctional subnetworks, and (ii) excluding the nonfunc-

tional subnetworks from the calculation of the Shapley value. FCs

make use of a modified version of the Shapley value [44] to

exclude the nonfunctional subnetworks and account only for the

functional ones. It has been shown that exclusion of nonfunctional

subnetworks is superior for determining reactions’ contribution to

metabolic function [42].

To introduce the modified version of the Shapley value, as

proposed by Aguilera et al. [44], let GS~(S,A) be a directed

graph. The set of nodes S encompasses all subsets S(N which

correspond to functional subnetworks plus the empty set 1. The

set of arcs A consists of all (S,S’) with S#
/

S’ for which it holds

that there exists no S’’[S with S#
/

S’’#
/

S’. The graph GS is

induced by inclusion on S and is equivalent to a Hasse diagram

[100]. In GS , every path from the empty set to the set N ,

encompassing all (considered) reactions, represents one possibility to

add players successively in such a way that the corresponding

subnetworks belong to the family of functional subnetworks. These

paths are called maximal chains. The graph GS is called regular, if all

maximal chains of GS have equal length, otherwise it is called

irregular. The calculation of the modified Shapley value is as follows:

Let W~(S0,S1, . . . ,Sl (W )) with S0~1 and Sl (W )~N be a

maximal chain for inclusion in S, implying S0#
/

S1#
/

. . . #
/

Sl Wð Þ.

Then, the contribution of player i in maximal chain W is given by

yW ,i(v)~
Xl(W )

j~1

v(Sj){v(Sj{1)

DSj D{DSj{1D
:x(Sj\Sj{1,i) for i [ N , ð5Þ

x(S,x)~
1 if x [ S

0 otherwise,

�

with l(W ) being the length of the maximal chain W . Let the set of

all maximal chains be denoted by W. If c :W.R satisfies

X
W[W

c(W )~1, ð6Þ

then the weighted sum of contributions over all maximal chains

wi(v)~
X

W[W
c(W )yW ,i(v) ð7Þ

defines the Shapley value of player i for arbitrary families of

subsets. By providing an appropriate definition for the weighting
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factor c(W ), the value becomes uniquely determined [44]. In the

calculation of FCs, we weight the maximal chains equally:

c(W )~
1

Wj j : ð8Þ

This facilitates the error calculation of estimated functional

centralities and results in only subtle differences to weighting by

chain length [42] (data not shown). The axioms defining the

modified Shapley value with respect to FC are given in the

Supplementary Text S1.

Estimation of functional centralities
The exact calculation of FCs is limited to small metabolic

networks. The accessible network size, in terms of number of

reactions, depends on computer hardware and network structure.

The reason is the combinatorial explosion of the number of

functional subnetworks and the number of corresponding maximal

chains. Castro et al. describe an approach to estimate classical

Shapley values, considering all subsets of N , of large systems

utilizing Monte Carlo sampling of maximal chains [101]. We

modify this approach to estimate FCs which, in contrast, are based

on a restricted set of subsets.

We first present the Monte Carlo algorithm, followed by

explaining the sampling procedure. At the end of the section, we

derive an approximation of the error of the calculated FCs by

utilizing resampling, once the calculation has finished.

Algorithm for estimating functional centrality. FCs are

calculated as the average of contributions of individual reactions in

all maximal chains. Therefore, FCs can be estimated by the

average contribution in a random sample of maximal chains,

whereby each maximal chain is chosen with equal probability. In

the approach of Castro et al. [101], the classical Shapley value is

estimated. In that case, all subsets of N are considered (which

would correspond to all subnetworks being functional in the case

of FCs). Therefore, the graph GS is regular and each of its

maximal chains corresponds to one specific permutation of N .

Then a set of random permutations of N can be utilized for the

estimation.

We modify the approach of Castro et al. to estimate FCs. In our

case, the structure of GS is irregular and depends on the metabolic

network, as well as on the environmental conditions and the

metabolic function. This renders the choice of maximal chains

more complicated. The detailed algorithm is presented as

pseudocode in Table 5. It should be noted that the estimator of

FCs obtained by our algorithm is unbiased (meaning the

expectation of the estimator equals the true value) and yields a

division of v(N ) (in accordance with the requirement of the

efficiency axiom given in the Supplementary Text S1). The proof of

both properties is straightforward.

The sampling of maximal chains is divided into two parts: (i) the

choice of the first nonempty element of the maximal chain, which

we call elemental coalition, and (ii) the choice of the order of adding

the remaining reactions to the elemental coalition.

The elemental coalitions Ek denote reaction sets corresponding

to minimal functional subnetworks capable of the examined

metabolic function under specific environmental conditions. The

elemental coalitions Ek are minimal in the sense that diversion of

any reaction from Ek turns the subnetwork to nonfunctional.

Therefore, in the case considering all reactions of a metabolic

network, each elemental coalition Ek is equivalent to a reaction set

corresponding to an EFM. Each maximal chain starts with the

empty set followed by an elemental coalition Ek as first nonempty

set.

The reactions’ contributions in all sampled maximal chains are

stored. This enables approximating the population variance of

contributions of the individual reactions and, therefore, to assess

the error of estimated FCs, as described at the end of the section.

Sampling of maximal chains. All maximal chains have the

same probability to be chosen, but the graph GS , representing the

structure of accessible maximal chains, is irregular and, therefore,

the set of maximal chains is a priori unknown. In the following, we

describe how to determine the structure of GS and how to obtain

an unbiased sample of the full set of maximal chains.

In principal, the graph GS can be reconstructed from the set of

functional subnetworks which then have to be determined in

advance [42]. Due to combinatorial explosion this is impractical

for large systems. However, we can exploit the characteristics of

the computation of FCs to determine the structure of GS without

checking every subnetwork upon whether it is functional or

nonfunctional. To this end, we utilize the EFMs of the network,

which constitute minimal subnetworks yielding nonzero flux at

Table 5. Algorithm for estimation of functional centralities.

Begin

Set ŵwi(v) : ~0,Vi[N
For k = 1 to samplesize do

Choose elemental coalition Ek with probability P(Ek)
Set S1: = Ek

Calculate v(Ek)

Divide v(Ek) equally among the participating reactions ŵwi(v) : ~ŵwi(v)z
v(Ek)

Ekj j
,Vi[Ek

Take O[p(N \Ek) with probability P(O)~
1

N \Ekj j!
For m = 2 to N \Ekj jz1 do

Set q : ~O(m{1)

Set Sm : ~Sm{1|q

ŵwq(v) : ~ŵwq(v)zv(Sm){v(Sm{1)

End
End

ŵwi(v) : ~
ŵwi(v)

samplesize
,Vi[N

End

p(S) denotes the set of all permutations of a set S and O(m) the mth element of the set O.
doi:10.1371/journal.pcbi.1003368.t005
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steady state and are, hence, closely related to the elemental

coalitions. The EFMs can be obtained by utilizing available

software packages like EFMtool [102].

In the case considering all reactions of the metabolic network,

the elemental coalitions correspond to the set of functional EFMs,

i.e., the ones capable of the examined metabolic function in

accordance with environmental conditions. If only a subset of

reactions of the metabolic network is examined, additional

operations have to be performed on the set of EFMs to obtain

the set of elemental coalitions which are described below. Since

inclusion of any player to a functional subnetwork likewise results

in a functional subnetwork [42], the structure of GS (which is

induced by inclusion) is fully determined by the set of elemental

coalitions.

The investigation of only a subset of reactions could have

several reasons, e.g., reactions importing nutrients or exporting

products, respectively, may be assumed to be always active.

Another possible application is investigating FCs of only a

subsystem to infer control of the subsystem’s components on the

enclosing system.

When only a subset of the reactions of a metabolic network is

considered, it occurs that only some of the reactions of EFMs

correspond to considered reactions. Then functional EFMs may

not correspond to elemental coalitions (an example is shown in

Figure S5). To determine the elemental coalitions in that case,

the set of functional EFMs is first represented by a matrix P,

with N columns corresponding to the N reactions such that the

entries of any row give the fluxes through the respective

reactions of a functional EFM. (Since we are only interested in a

reaction being active or inactive, the entries can be converted to

boolean values in order to reduce computational demands in the

further procedure.) The set of elemental coalitions then is

obtained by: (i) removing all columns of P corresponding to the

unconsidered reactions and (ii) reducing the resulting matrix P’
to a matrix P’’ containing only rows such that the set of indices

of the nonzero elements of any row is not a subset of the set of

indices of the nonzero elements of any other row (for any row

P’’i of P’’, let Ri~ kDP’’ik=0f g; for any row P’’i of P’’ there exists

no row P’’j with j=i in P’’, s.t. Rj(Ri). The complexity of the

matrix reduction scales quadratically with the number of EFMs.

The elemental coalitions are then composed of the reactions

corresponding to the nonzero entries of the rows of matrix P’’.
As mentioned above, the addition of any reaction to a functional

subnetwork also results in a functional subnetwork. Hence, the

number of maximal chains M(Ek) starting from a specific

elemental coalition Ek is the factorial of the number of the

remaining reactions:

M(Ek)~(N{DEk D)! ð9Þ

The total number of maximal chains then is the sum of the

number of maximal chains for all elemental coalitions,

Mtot~
XE

i~1

M(Ek), ð10Þ

with E being the total number of elemental coalitions. We can

then calculate the probability of choosing a maximal chain starting

with a specific elemental coalition Ek:

P(Ek)~
M(Ek)

Mtot

: ð11Þ

Each maximal chain starting with Ek describes a sequence of

adding the remaining reactions N \Ek, such that all permutations

of the remaining reactions are covered. Then the probability to

choose a maximal chain from the set of maximal chains starting

with Ek is 1
M(Ek)

.

Together this enables drawing a truly random sample of

maximal chains as described in the algorithm presented in Table 5.

Error calculation of estimated functional centrality
The error of the estimated FCs depends on the utilized sample

size. In [101], the authors give a description on determining a

sample size that guarantees a specific upper boundary of the error.

Instead, we describe how resampling can be utilized to obtain a

good approximation of the real error, once the calculation has

finished. (We observe that the real error is by far smaller than its

upper bound, data not shown.) Since it is impractical to define a

stopping criteria, the error has to be obtained a posteriori.

Utilizing a sample of sufficient size m guarantees that the error

of the estimated Shapley value ŵwi(v) of reaction i is smaller than ei

with a probability larger than 1{a: from the central limit theorem

follows ŵwi(v)*Pnorm(wi(v),s2
i =m), where s2

i is the population

variance of the contributions of reaction i and Pnorm(m,s2) the

normal distribution with expectation m and variance s2. Hence, if

for the sample size

m§Za=2

s2
i

e2
i

ð12Þ

holds, then

P(Dŵwi(v){wi(v)Dƒei)§1{a: ð13Þ

With Za=2 being the value, such that P(Z§Za=2)~a=2,

Z*Pnorm(0,1). For a given sample size the error e then is

e~s:

ffiffiffiffiffiffiffiffiffi
Za=2

m

r
ð14Þ

In this study, we have chosen a~0:02475uZa=2~1:65. This

guarantees that the error is accurate with probability larger 97.5%.

We utilize a sample size of 200,000, which has shown a good

balance between accuracy and computational demand in this

study. It should be noted, that the error calculation is irrespective

of the number of maximal chains due to the implications of the

central limit theorem. An approximation of the population

variance is given in the next section.

Special attention has to be paid to reactions which obtain zero

marginal contribution in all samples, which could falsely lead to

the conclusion of zero error. In that case, we assign the error

that would be obtained for a single nonzero contribution with

the value of the largest contribution found in the sampling

process.

Variance estimation. Resampling of the recorded contri-

butions of individual reactions per sample enables determination

of the accuracy of the sample variance as an estimator for the

population variance. To this end, we utilize the Jackknife-based

Tukey’s formula [103] which has been introduced to estimate the

variance of a sample statistic, in our case the variance of the

sample variance. The Jackknife resampling is based on calculat-
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ing a statistic of a dataset with n datapoints n times, each time

with exactly one datapoint having been diverted from the dataset.

Tukey’s formula to estimate the variance of a statistic h is

dVarVar(h)~
n{1

n
:
Xn

k~1

ĥh(k){ĥh(:)

h i2

ð15Þ

with n being the number of samples, ĥh(k) being the Jackknife statistic

of the sample with datapoint k being excluded from the dataset and

ĥh(:)~
1
n
:Pn

k~1 ĥh(k) being the mean of the Jackknife statistics ĥh(k).

The Jackknife variance estimate tends to be conservative in the

sense that it overestimates the true variance [103].

In our case, the statistic is the variance of estimated FCs ŵwi(v).

Then dVarVar s2

ŵwi(v)

� �
denotes the Jackknife estimate of the variance of

s2

ŵwi(v)
. We utilize ĥh(:)z3:

ffiffiffiffiffiffiffiffidVarVar
p

as an estimate of the variance of

ŵwi(v), such that the probability to underestimate the variance is

below 0:01 (under the assumption that Tukey’s formula does not

underestimate the variance of the statistic).

Rank calculation. The presented FCs are estimations and,

therefore, the ranks of individual reactions might be indistinguish-

able with respect to their errors. To rank the reactions properly,

we first sort the reactions according to FCs in descending order. If

the sum of the errors of two successive ordered reactions is larger

than the absolute difference of the reactions’ FCs, we declare them

indistinguishable and assign them the same rank. By this

procedure, it may occur that a set of reactions is declared

indistinguishable while the first reaction actually is distinguishable

from a sequent reaction at the end of the set. The described rank

calculation does incorporate less information than availabe but is

unbiased.

Control-effective fluxes
Control-effective fluxes (CEFs) are originally defined by

efficiencies ei of the individual EFMs ei with respect to a substrate

Sk and the production of biomass (m) and ATP (EFMs are

normalized by substrate uptake in advance) [45]:

ei(Sk,m)~
e

m
iP

l De
l
i D

, ð16Þ

ei(Sk,ATP)~
eATP

iP
l De

l
i D

, ð17Þ

whereby el
i denotes the flux through reaction l in the EFM ei. The

CEFs Cl(Sk) are then given by

Cl(Sk)~
1

Y max
m=Sk

:
P

i ei(Sk,m):jel
i jP

i ei(Sk,m)

z
1

Y max
ATP=Sk

:
P

i ei(Sk,ATP):jel
i jP

i ei(Sk,ATP)
,

ð18Þ

with Y max
(m=ATP)=Sk

being the maximum yield of biomass or ATP

production, respectively, for substrate Sk. In the case examining a

specific metabolic function as it is the case in the Monte Carlo

multiple knockout study, the calculation of CEFs is restricted to

this metabolic function. In the multiple knockout study, we

examine biomass production as metabolic function and glucose

(GLC) as substrate. In that case, we have to divert the term

accounting for ATP production. Then CEFs reduce to:

Cl(GLC)~
1

Y max
m=GLC

:
P

i ei(GLC,m):Del
i DP

i ei(GLC,m)
ð19Þ

Model
We utilize a model of central carbon metabolism of E. coli

published by Schütz et al. [22]. The model comprises 74 unique

reactions (given in Table S11), whereof 14 are transporters, and 61

metabolites (given in Table S12), whereof 47 metabolites are

internal and, therefore, their concentrations have to obey the

steady-state assumption. The metabolic network is able to import

acetate, ethanol, glucose, nitrate and oxygen and to export acetate,

ATP, biomass, carbon dioxide, ethanol, formate, lactate, nitrite,

pyruvate and sucrose. Import of ethanol is disabled in the

examined settings. Acetate import is disabled for growth on

glucose and vice versa. Since ADP is an external metabolite in this

model, the export of ATP does account for ATP hydrolysis rather

than ATP de novo synthesis. The biomass export reaction comprises

all metabolites from central carbon metabolism in appropiate

ratios to support growth. The sum of glucose import by the

reactions mglABC and ptsGHI has been constrained from above

arbitrarily by one. Isozymes in the model were deleted since they

add multiple layers of combinatorial complexity and, moreover,

would bias FCs. An upper bound of one has also been utilized for

acetate import in the calculation of FCs with acetate as a substrate.

We examine three environmental conditions (following the study

of Schütz et al.): (i) aerobic respiration, with no further restrictions

(which implies nitrate being available as alternative terminal

electron acceptor), (ii) nitrate respiration, anaerobic growth in the

presence of nitrate (no oxygen import), (iii) fermentation, anaerobic

growth without nitrate as electron acceptor (no oxygen and no

nitrogen import). The utilized objective functions are the fluxes

through the reactions: (i) maint (ATP production), (ii) biomass

(biomass production), (iii) lac (lactate production).

Supporting Information

Figure S1 Functional centralities (FCs) for lactate
production under conditions of aerobic respiration.
Thickness of arrows corresponds to FCs in the central carbon

metabolism of E. coli.

(PDF)

Figure S2 Functional centralities (FCs) for ATP produc-
tion under conditions of aerobic respiration. Thickness of

arrows corresponds to FCs in the central carbon metabolism of E. coli.

(PDF)

Figure S3 Functional centralities (FCs) for ATP produc-
tion under conditions of nitrate respiration. Thickness of

arrows corresponds to FCs in the central carbon metabolism of E. coli.

(PDF)

Figure S4 Functional centralities (FCs) for ATP produc-
tion under conditions of fermentation. Thickness of arrows

corresponds to FCs in the central carbon metabolism of E. coli.

(PDF)

Figure S5 Elemental coalitions with and without con-
sideration of transporters. Example network containing two

EFMs. All considered reactions are shown in black, the blue

dashed box marks an elemental coalition. A and B show the case

considering transporters; the elemental coalitions equal the
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reaction sets of the two EFMs REFM1
~ Im1,R1,R2,Exf g~EC1

and REFM2
~ Im2,R2,Exf g~EC2. C and D show the case not

considering transporters; the reaction set of the EFMs are reduced

to R’EFM1
~ R1,R2f g and R’EFM2

~ R2f g~EC, which is the only

elemental coalition, since R’EFM2
(R’EFM1

.

(PDF)

Table S1 Normalized functional centralities for the
metabolic function of biomass production under condi-
tions of aerobic respiration (sample size 200,000).
(PDF)

Table S2 Normalized functional centralities for the
metabolic function of biomass production under condi-
tions of nitrate respiration (sample size 200,000).
(PDF)

Table S3 Normalized functional centralities for the
metabolic function of biomass production under condi-
tions of fermentation (sample size 200,000).
(PDF)

Table S4 Reaction ranks according to functional cen-
trality (FC). The table shows FCs for the metabolic function of

lactate production (LAC) under conditions of aerobic respiration

(O2), and ATP production (ATP) under conditions of aerobic

respiration (O2), nitrate respiration (NO3) and fermentation

(Ferm). Reactions can obtain same ranks resulting in different

numbers of total ranks in the considered settings. Low rank

number corresponds to high FC.

(PDF)

Table S5 Normalized functional centralities for the
metabolic function of lactate production under condi-
tions of aerobic respiration (sample size 200,000).
(PDF)

Table S6 Normalized functional centralities for the
metabolic function of ATP production under conditions
of aerobic respiration (sample size 200,000).
(PDF)

Table S7 Normalized functional centralities for the
metabolic function of lactate production under condi-
tions of nitrate respiration (sample size 200,000).

(PDF)

Table S8 Normalized functional centralities for the
metabolic function of lactate production under condi-
tions of fermentation (sample size 200,000).

(PDF)

Table S9 Normalized functional centralities for the
metabolic function of ATP production under conditions
of nitrate respiration (sample size 200,000).

(PDF)

Table S10 Normalized functional centralities for the
metabolic function of ATP production under conditions
of fermentation (sample size 200,000).

(PDF)

Table S11 Pathways, reaction identifiers, description of
reactions and the corresponding gene(s) in the metabol-
ic network model of E. coli’s central carbon metabolism.

(PDF)

Table S12 Metabolite identifiers and full names of the
metabolites in the metabolic network model of E. coli’s
central carbon metabolism.

(PDF)

Text S1 Axiomatization of functional centralities.

(PDF)

Text S2 Error calculation for the KO-reduced function-
ality rm(k) in the multiple knockout study.

(PDF)
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