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ABSTRACT Stenotrophomonas maltophilia is a Gram-negative opportunistic bacterium
that is increasingly being associated with infections. Here, we report the complete genome
of the S. maltophilia myophage Marzo, with a 159,384-bp genome encoding 268 proteins,
23 tRNAs, and 1 transfer-messenger RNA. Marzo is closely related to S. maltophilia phages
IME-SM1 and Mendera.

S tenotrophomonas maltophilia is found in aqueous habitats, including plant rhizo-
spheres and animals, and is an opportunistic Gram-negative bacterium that can cause

infections in tissues ranging from the skin to the heart in immunocompromised individuals
(1). We are interested in studying S. maltophilia phage genomes in the interest of exploring
potential therapeutic treatment options.

Phage Marzo was isolated from an activated sludge sample collected from the Texas
A&M wastewater treatment plant in September 2019, using the soft agar overlay method
(2) with S. maltophilia (ATCC 17807) as the propagation host grown aerobically at 30°C in
nutrient broth or agar (BD). Marzo DNA was purified from ;8 mL phage lysate using the
Promega Wizard DNA cleanup system, as described previously (3). Sequencing libraries
were prepared as 300-bp inserts using a Swift 2S Turbo kit and sequenced on an Illumina
MiSeq system with paired-end 150-bp reads using 300-cycle v2 chemistry. The 106,506 total
sequence reads were quality controlled using FastQC (www.bioinformatics.babraham.ac.uk/
projects/fastqc), trimmed with FASTX-Toolkit v0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit),
and assembled using SPAdes v3.5.0 (4). A raw contig of 159,439 bp was obtained, and its end
sequences were manually corrected with Sanger sequencing of a PCR product amplified from
the contig ends (forward primer, TGAACTTCTCCAGCCCGAAC; reverse primer, TGTAGCGAGCC
CTGATCTCT). PhageTerm was used to predict phage termini from the raw sequencing reads
(5). Phage Marzo was annotated using the Center for Phage Technology (CPT) Galaxy-Apollo
phage annotation platform (https://cpt.tamu.edu/galaxy-pub) (6–8). Gene calling included
GLIMMER v3.0 (9) and MetaGeneAnnotator v1.0 (10). tRNA and transfer-messenger RNA
(tmRNA) genes were detected using ARAGORN v2.36 (11) and tRNAscan-SE v2.0 (12). Gene
function was predicted using InterProScan v5.48 (13), BLAST v2.9.0 (14) with the NCBI non-
redundant and Swiss-Prot databases (15), TMHMM v2.0 (16) for transmembrane domains,
HHPred (17), LipoP v1.0 (18) for lipoproteins, and SignalP v5.0 (19). Genome-wide DNA
sequence similarity to top BLAST nucleotide hits (from the NCBI nucleotide database)
was calculated by progressiveMauve v2.4 (20). All tools were run with default settings unless
otherwise specified.

Phage Marzo was determined to be a myophage via negative staining with 2% (wt/vol)
uranyl acetate and imaging by transmission electron microscopy (TEM) at the Texas A&M
University Microscopy and Imaging Center (Fig. 1). The completed 159,384-bp myophage
Marzo genome has 24-fold sequencing coverage and a G1C content of 54%. PhageTerm
was unable to predict phage termini from the raw sequencing reads, but due to its similarities
in terms of morphology and genome size to the canonical phage T4, Marzo likely uses headful
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packaging. Twenty-three tRNA genes, 1 tmRNA gene, and 268 protein-coding genes were
found, with a coding density of 93%. The tRNA genes were found in two clusters, one with 3
tRNAs and the tmRNA and the other with 20 tRNAs. The Marzo tmRNA was highly similar
to the SsrA Betaproteobacter-class tmRNA of S. maltophilia, as determined by sequence anal-
ysis at RNAcentral (21). Comparative genomics revealed that Marzo has $92% nucleotide
identity to other S. maltophilia myophages, namely, IME-SM1 (GenBank accession number
KR560069), YB07 (GenBank accession number NC_048755), and Mendera (GenBank acces-
sion number NC_048804). Some structural genes could be identified, encoding tail comple-
tion scaffold, portal, major capsid, baseplate wedge, and tail tube proteins. In addition,
although no holin or endolysin genes could be identified, two spanin gene pairs were iden-
tified, one of the overlapping class and the other of the embedded class.

Data availability. The Marzo genome was deposited in GenBank with accession
number MZ326868. The associated BioProject, SRA, and BioSample accession numbers
are PRJNA222858, SRR14095257, and SAMN18509700, respectively.
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