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Abstract: Gestational diabetes Mellitus (GDM) is a complex clinical condition that promotes pelvic
floor myopathy, thus predisposing sufferers to urinary incontinence (UI). GDM usually regresses after
birth. Nonetheless, a GDM history is associated with higher risk of subsequently developing type 2
diabetes, cardiovascular diseases (CVD) and UI. Some aspects of the pathophysiology of GDM remain
unclear and the associated pathologies (outcomes) are poorly addressed, simultaneously raising
public health costs and diminishing women’s quality of life. Exosomes are small extracellular vesicles
produced and actively secreted by cells as part of their intercellular communication system. Exosomes
are heterogenous in their cargo and depending on the cell sources and environment, they can mediate
both pathogenetic and therapeutic functions. With the advancement in knowledge of exosomes,
new perspectives have emerged to support the mechanistic understanding, prediction/diagnosis and
ultimately, treatment of the post-GMD outcomes. Here, we will review recent advances in knowledge
of the role of exosomes in GDM and related areas and discuss the possibilities for translating exosomes
as therapeutic agents in the GDM clinical setting.
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1. Gestational Diabetes Mellitus

Gestational diabetes mellitus (GDM) is an increasingly common condition, affecting approximately
8.3% of pregnancies [1] worldwide. GDM occurs when insulin resistance exceeds the capacity for
insulin secretion. The resulting insulin imbalance leads to vascular inflammation [2,3] and predisposes
women to the risk of developing more severe pathologies [4].

Currently, the mechanisms underpinning GDM development are poorly understood, as well as
the concomitant complications caused by a GDM pregnancy in mother and offspring. The risk of
type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVD) rates, are rising alarmingly in the
general population and is further increased for both mother and child after a GDM pregnancy [5–7].
Furthermore, for the mother, GDM is a strong predictor of urinary incontinence (UI) up to two years
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postpartum even in cases of cesarean section, where there is no vaginal distention, due to gestational
diabetic myopathy [8–10].

UI dramatically diminishes women’s’ quality of life and represents a considerable economic
burden for both patients and public health [11–14]. Hyperglycemia and reduced insulin signaling are
deleterious for skeletal muscle cell metabolism and might indeed play a relevant role in GDM-associated
pelvic muscle degeneration and atrophy [15–22]. Additional skeletal muscle changes leading to muscle
weakness can result directly and/or indirectly from altered CCL7, relaxin, insulin, glucose, parathyroid
hormone (PTH), calcium (Ca), calcitonin and vitamin D levels, chemokines, proteins and growth factors
that can enact tissue homeostasis [23–26] and induce structural changes in skeletal muscle, decreasing
the number of mitochondria, the functional capacity and leading to muscle weakness [27,28]. Additional
GDM-related changes include hormones-related connective tissue remodeling that are still poorly
understood in GDM [29]. There is no effective treatment for gestational diabetic myopathy. However,
the treatment for UI is ineffective in a large proportion of the population, thus increasing public health
costs, social spending and diminishing the quality of life of the affected women. Increased clarity on
the pathways underlying GDM is therefore needed for preventing and minimizing GDM-associated
manifestations [17–22].

2. Exosomes

Exosomes are small (~50–150 nm in diameter) extracellular vesicles (EVs), which are actively
secreted by all cell types. They were accidentally discovered in 1983 by Rose M Johnstone and Bin-Tao
Pan [30,31] whilst they were studying how iron enters maturing red blood cells. These first studies
suggested their function as being an alternative to lysosomal degradation [32,33] allowing the discard
of transferrin receptors, which had become useless in mature red blood cells [31]. At the same year
Harding et al., 1983, found the same results suggesting that transferrin is internalized via coated pits and
vesicles, they demonstrated that transferrin and its receptor are recycled back to the plasma membrane
after endocytosis [34]. Since this inglorious debut as refuse clearance operators, exosomes have climbed
the ladder of significance quite dramatically. Today, exosomes are recognized as important actors in
cell to cell communication [32,33,35–38]. Several reports have shown that exosomes play important
roles in a diverse array of physiological actions, including the immune response, tumor progression
and neurodegenerative disorders [33,35].

Exosomes contain multifarious cargos including proteins, mRNAs and miRNAs and other cytosol
components enclosed in a lipid bilayer [36–38]. They can shield their cargo content from enzymatic
degradation. This ability is fundamental for intercellular communication. In fact, exosomes can
shuttle their biologically active cargos from the parent cell to induce expressional and functional
response in their recipient cells [39,40]. The modalities of exosomes-based communications potentially
allow for the combination of multiple actions: exosomes released from the same MVBs could support
pools of ligands able to engage different cell-surface receptors simultaneously, mimicking interaction
between two cells but without the need for direct cell-to-cell contact. Exosomes binding to recipient
cell membrane could also provide the beneficiary cells with ‘new’ surface molecules, permitting
an increase in the range of cell targeting and potentially acquiring new adhesion properties [33].
Exosomes participate in the maintenance of normal tissue and cell physiology for example, stem cell
maintenance [41], tissue repair [42], immune surveillance [43] and blood coagulation [44]. Exosomes
have also been linked to pathogenic mechanisms in cancer [45–47], virus infection [48], neurological
degenerative diseases [49] and pregnancy complications by GDM or preeclampsia [50–54].

Exosomes are released from a variety of cell types into the extracellular space [32,55,56] and
are present in many biological fluids, including plasma, serum, amniotic fluid, urine and breast
milk [46,57,58]. The concentration and content of circulating exosomes are potentially a rich source for
novel clinical biomarkers and could additionally help in deciphering the mechanisms underpinning
GDM complications, thus aiding in identification of new targets for therapeutic intervention [9,59–61].
On the other hand, as extensively described in this article, the discovery that exosomes mediate
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the wide-ranging therapeutic efficacy of stem cells, opens up new therapeutic avenues, which have
relevance in the GDM area.

Arguably, as the result of a multidisciplinary and relatively ‘new’ research field, the precise
nomenclature and classification of EVs remains troublesome [62]. The International Society for
Extracellular Vesicles (ISEV) encourage the adoption of the term ‘EVs’ when referring to secreted
vesicles [63–65]. In practice, EVs are frequently categorized into heterogeneous EV subsets such
as exosomes, microvesicles or apoptotic bodies, based on their perceived route of biogenesis and
biophysical characterization (for example, the vesicle diameter). The capacity to uphold one terminology
over another remains challenging. In part, this is due to ‘crude’ EV isolation protocols that often
co-isolate non-EV material. To confound this issue, such immature EV isolation methods are
often accompanied by incomplete/ ‘poor’ EV characterization. Therefore, when interpreting EV
studies, it is wise to exercise caution and consider the EV isolation method, the EV characterization
and subsequent functionality/model/disease employed. EV biogenesis and nomenclature has been
extensively reviewed [62]. Henceforth, for the purpose of inter-study interpretation, in this review we
will adopt the nomenclature chosen by the cited articles where appropriate.

2.1. Further Particulars of Exosome Characteristics and Methodologies for Exosome Extraction for Fluid and
Exosome Analyses

Exosomes are ~50–160 nM endocytic vesicles (enrichment in HSP 70, tetraspanins, Tsg101, Alix,
Major histocompatibility complex (MHC) molecules) limited by a lipid bilayer and characterized
by a defined density (flotation at 1.13–1.21 g/mL on a sucrose gradient) [33,66,67]. According to
the current version of the exosome content database, ExoCarta (Version 4, http://www.exocarta.org),
4563 proteins, 194 lipids, 1,639 mRNAs and 764 miRs have been identified in exosomes from a variety
of cell types [67–70]. The main components of exosome membranes are lipids and proteins, which are
enriched with lipid rafts [32,55,71]. The exosomal lumen has numerous proteins [33], chemokines, such
as CCL2, CCL3, CCL4, CCL5, CCL20 and nucleic acids, including mRNAs, miRs and other non-coding
RNAs (ncRNAs) [40,67,72], reflecting both the condition and origin of the parent or producer cell [73].
Moreover, an in-depth characterization of proteins common to most exosomes shows that they express
tetraspanin proteins CD63, CD9 and CD81 [32,55,56], other membrane-bound proteins and chaperones
have also been shown [33,74].

Several methodologies are currently being used to isolate, quantify and validate the
exosomes [75–78]. The optimal exosome isolation method depends upon the intended therapeutic use,
route of administration, source material (e.g., milk, plasma, urine, cell culture) [79]. Exosome isolation
and detection methods have been extensively reviewed in detail [80–86].

2.2. Exosomal microRNAs

Exosomes contain a wide range of small RNAs, particularly microRNAs (miRs) but also other
forms of small non-coding RNAs (vaultRNA, tRNAs and miRs) [87] and specialized mechanisms
are involved in their recruitment and loading to exosomes [88]. In a human, there is in excess of
2000 miRs. miRs mediate post-transcriptional gene silencing; to do this a miR mainly binds to the 3′-
and untranslated region (3′-UTR) of a pool of target messenger RNA (mRNA) [89]. However, miRs
can also bind to the mRNA 5′-UTR or open reading frame (ORF) regions [89,90]. The involvement
of miRs in many biological activities has been well documented, including cell proliferation, cell
differentiation, cell migration, disease initiation and disease progression [91–95]. In addition to being
packed into exosomes or microvesicles, extracellular miRs can be loaded into lipoproteins [96,97]
or bound by AGO-2 protein outside of vesicles [98]. All three modes of action protect miRs from
degradation and guarantee their stability during their transportation in body fluids [98–103]. The role
of miRs in exosomes is gaining increasing scientific attention. Conveying information via circulating
EVs is deemed to be a third way of intercellular communication that is as essential as the cell-to-cell
contact-dependent signaling and miR signaling via transfer of soluble molecules [104]. The role of

http://www.exocarta.org
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exosomal miRs is of great importance in gene expression, demonstrating potential for new therapies
and regenerative medicine [105,106]. Of note, viral miRs are also present in exosomes produced by
infected mammalian cells, representing a new mechanism exploited by human tumor viruses to spread
their attack [107,108]. This pathogenic mechanism is fascinating and suggests the possible use of
exosomes for synthetic RNA-based therapies (discussed below).

2.3. Clinical Trials to Date, Using Exosome as a Therapy

Exosomes of autologous or allogenic origin have already been tested in different patient populations
with reassuring results in term of safety. The exosomes safety profile depends on the cell from which
they were derived [109–114]. Encouragingly, the recent clinical trials using cell-derived exosomes
did not report serious adverse reactions thus far [112,113,115]. Escudier et al. reported results from
the first exosome Phase I trial in 2005, highlighting the feasibility of large-scale exosome production
and the safety of exosome administration [115]. More specifically, they used autologous exosomes
pulsed with MAGE 3 peptides (of note, MAGE-3 gene is expressed in many tumors but it is silent in
normal tissues and antigens encoded by MAGE-3). It therefore may be a useful target for specific
anti-tumor immunization of cancer for the immunization of melanoma patients [115]. In the same year,
Morse et al. [112], reported their study, which tested the safety, feasibility and efficacy of autologous
dendritic cell (DC)-derived exosomes (DEX) loaded with the MAGE tumor antigens in patients with
non-small cell lung cancer. They showed that the production of the DEX vaccine was feasible and that
DEX therapy was well tolerated in patients with advanced cancer. Some patients experienced long term
stabilization of the disease and activation of immune effectors. In 2008, Dai et al. reported the phase I
clinical trial of the ascites-derived exosomes (Aex) in combination with the granulocyte–macrophage
colony-stimulating factor (GM-CSF) in the immunotherapy of colorectal cancer (CRC), showing that
the therapy was safe and well tolerated and induced a beneficial tumor-specific antitumor cytotoxic T
lymphocyte (CTL) response [113]. In the Phase II clinical trial of the use of DEX in non-small cell lung
cancer (NSCLC), they are testing the clinical benefit of γ-Dex (exosomes derived from IFN-γ-treated
DC) as a maintenance immunotherapy in cancer patients at stage IIIB-IV, responding to or stabilized
with, cisplatin-based chemotherapy [114]. The study has so far confirmed the capacity of Dex to boost
the NK cell arm of antitumor immunity in patients with advanced NSCLC [116]. A Phase I clinical
trial using DEX to treat advanced melanoma illustrated that Dex treatment enhanced the proportion
and absolute number of circulating NK cells and restored the expression of a type II transmembrane
receptor Natural Killer Group 2 member D (NKG2D), which is expressed on circulating T and NK
cells [117], thus stimulating the MHC unrestricted NKG2D dependent cytotoxicity. These data provide
a mechanistic explanation on how Dex may stimulate non-MHC restricted-anti-tumor effectors and
induce tumor regression in vivo [118].

According to the www.clinicaltrials.gov website [119], there are currently 148 studies listed as
clinical trials using exosomes as therapy and/or diagnosis, to study the pathophysiology of the disease
and to predict and understand the outcomes after therapy [119,120]. From these listed studies, in total
only twelve studies (summarized in Table 1) are using exosomes in innovative therapeutic approaches.

www.clinicaltrials.gov


Cells 2020, 9, 675 5 of 24

Table 1. Current clinical trials testing the therapeutic potential of exosomes from several sources in
different human diseases.

Exosomes Type Condition to Be Treated Locations Reference

CAP-1002 (Cardiosphere-Derived
Cells: CDCs) Duchenne muscular dystrophy

Multicenter American Study
(California, Florida, Missouri,

Ohio, Utah, Wisconsin)
[121]

Curcumin conjugated with
plant exosomes Colon cancer University of Louisville, USA [122]

Ginger and aloe plants exosomes Polycystic ovary syndrome University of Louisville
Louisville, Kentucky, USA [123]

DEX Cancer vaccination to lung cancer Gustave Roussy, Cancer Campus,
Grand Paris [124]

MSC-derived exosomes with
KrasG12D siRNA (“iExosomes”) Pancreatic cancer M.D. Anderson Cancer

Center, USA [125]

MSCExo Healing of large and refractory
macular holes

Tianjin Medical University Eye
Hospital (China) [126]

MSC derived microvesicles
and exosomes Type I Diabetes Mellitus General Committee of Teaching

Hospitals and Institutes, Egypt [127]

Umbilical mesenchymal stem cells
derived exosomes

Dry eye symptoms in patients
with chronic Graft Versus Host

Diseases (cGVHD)

Zhongshan Ophthalmic Center,
Sun Yat-sen University, China. [128]

Exosomes derived from amniotic
liquid stem cell Depression, anxiety and dementia Neurological Associates of West

Los Angeles, USA [129]

Exosome produced from neonatal
stem cell Craniofacial neuralgia Neurological Associates of West

Los Angeles, USA [130]

MSCExo enriched by miR-124
Disability of patients with acute

ischemic stroke
Isfahan University of Medical

Sciences, Iran [131]

Stem cell conditioned medium Chronic ulcer wounds [12]
Stem Cell and Cancer Institute,

Kalbe Farma TbkPT Pharma
Metric Labs, Indonesia.

[132]

Human MSC-exosomes Bronchopulmonary dysplasia United Therapeutics USA. [119]

2.4. Exosomes as a Drug delivery System

As previously indicated, exosomes are a cell-free natural system for ferrying functionally
active RNA between cells. Their membranes protect the RNA from degradation and supposedly
contain recognition systems (not yet sufficiently elucidated) allowing them to target recipient cells.
This process possibly inspired the idea that synthetic small RNAs, such as small interfering RNA
(siRNAs) [133,134], can be delivered by exosomes mimicking the molecular mechanism of endogenous
miRs transportation [71]. In support, Wahlgren et al. used plasma exosomes as gene delivery platforms
to transfer siRNAs and silence MAPK in monocytes and lymphocytes [135]. Moreover, Wahlgren et al.,
2012 and Alexander et al., 2015, showed that exosome-delivered exogenous miRs can re-program the
cellular response to endotoxin, where exosome-delivered miR-155 enhances while miR-146a reduces
inflammatory gene expression [135,136]. Overall, these studies provide evidence that exosomes have
the potential to regulate inflammatory response. Expanding from this, exosomes can represent an
efficient vehicle for acidic nucleic therapies [135]. Recombinant adeno-associated virus (rAAV) vectors
are sized about 20 nm (hence can fit into exosomes) and are considered promising vectors for gene
therapies for the cardiac and skeletal muscles [137,138]. rAAV became the first clinically approved
gene therapy product in the western world [139]. In contrast to the near absence of a cellular immune
response against rAAVs, clinical trials have shown that pre-existing neutralizing antibodies act against
the naturally occurring AAV serotypes (presumably, a result of a prior infection with wild-type AAVs)
in more than half the patients; this represents a significant obstacle to the broad application of AAV
gene therapy [138]. Exosomes could help and overcome this issue. During rAAV production, a fraction
of AAV vectors are embedded in exosome and microvesicles. The “vexosomes” (vector-exosomes) can
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outperform conventionally purified AAV vectors in transduction efficiency [140] and evade human
neutralizing anti-AAV antibodies. Moreover, they can be modified to express a tissue/cell targeting
peptide on the exosome external membrane, to improve delivery specific areas [139].

Further studies have shown that exosome-based drug delivery systems may provide unique
advantages, including limited or no undesired immunogenicity when self-derived exosomes are
used, greater stability in the blood due to evasion of complement and coagulation factors, efficient
delivery of cargo into the cytosol of the target cell and possibly fewer off-target effects due to the
natural tendency of exosomes to act on specific target cells [141,142]. An encouraging example is
that the intranasal administration of curcumin-enriched exosomes (Exo-cur) led to rapid delivery
of an exosome encapsulated drug to the brain that was selectively taken up by microglial cells to
subsequently induce their apoptosis. These results demonstrate that this strategy may provide a
non-invasive and novel therapeutic approach for treating inflammatory-related diseases, even in less
accessible organs such as the brain [143]. To incorporate drugs into exosomes, different possibilities
have been suggested [144]. Lipophilic small molecules were passively loaded into exosomes during
co-incubation with exosomes [145,146].

MSCs are easily harvested from a large variety of human tissues including those that can often
be considered ‘medical waste’ such as: adipose tissue [147,148], liver [149], muscle [150], amniotic
fluid [151], placenta [152,153], umbilical cord blood [147], dental pulp [154,155], human ESC [156]
and other sources. MSCs have shown a scalable ability to mass-produce exosomes, which is a highly
desired attribute for conversion of MSC-exosomes into drug delivery vehicles [157]. MSCs therefore
represent suitable cell candidates for the mass production of exosomes for drug delivery. Moreover,
there are also alternative sources for large-scale production of drug-enriched exosomes with low host
immunogenicity. For example, bovine milk exosomes were shown to increase oral bioavailability,
improve drug efficacy and safety and exhibit tolerance between species without adverse immune and
inflammatory response [158].

In summary, exosomes represent an innovative and very promising drug delivery system and
exosome -based therapeutics offer new hopes to satisfied unmet clinical needs.

3. Exosomes and miRs in GDM

As a consequence of the diverse functions that exosomes undertake, they can be an extremely
important tool not only for studying the pathophysiology of GDM but also for a safer, more effective
and personalized potential therapy. In this section we will highlight the advances in exosomes studies
in GDM and the perspectives for their use in GDM biomarkers and therapy.

Saker et al. showed that the plasma concentration of exosomes is higher in normal pregnant
women than in non-pregnant women [159] while a later study from Salomon et al. demonstrated
that placental exosomes are released into the maternal circulation at the beginning of 6 weeks of
gestation [160]. Interestingly, changes in maternal plasma exosome concentration compared with
normal pregnancy has been detected in GDM women [160,161]. Nakahara et al. [162], investigated
the profile of placental-derived exosomes (PdE) in a stratified cohort study based on normal (n = 30),
GDM (n = 10) and preeclampsia (PE) pregnancy (n = 15) outcomes. They found that significant factors
contributing to total variations of the PdE were gestational age and pregnancy outcomes, PdE levels
increased in all types of gestation but in pregnancies complicated by GDM and PE these levels were
significantly higher than in normal pregnancies. In addition, maternal body mass index (BMI), glucose
concentration and fetal body weight significantly correlated with the concentration of PdE across
gestation, suggesting that exosomes may be involved in maternal metabolic adaptation to pregnancy
and therefore that PdE may be used as early predictor of adverse outcomes, including GDM and
PE [162]. Salomon et al. described that PdE released from women with GDM may alter maternal
physiology by a process of exosomal placento-maternal transfection a “payload” of receptors, proteins
and/or oligonucleotides, that have been specifically pre-conditioned by the GDM placenta. The authors
propose that some mediators act in this system, including the vascular, pancreatic and adipose tissues
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and innate immune response system [163]. They also describe paracellular effects associated with
GDM mediated by trophoblasts or placental mesenchymal stem cells (MSCs), altering for example
the endothelial activity promoting changes in transport glucose GLUT 3 and thus delivery of energy
substrates to the fetus [163]. In addition, PdE may contribute to the proinflammatory state associated
with pregnancy, an increased phenomenon under diabetic conditions [26,52]. Jayabalan et al. by
using a bioinformatic analysis tool named Sequential Windowed Acquisition of All Theoretical Mass
Spectra [SWATH] showed that exosomal proteins are primarily associated with energy production,
inflammation and metabolism [164], major pathways compromised by GDM. The data may be of
utility in elucidating the underlying physiological mechanisms associated with insulin resistance in
GDM [165]. Another study suggests that in GDM, exosomes secreted from adipose tissue regulate
placental glucose metabolism by improving the communication of adipose tissue derived exosomes
(exo-AT) to placental tissues, this therefore might become an effective intervention strategy to prevent
the consequences of GDM, such as fetal overgrowth [66,164]. Novel findings indicate that the insulin
resistance (IR) observed in obesity is maintained by adipose tissue by releasing exosomes promoting
IR and other obesity-related metabolic conditions [166]. These findings support the hypothesis that
dysregulated secretion of adipose tissue-derived exosomes plays a pivotal role in the development of
GDM in obese mothers [166]. To complement clinical investigations, in vitro studies demonstrated
that high D-glucose increases the release of exosomes from first trimester trophoblast cells cytokines
secretion, such as interleukin-8 (IL-8) and TNF-a from human umbilical vein endothelial cells (HUVECs),
which are of fetal origin [51,167].

Importantly, Salomon et al., 2016, reported that higher concentrations of placental exosomes
during early pregnancy (i.e., 11–14 weeks) are predictive of GDM [161] and that the circulating levels
of both placental-derived and total exosomes are higher compared with normal pregnancy. However,
the ratio between Placental Alkaline Phosphatase (PLAP)/placenta and total exosomes was decreased
in the circulation of GDM mothers, which could be explained by the increased release of exosomes
from non-placental sources [52,161]. Further studies are needed to investigate exosomes released from
non-placental sources such as skeletal muscle and adipose tissue [161].

The study of exosomes as paracrine vectors might generate new knowledge for deciphering GDM
pathophysiology for mother and fetus as well as providing precious biomarkers for the prediction and
monitoring of the disease. Recently, studies on exosomal miRs provided an opportunity for a better
understanding of the molecular processes of skeletal muscle diseases [168–175]. Research suggests
that miRs play important roles in skeletal muscle development and several miRs have been identified
as biomarkers for myogenesis, muscle mass changes and nutrient metabolism in physiological and
pathological states [26,176–178]. Nair et al., 2018 found that placental exosomes in GDM carry a
specific set of miRs associated with skeletal muscle insulin sensitivity [26]. The expression of this set of
specific exosomal miRs, varied in a consistent pattern in the placenta, in circulating exosomes and in
skeletal muscle in GDM. Placental exosomes from GDM pregnancies decreased insulin-stimulated
migration and glucose uptake in primary skeletal muscle cells obtained from patients with normal
insulin sensitivity. Interestingly, placental exosomes from NGT increase glucose uptake in response to
insulin in skeletal muscle from diabetic subjects. These findings suggest that placental exosomes may
have a role in modifying insulin sensitivity in normal and GDM pregnancies [161]. These results pave
the way for a better understanding of gestational diabetic myopathy and UI in this population with
GMD and for clarifying relevant aspects about insulin interaction with the muscle and muscle function.

Several studies suggest that miRs are involved in processes that contribute to the development
and evolution of GDM. Dicer and Drosha are important for the miR biogenesis. Rahimi et al. found
the dysregulation of Drosha, Dicer in pregnant and GDM patients when compared to healthy controls.
They hypothesized that miRs are involved in the development of GDM [179]. Wander et al. found that
circulating early–mid-pregnancy miRs are associated with GDM, particularly among overweight/obese
women who are pregnant with male offspring [180]. Pillar et al. showed that miRs are involved
in the pathogenesis of preeclampsia and GDM and have potential as early biomarkers for disease
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development [54]. Cao et al. concluded that plasma mRNA-16-5p, -17-5p and -20a-5p are potential
diagnostic biomarkers in GDM [181]. Li et al. identified a miRNA signature involvement in GDM
which may contribute to macrosomia through enhancing epidermal growth factor receptor (EGFR)
signaling [182].

Another study demonstrated that the increase in the placenta-enriched miR (miRNA-518d)
may contribute to the pathology of the development of GDM, via an effect on the regulation of
proliferator-activated receptor-α (PPARα) expression [183]. miRs from adipose tissue, such as miR-222,
might be a candidate biomarker and therapeutic target for GDM, due to the potential regulation
of ERα expression in estrogen-induced insulin resistance in GDM [184]. Exosomal miRs can be
profiled in biomarker discovery studies [185]. Trophoblast/cytotrophoblast cells compose the placenta.
Consequently, the miRs contained in PdE might help to better define the mechanisms underlining
fetal-maternal interaction [77,186] as well as to study placental dysfunction. These PdE-miRs might
play an important role in GDM pathogenesis. Therefore, via the study of these exosomal miRs,
important aspects could be better understood and explored for more effective future diagnoses and
new therapeutic approaches to GDM [53].

4. Novel Therapeutic Approaches in Gestational Diabetes Mellitus

During the past decade, stem cell therapy studies have focused on the use of multipotent adult
stem cells, particularly mesenchymal stem/stromal cells (MSC), which we will discuss in more depth
below. These studies have highlighted new therapeutic promises for a treatment of a variety of
conditions including UI and CVDs [187–190]. However, the clinical success of cell therapy has
not yet been confirmed in large human studies. Furthermore, animal studies have delivered the
knowledge that beneficial pro-regenerative and anti-inflammatory effects of stem cell therapies are
mediated by a paracrine action and/or by acute immune response to cell delivery rather than an in situ
transdifferentiation [191,192].

MSCs can be extracted from different sources, including the bone marrow, amniotic fluid [151]
and placenta [193] and possess tissue protective and regenerative attributes together with
immunomodulatory, anti-inflammatory, proangiogenic and antifibrotic capacities. Recent studies
have established that one of the main therapeutic vectors of MSCs is represented by EVs, particularly
exosomes [194]. However, the mechanisms by which MSC-exosomes afford their beneficial
actions remain incompletely understood. Several studies suggest that MSC-exosomes regulate
immune responses [195,196]; reinforcing this proposition, recent data suggests that macrophage
(MΦ) immunomodulation is the ‘gatekeeper’ to the success of MSC-exosome therapies [197,198].
MSC-exosomes reportedly modulate MΦ phenotype, suppressing the proinflammatory M1-like
state and shifting the M2-like MΦ to favor an anti-inflammatory, pro-regulatory phenotype both
in vitro and in vivo [197,198]. However, exosomes extracted from cells cultured in cardiometabolic
disease [199–205] mimicking conditions or from biological fluids of diabetic patients, produce
pathogenic microangiopathic effects [201,202]. Taken together, extreme caution should be exercised
when considering the use of ‘naïve’ patient-derived exosomes for therapeutic intervention. In contrast,
several reports indicate that allogenic “healthy” MSCs are an excellent source of bioactive exosomes [203],
endowed with protective, antifibrotic and proangiogenic properties [204]. Additionally, MSCs
reportedly recruit CCR2+ monocytes (Mo), which were shown to contribute to the regenerative
properties induced by stem cell injection into the rodent heart [192,205]. Although great success
has already been achieved using cell therapy with mesenchymal stem cell (MSC), many aspects
related to their effectiveness and side effects need to be deciphered, including their potential
carcinogenicity [79,206,207] as well as their migratory ability (to different sites) and the resulting
engraftment potential [208–210]. These challenges become even bigger in GDM treatment through
stem cell therapy, as there is a major limitation on the safety of therapy in this case, to avoid deleterious
effects that might reach the conceptus.
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For these reasons new acellular approaches to therapy have been employed in recent years as a
basis for the knowledge gained about on the paracrine action of MSCs through exosomes and their
important biological role in the body [207,211].

Therapies based on MSC-exosomes represent a promising scientific field to be tested for the
capacity to improve the post-GDM outcome of mother and child. Exosomes have a good potential for
protective and regenerative therapies and in GDM-caused myopathy, they could be delivered locally
for example by (co-injection, mixing with hydrogels or coating scaffolds with exosomes using fibrin
gels or specific linkers) [212].

Interestingly, human adipose-derived stem cell (hADSCs)-exosomes showed some promise to
contrast stress urinary incontinence (SUI), a common medical condition affecting approximately 30%
of postpartum women [213]. Specifically, Ni et al. found that administration of hADSCs-exosomes
provided functional and histological improvements in a rodent model of SUI [213]. In addition,
they found hADSCs-exosomes harbored several proteins associated with PI3K-Akt, Jak-STAT and Wnt
signaling pathways, that were associated with skeletal muscle and nerve regeneration and proliferation
improving the SUI [213]. In accordance, Liu et al. found that hADSCs-exosomes increased type I
collagen content by increasing collagen synthesis and decreasing collagen degradation in vaginal
fibroblasts from women with SUI, supporting the notion that these exosomes may be a novel therapeutic
approach for treating SUI [214]. More recent work from the same research group also showed that
exosomes secreted by fibroblasts from women with SUI play an important role in regulating endothelial
cell angiogenesis [215].

Interestingly, Wu et al. showed that exosomes derived from stem cells contained in the urine
(USCs-Exo) can improve skeletal muscle regeneration in pubococcygeus muscle injury in rats [216].
Here, the authors found that USC-Exos act on satellite cells promoting their activation, proliferation
and differentiation via an enhancement of the phosphorylation of extracellular-regulated protein
kinases (ERK). This paper has therefore identified a novel agent for skeletal muscle regeneration
providing a basis for further exploring a cell-free correction for SUI [216]. Notably, GDM is associated
with other comorbidities such as gestational hypertension (HTN), hypothyroidism, obesity and lipid
abnormalities, which can become chronic throughout the woman’s life [217–219]. On balance, exosomes
hold promise as a novel therapeutic approach for pathologies associated with GDM.

The use of exosomes as therapy for GDM outcomes, such as UI and CVD are still premature
but encouraging in vitro and preclinical results provide promise. Table 2 shows an overview of the
potential of exosomes in protective regenerative medicine in the context of GDM [212,220].
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Table 2. Overview of the characteristics of mesenchymal stem cell (MSC)exo that suggest their potential
in gestational diabetes mellitus (GDM) treatment.

Biological Process Effects Reference

Angiogenesis/Cell proliferation

Proliferation, migration and tube formation of endothelial cells through the
Wnt4/β-Catenin Pathway/

Transferring miR), tube formation into endothelial cells miR-135b and by
targeting factor-inhibiting HIF-1/

Promotes the enhancement of the proliferation and migration of fibroblasts by
transferring signals to target cells activating several signaling important pathways
(Akt, ERK and STAT3) and inducing the expression of a number of growth factors -
[hepatocyte growth factor (HGF), insulin-like growth factor-1 (IGF1), nerve growth

factor (NGF) and stromal-derived growth factor-1 (SDF1)]/
Inducing neovascularization in preclinical models by the paracrine effect by

transferring pro-angiogenic microRNAs /
Endothelial cell angiogenesis by transferring miR-125a/

[221–225]

Immunomodulation

Immunomodulatory effect of human stimulated T cells by inhibitory effect in the
differentiation and activation of T cells as well as a reduced T cell proliferation

and IFN-γ release/
Modulation of the local and systemic maternal immune system by exosomes secreted

from trophoblast cells that carry HLA-G and B7 family immunomodulators/
MSC-derived exosome possesses the immunomodulatory properties mediated by
paracrine factors suppressing the secretion of pro-inflammatory factor TNF-a and
IL-1b, increasing TGF-β, inducing the conversion of T helper type 1 into T helper

type 2 also reducing the potential of T cells to differentiate into IL 17/
Exosomes are the trigger the release of cytokines/chemokines from immune cells and
stimulation of anti-tumor immune reactions or in a systemic immunosuppression by
inducing the secretion of pro-inflammatory cytokines such as IL-1β, tumor necrosis

factor (TNF)-α, IL-23a, CCL5 (RANTES) and IL-6/
Exosomes from MSCs ameliorate experimental

bronchopulmonary dysplasia and restore lung function through
MΦ immunomodulation by suppressing the pro-inflammatory “M1” state and

augmenting an anti-inflammatory “M2-like via Cytokines, such as Ccl2, Ccl7 and IL6/
MSC exosomes enhanced the survival of allogenic skin graft in mice by induced

polymyxin-resistant by activating APCs via MyD88-dependent.

[198,226–230]

Tissue regeneration

Fibroblast activation to initiate tissue regenerative responses by delivering TGF-b1
mRNA among others yet to be identified moieties/

Osteochondral regeneration by the action of regulatory components including miRs,
mRNAs and proteins/

Accelerate skeletal muscle regeneration by enhancing myogenesis and angiogenesis,
which is at least in part mediated by miRs such as miR-494/

Enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat
model by the overexpression miR-140-5p/

As biomimetic tools for stem cell differentiation inducing stem cell differentiation
and tissue regeneration by signaling mechanisms triggered (P38 mitogen activating

protein kinase pathway) from exosomes.

[231–235]

5. Concluding Remarks

Once the scientific community has fully succeeded in harnessing the beneficial properties of
exosomes, unlocking their potential for drug delivery and the correction of gene expression in specifics
cells and tissues, they could become powerful and sophisticated tools, in the emerging field of
nanomedicine (summarized in Figure 1). Improving fundamental knowledge on exosome structure,
biogenesis, roles in cell-to-cell signaling, the process of recognition and internationalization of exosomal
content all combined, should allow further improvement of the methods to manipulate the exosome
cargo and then deliver it in a very precise and effective way. However, as illustrated above, there are
still a number of important challenges to be addressed, such as dosage and route of application to
obtain desired therapeutic effects, tracking of exosomes in the body in target cells or tissues, as well as
the long-term evaluation of side effects that therapy may cause. Investigation of the maternal plasma
exosomes concentration and molecular content might add important knowledge to the understanding
of the GDM etiology and complications on mother and child and then be translated into diagnostic
and predictive biomarkers in a clinical context.
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γ–Dex exosomes derived from IFN-γ-treated DC
AAV adeno-associated virus
Aex ascites-derived exosomes
BCa breast cancer
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Ca calcium
CDCs cardiosphere-derived cells
cGVHD chronic Graft Versus Host Diseases
CRC colorectal cancer
CSF colony-stimulating factor
CTL cytotoxic T lymphocyte
CVD cardiovascular diseases
DC dendritic cell
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DEX dendritic cell-derived exosomes
EBV Epstein-Barr virus
EGFR epidermal growth factor receptor
ERK extracellular-regulated protein kinases
EVs extracellular vesicles
exo-AT adipose tissue derived exosomes
Exo-cur curcumin-enriched exosomes
GDM gestational diabetes mellitus
GM granulocyte–macrophage
hADSCs Human Adipose Derived Stem Cell
HDL high-density lipoprotein
HGF hepatocyte growth factor
HLA human leukocyte antigen
HTN gestational hypertension
HUVECs human umbilical vein endothelial cells
iExosomes mesenchymal stromal cells-derived exosomes with KrasG12D siRNA
IGF1 insulin-like growth factor-1
IL-8 interleukin-8
IR insulin resistance
MΦ macrophage
MHC major histocompatibility complex
MHs refractory macular holes
miRs microRNA
Mo monocytes
MoDC primary monocyte-derived dendritic cells
mRNA messenger RNA
MSC mesenchymal stem/Stromal cell
MSC-Exos/MSCsexo MSC-derived exosomes
MVBs multivesicular bodies
MVEs multivesicular endosome
NGF nerve growth factor
NGT normal glucose tolerance
NKG2D natural Killer Group 2 member D
NSCLC non-small cell lung cancer
NTA nanoparticle tracking analysis
ORF open reading frame
PdE placental-derived exosomes
PE preeclampsia
PH placental hormones
PLAP Placental Alkaline Phosphatase
PM plasma membrane
PPARα proliferator-activated receptor-α
PTH parathyroid hormone
rAAV recombinant adeno-associated virus
RNAi RNA interference
SDF1 stromal-derived growth factor-1
SEC size exclusion chromatography
siRNA silencer select RNA
SWATH Sequential Windowed Acquisition of All Theoretical Mass Spectra
SUI stress urinary incontinence
T1DM Type 1 Diabetes Mellitus
T2DM type 2 diabetes mellitus
UI urinary incontinence
UMSCs umbilical mesenchymal stem cells
USCs-Exo exosomes secreted by urine-derived stem cells
UTR untranslated region
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