
fgene-12-675498 April 24, 2021 Time: 18:17 # 1

REVIEW
published: 29 April 2021

doi: 10.3389/fgene.2021.675498

Edited by:
Nicoletta Potenza,

University of Campania Luigi Vanvitelli,
Italy

Reviewed by:
Nicola Mosca,

Fondazione Policlinico Universitario A.
Gemelli, Scientific Institute for
Research, Hospitalization and

Healthcare, Italy
Anna Lewinska,

University of Rzeszow, Poland

*Correspondence:
Qianqian Li

sissi100@vip.sina.com
Hongjuan Cui

hcui@swu.edu.cn

Specialty section:
This article was submitted to

RNA,
a section of the journal

Frontiers in Genetics

Received: 03 March 2021
Accepted: 22 March 2021

Published: 29 April 2021

Citation:
Cen L, Liu R, Liu W, Li Q and

Cui H (2021) Competing Endogenous
RNA Networks in Glioma.
Front. Genet. 12:675498.

doi: 10.3389/fgene.2021.675498

Competing Endogenous RNA
Networks in Glioma
Liang Cen1,2, Ruochen Liu1,2, Wei Liu1,2, Qianqian Li3* and Hongjuan Cui1,2,4*

1 State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China, 2 Cancer Center, Medical
Research Institute, Southwest University, Chongqing, China, 3 Department of Psychology, The Second Affiliated Hospital
of Chongqing Medical University, Chongqing, China, 4 Ministry of Education Key Laboratory of Child Development
and Disorders, Department of Neurosurgery, National Clinical Research Center for Child Health and Disorders, Children’s
Hospital of Chongqing Medical University, Chongqing, China

Gliomas are the most common and malignant primary brain tumors. Various hallmarks
of glioma, including sustained proliferation, migration, invasion, heterogeneity, radio-
and chemo-resistance, contribute to the dismal prognosis of patients with high-grade
glioma. Dysregulation of cancer driver genes is a leading cause for these glioma
hallmarks. In recent years, a new mechanism of post-transcriptional gene regulation
was proposed, i.e., “competing endogenous RNA (ceRNA).” Long non-coding RNAs,
circular RNAs, and transcribed pseudogenes act as ceRNAs to regulate the expression
of related genes by sponging the shared microRNAs. Moreover, coding RNA can
also exert a regulatory role, independent of its protein coding function, through the
ceRNA mechanism. In the latest glioma research, various studies have reported
that dysregulation of certain ceRNA regulatory networks (ceRNETs) accounts for the
abnormal expression of cancer driver genes and the establishment of glioma hallmarks.
These achievements open up new avenues to better understand the hidden aspects of
gliomas and provide new biomarkers and potential efficient targets for glioma treatment.
In this review, we summarize the existing knowledge about the concept and logic
of ceRNET and highlight the emerging roles of some recently found ceRNETs in
glioma progression.
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INTRODUCTION

Gliomas are the most common and malignant primary brain tumors, accounting for about 30% of
all primary brain tumors and 80% of malignant ones (Weller et al., 2015). The origin of gliomas
is thought to be from neuroglial stem or progenitor cells. Based on morphological similarities to
the neuroglial cells of normal brain, the World Health Organization (WHO) 2007 classification
system categorizes gliomas into astrocytomas, oligodendrogliomas, mixed oligoastrocytic gliomas,
or ependymomas and into I–IV grades with grades I and II and grades III and IV considered low-
and high-grade gliomas, respectively (Louis et al., 2007). Patients with high-grade glioma, such as
glioblastoma (GBM, a grade IV astrocytoma), have a median survival time of only 15 months after
initial diagnosis (Jemal et al., 2010; Rynkeviciene et al., 2019). Research over the past decade using
advanced sequencing technologies has unraveled molecular alterations or biomarkers underlying
gliomas, which updated our understanding of glioma’s biology and resulted in a new classification
system (Louis et al., 2016) with more precision for gliomas. This system integrated histology
and molecular biomarkers, including IDH (encoding isocitrate dehydrogenase) mutation and
1p/19q-codeletion status (Louis et al., 2016). Despite these progresses, as well as progress in surgical
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resection, radiotherapy, and chemotherapy, the prognosis for
patients with high-grade gliomas remains dismal (Dong and Cui,
2020). Besides that, some low-grade gliomas can develop into
secondary high-grade ones after surgical resection, radiotherapy,
or chemotherapy (Hamisch et al., 2017). A better understanding
of the molecular mechanisms of gliomagenesis is urgently needed
to develop potential new biomarkers and therapeutic strategies
for improved treatments.

Dysregulation of oncogenes (e.g., RAS, PIK3CA, and MYC)
and/or tumor-suppressive genes (e.g., PTEN, TP53, and RB1)
leads to cell transformation (Singh et al., 2002; van ’t Veer et al.,
2002; Ballestar and Esteller, 2008; Liu et al., 2021). Enormous
efforts have been devoted to illustrating the dysregulation
mechanisms of these cancer driver genes at the transcriptional
and post-transcriptional levels. Noticeably, more than 75% of
the human genome can generate RNA transcripts, of which
only approximately 2% are messenger RNAs (mRNAs) that
contain cancer driver genes, and the majority of the rest
are noncoding RNAs including microRNAs (miRNAs), long
noncoding RNAs (lncRNAs), transcribed pseudogenes, and
circular RNAs (circRNAs) (Hangauer et al., 2013; Abdollahzadeh
et al., 2019). These noncoding RNAs did not draw attention until
in the recent years, and our understanding of their function is
still in infancy and requires more research. In 2011, Salmena
et al. (2011) proposed that mRNAs, lnRNAs, and transcribed
pseudogenes regulate each other via acting as competing
endogenous RNAs (ceRNAs) to compete for binding of shared
miRNAs. This milestone conception of ceRNA implies that all
of the above-mentioned types of RNA transcripts, even protein-
coding mRNAs themselves, can perform post-transcriptional
regulation and constitute ceRNA regulatory networks (ceRNETs),
which may profoundly affect the expression of cancer driver
genes and promote tumorigenesis.

Examples of ceRNA crosstalk have been described in the
latest research on glioma. Indeed the dysregulation of ceRNETs
between different kinds of RNAs contributes to the establishment
of the hallmarks of different subtypes of gliomas, suggesting
the important roles of ceRNETs in the development of gliomas.
Therefore, understanding this novel language of RNA crosstalk
will give a new insight into gene regulatory networks, open a new
window to better understand the hidden and complex aspects
of gliomas, and provide a new way to find specific biomarkers
and potential efficient therapeutic targets for the diagnosis and
treatment of gliomas. In this review, we first introduce the pieces
of knowledge of ceRNA hypothesis, particularly highlighting
their building blocks including miRNAs, mRNAs, lncRNAs,
circRNAs, and transcribed pseudogenes as well as the logic for
effective ceRNA crosstalk. Then, we specifically discuss the latest
discoveries of distinct ceRNETs in glioma research.

PARTICIPANTS AND LOGIC OF ceRNA
HYPOTHESIS

miRNAs
miRNAs are small single-stranded RNAs (approximately 22
nucleotides) that play key roles in ceRNA crosstalk. They

bind to miRNA response elements (MREs) on target RNAs
through sequence complementarity, which reduces the stability
of targets or restricts their translation. MREs can be found in 5’
untranslated regions (5’ UTRs), coding sequences, and especially
3’ untranslated regions (3’ UTRs) of various types of RNA
transcripts, such as mRNAs, lncRNAs, transcribed pseudogenes,
and circRNAs. Most miRNAs pair imperfectly with their targets,
and pairing between miRNA (two to eight nucleotides, especially
six or seven nucleotides from the 5’ end of miRNA) and 3’
UTR of target mRNA is often crucial. Each miRNA can regulate
up to thousands of target RNAs, and miRNAs can act in a
combinatorial manner if a target RNA has multiple different
MREs. miRNA-mediated regulation is estimated to affect a large
proportion of human transcriptome, which makes miRNA an
important modulator in numerous diseases, including various
types of cancers.

The above-mentioned miRNA→ RNAs regulation model has
been updated by introducing the concept of ceRNAs. As shown
in Figure 1, RNA transcripts that share the same MREs can
regulate each other’s expression by competing for the same pool
of miRNAs and thus modulating the availability of miRNAs.
A new miRNA-mediated regulation model is RNAs↔ miRNAs
↔ RNAs based on the concept of ceRNA. This means that
miRNAs no longer act only as active regulators but that they are
also passively regulated by their target RNAs. In addition, even
a few miRNAs and related target RNAs can generate a complex
ceRNET. Studying the larger interconnected ceRNET, rather than
isolated ceRNA pair interactions, may generate deeper insight
into ceRNA-mediated gene regulation in a setting that is closer
to physiological conditions.

mRNAs, lncRNAs, circRNAs, and
Transcribed Pseudogenes
The central dogma of molecular biology is that information on
the DNA is transcribed into mRNAs that, in turn, are used
as templates for protein synthesis. There are approximately
20,000 protein-coding genes in the human genome (Baltimore,
2001). Many of them, including cancer driver genes, harbor
MREs, making their expression profoundly affected by the
cognate miRNAs (Friedman et al., 2009). The finding of ceRNA
implies that mRNAs possess a regulatory function independent
of protein coding function. As a result, the ceRNA activity of
mRNAs may confer them independent and even opposite roles
to their encoded protein in a process such as tumorigenesis
(Salmena et al., 2011). In this scenario, gross genomic losses
or amplifications that commonly happened in cancers could
potentially affect the function of ceRNAs in these regions and
interrupt the related ceRNET. In addition, gene loss events
should be distinguished with point mutations, as the former
lose both protein-coding sequence and MREs, while the latter
lose protein function but retain ceRNA function. The potential
role of mRNA-mediated ceRNET has been confirmed in glioma
(Sumazin et al., 2011).

lncRNAs are a large variety of RNA transcripts longer than
200 nucleotides without protein-coding capacity but with a
similar structure to mRNAs since they typically have a 5’
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FIGURE 1 | Established driver genes of gliomagenesis constitute a complex ceRNET; especially the ceRNAs for PTEN are shown (Sumazin et al., 2011). Through
shared miRNA, the six cancer driver genes including PTEN, RB1, STAT3, PDGFRA, RUNX1, and VEGFA regulate each other. At the same time, other genes
constitute a subnetwork and interact with PTEN. The dotted arrows represent activation, and the lines with blunt ends indicate inhibition.

m7G cap and 3’ poly (A) tail (Ulitsky and Bartel, 2013). The
expression of lncRNAs is more tissue specific and dynamic,
suggesting that they have distinct biological roles (Deveson
et al., 2017). Dysregulation of cancer-related lncRNAs plays
important roles in tumorigenesis, and an increasing amount
of lncRNAs has been linked to gliomagenesis (Kiang et al.,
2015; Peng et al., 2018; Rynkeviciene et al., 2019). lncRNAs
perform their regulatory function through interacting with DNA,
mRNAs, other non-coding RNAs, and proteins, covering almost
all aspects of gene expression regulation including chromatin
modification, transcription, post-transcription, and translation
(Wang and Chang, 2011). Functionally, lncRNAs can act as
signals, decoys, guides, scaffolds, and sponges. Particularly, the
miRNA sponging function of lncRNAs that inhibits miRNAs
makes lncRNA an important active player in the ceRNET
(Xia et al., 2014; Greco et al., 2019; Wang L. et al., 2019;
Ebrahimpour et al., 2021).

CircRNAs are a class of endogenous non-coding RNA without
a 5’ m7G cap and 3’ poly (A) tail structure and are formed by
the circularization of pre-RNAs via back splicing (Li X. et al.,
2018; Kristensen et al., 2019). They are widely present in a
variety of human cells. Because of lack of exposed 5’ and 3’ ends,
circRNAs are more stable than linear RNAs in terms of resistance
to degradation by exonucleases or RNase R (Suzuki et al., 2006).
Thus, circRNAs are stable in human body fluids, including blood
and saliva, making them suitable biomarkers for diagnosis of
cancer (Bahn et al., 2015; Memczak et al., 2015). CircRNAs
carry out their function through a variety of mechanisms, such
as acting as ceRNAs, interacting with RNA-binding proteins,
alternative splicing, and translation (Li X. et al., 2018; Kristensen
et al., 2019). Due to the high stability of circRNAs, the sponge
effect of circRNAs on miRNAs has been appreciated. Rybak-Wolf
et al. (2015) revealed that circRNAs are highly abundant in the
mammalian brain, dynamically expressed, and conserved among
human, mouse, and Drosophila. Furthermore, Song et al. (2016)

developed a computational tool called UROBORUS to detect
circRNAs in total RNA-seq data and found that more than 476
circRNAs were differentially expressed in control brain tissues
and gliomas. Increasing recent reports have illustrated the crucial
role of dysregulated circRNAs in gliomagenesis, showing great
potential as valuable diagnostic and therapeutic biomarkers (Jin
et al., 2018; Ding et al., 2020; Long et al., 2020).

Pseudogenes are genomic loci similar to the known genes
but lost their protein coding ability as a result of premature
stop codons, deletions, insertions, or frameshift mutations
(D’Errico et al., 2004). Therefore, they were considered as “non-
functional,” “junk,” or “genomic fossils,” until recently their roles
in various biological processes have been illustrated. Genomic
sequencing analyses showed a huge number of pseudogenes
(∼19,000) in humans, and many of them are transcribed
and well-conserved (Pink et al., 2011). The ENCODE project
further revealed that the transcription of some pseudogenes is
tissue specific or constitutive (Pei et al., 2012). Mechanically,
transcribed pseudogenes regulate the expression of target genes
by the generation of endogenous small interference RNAs
(siRNAs) (Watanabe et al., 2008) and antisense transcripts
(Zhou et al., 1992) or acting as ceRNAs (Poliseno et al., 2010).
Since pseudogenes are highly similar to their ancestral protein-
coding genes, they can actively compete for the same pool of
miRNAs through shared MREs (An et al., 2017). Poliseno et al.
(2010) firstly reported that pseudogene PTENP1 derepresses the
expression of tumor-suppressor gene PTEN through competing
for PTEN-targeting miRNAs in prostate cancer cells and colon
carcinoma cells, therefore exerting a tumor-suppressive role.
Furthermore, they extended their analysis to other cancer
driver genes with pseudogenes, such as oncogene KRAS and its
pseudogene KRAS1P. Thereafter, the ceRNA function of more
pseudogenes is revealed in various cancers, including breast
cancer and gliomas (Shi X. et al., 2016; Li et al., 2017b; Wang Y.
et al., 2019).
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Logic for Effective ceRNA Crosstalk
The effectiveness and result of crosstalk between ceRNAs are
regulated by multiple factors, including relative concentration
and subcellular localization of the ceRNAs and miRNAs, number
of shared MREs, and miRNA-ceRNA binding affinity (Salmena
et al., 2011; Sanchez-Mejias and Tay, 2015). Both mathematical
models and experimental models support that ceRNA crosstalk
conform to a titration mechanism that is sensitive to the
relative abundance of miRNA/target RNAs and often exhibit a
threshold-like manner (Buchler and Louis, 2008). Alterations
of the ceRNA levels should be large enough to overcome or
relieve suppression on competing ceRNAs by the miRNAs.
Similarly, absent expression or overexpression of shared miRNAs
will abolish ceRNA competition. When the levels of miRNA
and ceRNAs are near equimolar, optimal ceRNA crosstalk is
expected to happen, in which one ceRNA has the biggest effect
on its ceRNA partners (Mullokandov et al., 2012; Bosia et al.,
2013). Subcellular localization influences ceRNA’s accessibility
to miRNAs. Not all miRNAs are present everywhere and at all
times, and many RNA-binding proteins can profoundly affect the
localization or compartmentation of RNA transcripts through
mechanisms including phase separation (Venables et al., 2009;
Fox et al., 2018; Ries et al., 2019). The number of shared miRNAs
among ceRNAs is important for effective ceRNA crosstalk;
the more shared, the deeper the communication (Ala et al.,
2013; Figliuzzi et al., 2013). MREs on ceRNAs are not equal.
Although two MREs can bind the same miRNA, their partially
different nucleotide composition contributes to the distinct
binding affinity between miRNAs and ceRNAs (Salmena et al.,
2011). The nonreciprocal competing effect between partially and
perfectly complementary ceRNAs was predicted computationally
and validated experimentally in cultured human cells using
synthetic gene circuits (Yuan et al., 2015). Collectively, the above-
mentioned factors should be considered when studying ceRNAs
and especially assigning their contribution to specific human
diseases, which may facilitate the translation of research results
to clinical application.

EXTENSIVE mRNA CROSSTALK IN
GLIOMA THROUGH ceRNA MECHANISM

Sumazin et al. (2011) presented a pioneer and comprehensive
study of mRNA–mRNA crosstalk through shared miRNAs
in GBM. Using computational tools, an extensive ceRNET,
consisting of about 7,000 genes and more than 248,000
miRNAs, is constructed. Further biochemical assays in cell
lines confirmed that established drivers of tumor initiation and
subtype implementation are indeed regulated by this ceRNET,
including PTEN, RB1, STAT3, PDGFRA, RUNX1, and VEGFA
(Figure 1). Specifically, they focused on 13 genes, including
ABHD13, CCDC6, CTBP2, NRAS, and RB1, and confirmed that
these genes can act through ceRNA mechanism to regulate the
expression of PTEN and vice versa (Figure 1). The overexpression
of PETN 3’ UTR increases the expression of 13 ceRNAs, elevates
PTEN protein level, and decreases the growth rates of glioma
cells, while knockdown of each of the 13 genes can reduce

PTEN 3’ UTR luciferase expression and significantly promote
glioma cell growth. The silencing effect mediated by the ceRNA
mechanism is comparable to that of siRNA-mediated PTEN
silencing. Moreover, PTEN composes a subnetwork with the
known drivers of glioma tumorigenesis and GBM subtypes,
i.e., RB1, STAT3, PDGFRA, RUNX1, and VEGFA. The ectopic
expression of the 3’ UTRs of genes in this subnetwork can
upregulate the expression of the other genes. Therefore, the
ceRNA mechanism provides a way for these cancer drivers to be
coordinately expressed through a shared miRNA pool, which is
implicated in high-grade gliomagenesis (Chow et al., 2011).

EXAMPLES OF lncRNA–miRNA–mRNA
ceRNETs IN GLIOMA

The ceRNET concept is one of the hot research topics in recent
years, and reports of lncRNA- or circRNA-mediated ceRNETs
in glioma research are increasing fast using computational or
experimental methods (Wu and Qian, 2019; Zhu et al., 2020c).
For example, Zhu et al. (2020c) constructed a comprehensive
lncRNA–miRNA–mRNA ceRNET consisting of 61 lncRNAs, 12
miRNAs, and 92 mRNAs through a computational method. Here
we will discuss and highlight several lately discovered ceRNETs
in the following sections. More ceRNETs are summarized in
Figures 2, 3 and Tables 1, 2.

lncRNA XIST/Multiple miRNAs/Multiple
mRNAs
lncRNA X-inactive specific transcript (XIST), located on
chromosome Xq13.2, is frequently diagnosed in various cancers,
including gastric cancer, lung cancer, and glioma (Wang Y.P.
et al., 2020). Acting as a ceRNA, at least five miRNAs
(e.g., miR-133a, miR-126, miR-137, miR-204-5p, and miR-
329-3p) have been identified in the XIST-mediated ceRNETs
that affect multiple hallmarks of glioma progression, including
proliferation, apoptosis, migration, EMT, and angiogenesis
(Figure 2 and Table 1).

Wang et al. (2017) reported that XIST promotes gliomagenesis
through the XIST/miR-137/Rac1 regulatory axis. Specifically,
the expression of XIST and miR-137 is significantly up- and
down-regulated in glioma tissues, respectively. Overexpression
of XIST promotes the proliferation of glioma cells, which can
be reversed by miR-137 overexpression (Wang et al., 2017).
Ract1 (Ras-related C3 botulinum toxin substrate1) is a member
of the Rho family that belongs to the Ras superfamily of
GTPases (Coso et al., 1995). It plays a crucial role in the
regulation of proliferation, differentiation, and apoptosis of
tumor cells and is abnormally expressed in several cancer types,
including non-small cell lung cancer (Zhou et al., 2016), breast
cancer (Algayadh et al., 2016), and sarcoma (Manara et al.,
2016). Interestingly, through sponging miR-137, XIST regulates
glioma angiogenesis by regulating FOXC1 (forkhead box C1)
expression (Yu et al., 2017). Yu et al. (2017) found that XIST is
upregulated in endothelial cells in a blood–tumor–barrier model
in vitro. FOXC is a transcription factor of the forkhead box
family, and it promotes glioma angiogenesis by activating the
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FIGURE 2 | Representative lncRNA-mediated ceRNETs in gliomas.

FIGURE 3 | Representative circRNA-mediated ceRNETs in gliomas.

expression of CXCR7 [chemokine (C–X–C motif) receptor 7b]
(Yu et al., 2017).

In 2020, four groups reported novel XIST-mediated ceRNETs
that promote glioma progression, i.e., XIST/miR-133a/SOX4
(Luo et al., 2020), XIST/miR-126/IRS1 (Cheng et al., 2020),

XIST/miR-204-5p/Bcl-2 (Shen et al., 2020), and XIST/miR-329-
3p/CREB1 (Wang Y.P. et al., 2020). Luo et al. (2020) reported
that XIST/miR-133a/SOX4 ceRNET regulates the proliferation,
invasion, and EMT of glioma. Sox4 is a member of the Sox (SRY-
related HMG-box) family of transcription factors and is involved
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TABLE 1 | Representative lncRNA-mediated ceRNETs in glioma.

lncRNA Competitor
(mRNA)

Shared miRNA(s) ceRNA role Related glioma hallmark References

BCYRN1 CUEDC2 miR-619-5p Tumor suppressive Proliferation and migration Mu et al., 2020

TAZ miR-125a-5p Oncogenic Proliferation, migration, and invasion Yu et al., 2020

CCAT2 VEGFA miR-424 Oncogenic Proliferation, apoptosis, and angiogenesis Sun S.L. et al., 2020

SNHG16 EGFR miR-373-3p Oncogenic Proliferation, migration, and invasion Zhou X.Y. et al., 2020

DGCR5 Smad7 miR-21 Tumor suppressive Proliferation, migration, invasion, and apoptosis He et al., 2020

PTEN miR-23a

NNT-AS1 PRMT1 miR-494-3p Oncogenic Cell viability, proliferation, migration, and invasion Zheng et al., 2020

GAS5-AS1 TUSC2 miR-106b-5p Tumor suppressive Proliferation, migration, and invasion Huang et al., 2020

LINC01116 VEGFA miR-31-5p Oncogenic Proliferation, migration, invasion, and angiogenesis Ye et al., 2020

MALAT1 Rap1B miR-101 Oncogenic Proliferation and apoptosis Li et al., 2017c

LINC00152 AKT2 miR-612 Oncogenic Proliferation, migration, invasion, and colony formation Cai et al., 2018

BMI1 miR-16 Proliferation, migration, and invasion Chen et al., 2018

DANCR RAB1A miR-634 Oncogenic Proliferation and colony formation Xu D. et al., 2018

DLEU1 MEF2D miR-421 Oncogenic Proliferation, migration, invasion, and apoptosis Feng et al., 2019

LOC730100 FOXA1 miR-760 Oncogenic Proliferation, migration, invasion, and apoptosis Li Q. et al., 2019

XIST SOX4 miR-133a Oncogenic Proliferation, invasion, and EMT Luo et al., 2020

IRS1 miR-126 Cell viability, migration, invasion, and apoptosis Cheng et al., 2020

Rac1 miR-137 Proliferation Wang et al., 2017

FOXC1 Angiogenesis Yu et al., 2017

Bcl-2 miR-204-5p Proliferation, migration, invasion, and apoptosis Shen et al., 2020

CREB1 miR-329-3p Proliferation, invasion, apoptosis, and radiosensitivity Wang Y.P. et al., 2020

CASC2 PTEN miR-181a Tumor suppressive Proliferation and chemoresistance Liao et al., 2017

CCAT1 FGFR3 and
PDGFRα

miR-181b Oncogenic Proliferation, migration, EMT, and apoptosis Cui et al., 2017

DLEU2 PDK3 miR-186-5p Oncogenic Colony formation, migration, and invasion Xie et al., 2019

PSMB8-AS1 DDIT4 miR-22-3p Oncogenic Proliferation, apoptosis, and radiosensitivity Hu et al., 2020

MATN1−AS1 CHD1 miR-200b, miR-200c,
and miR-429

Oncogenic Proliferation and apoptosis Zhu et al., 2020b

NEAT1 DNMT1 and mTOR miR-185-5p Oncogenic Proliferation, migration, EMT, and apoptosis Zhu et al., 2020b

in cell differentiation and proliferation (Tiwari et al., 2013).
Cheng et al. (2020) reported that XIST/miR-126/IRS1 ceRNET
regulates cell viability, migration, invasion, glucose metabolism,
and resistance to apoptosis in glioma cells. IRS1 (insulin receptor
substrate 1) is a key target of the insulin receptor tyrosine
kinase involved in hormonal control of metabolism (Shah et al.,
2004). Furthermore, Cheng et al. (2020) demonstrated that
IRS1 promotes glioma progression by activating the PI3K/AKT
pathway. Shen et al. (2020) reported that XIST/miR-204-5p/Bcl-
2 ceRNET regulates the proliferation, migration, invasion, and
apoptosis of glioma cells. XIST can regulate a variety of apoptosis-
related genes, including Bax, caspase 3, caspase 9, and Bcl-2;
however, only Bcl-2 had been shown to be a direct target of
miR-204-5p and was only tested in their study (Shen et al.,
2020). Wang Y.P. et al. (2020) reported that XIST/miR-329-
3p/CREB1 ceRNET regulates proliferation, invasion, apoptosis,
and radiosensitivity in glioma. CREB1 (cAMP response element
binding protein 1) is a member of the leucine zipper with a
basic domain (bZip) family of transcription factors and regulates
responses to a variety of growth factors and stress signals
(Wang et al., 2016). In addition to the above-mentioned studies
with known competing endogenous mRNAs for XIST, XIST
can also sponge other miRNAs to affect glioma progression,

such as miR-152 (Yao et al., 2015), yet the downstream mRNA
targets remain unknown.

Collectively, these results clearly indicate that lncRNA XIST
plays key roles in gliomagenesis by targeting multiple miRNAs
and, in turn, de-represses the expression of multiple cancer driver
genes. Therefore, XIST-mediated ceRNETs could be potential
diagnostic and prognostic biomarkers and therapeutic targets.

lncRNA BCYRN1/miR-619-5p/mRNA
CUEDC2, lncRNA
BCYRN1/miR-125a-5p/TAZ
Mu et al. (2020) identified 183 lncRNAs that were significantly
differentially expressed in the glioma samples of patients
compared with normal control and further investigated the
function of lncRNA BCYRN1 (brain cytoplasmic RNA 1,
also called BC200) which was the most downregulated one.
Functionally, they showed that BCYRN1 overexpression can
repress the proliferation and migration of glioma cells, while its
knockdown has opposite effects. Mechanically, BCYRN1 acts as
a ceRNA to impede gliomagenesis by sponging miR-619-5p to
regulate the expression of CUEDC2 (CUE domain-containing
protein 2) and PTEN/AKT/p21 pathway (Mu et al., 2020).
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TABLE 2 | Representative circRNA-mediated ceRNETs in glioma.

circRNA Competitor
(mRNA)

Shared miRNA(s) ceRNA role Related glioma hallmark References

circPOSTN TPX2 miR-361-5p Oncogenic Proliferation, cell growth, and apoptosis Long et al., 2020

? miR-1205 Cell growth, migration, invasion, and apoptosis Yang Y. et al., 2019

circCPA4 CPA4 miR-let-7 Oncogenic Proliferation and invasion Peng et al., 2019

MEF2D miR-760 Proliferation, migration, invasion, apoptosis, and
radiosensitivity

Zhang Y. et al., 2020

circ_0001946 CDR1 miR-671-5p Tumor suppressive Proliferation, migration, invasion, and apoptosis Li and Diao, 2019

circMMP9 CDK4 and
AURKA

miR-124 Oncogenic Proliferation, migration, and invasion Wang et al., 2018

circASAP1 NRAS miR-502-5p Oncogenic Proliferation, apoptosis, and chemoresistance Wei et al., 2020

circPITX1 IL17RD miR-518a-5p Oncogenic Proliferation, migration, invasion, and apoptosis Zhan et al., 2019

ERBB4 miR-1304 Proliferation, migration, invasion, and apoptosis Chen M. et al., 2020

MAP3K2 miR-379-5p Proliferation and apoptosis Lv et al., 2019

NEK2 miR-329-3p Cell growth, colony formation, and radiosensitivity Guan et al., 2020

circPCMTD1 mTOR miR-224-5p Oncogenic Cell viability, proliferation, migration, and invasion Zheng et al., 2019

circSCAF11 SP1 miR-421 Oncogenic Proliferation and invasion Meng et al., 2019

circEZH2 DDAH1 and
CBX3

miR-1265 Oncogenic Cell growth, migration, invasion, and apoptosis Gao et al., 2020

hsa_circ_0000177 FZD7 miR-638 Oncogenic Proliferation and invasion Chen and Duan, 2018

circITCH ITCH miR-214 Tumor suppressive Proliferation, migration, and invasion Li F. et al., 2018

circNFIX NOTCH1 miR-34a-5p Oncogenic Proliferation, migration, and apoptosis Xu H. et al., 2018

hsa_circ_0007534 ZIC5 miR-761 Oncogenic Proliferation and migration Li G.F. et al., 2018

hsa_circ_0046701 ITGB8 miR-142-3p Oncogenic Proliferation and invasion Li G. et al., 2018

circTTBK2 miR-761 Oncogenic Proliferation, invasion, and ferroptosis Zhang H.Y. et al., 2020

circCFH AKT1 miR-149 Oncogenic Proliferation and colony formation Bian et al., 2018

circHIPK3 IGF2BP3 miR-654 Oncogenic Proliferation and invasion Jin et al., 2018

CCND2 miR-124 Proliferation, migration, and invasion Liu Z. et al., 2020

WEE1 miR-124-3p Proliferation, invasion, and EMT Xia et al., 2020

KIF2A microRNA-524-5p Proliferation, invasion, apoptosis, and chemoresistance Yin and Cui, 2020

circTTBK2 HNF1β miR-217 Oncogenic Proliferation, migration, invasion, and apoptosis Zheng et al., 2017

circSHKBP1 FOXP1 miR-544a Oncogenic Proliferation, migration, and angiogenesis He et al., 2018

FOXP2 miR-379

hsa_circ_0088732 RAB3D miR-661 Oncogenic Migration, invasion, EMT, and apoptosis Jin et al., 2020

circPTN SOX6 miR-122 Oncogenic Proliferation and apoptosis Chen C. et al., 2020

circHECTD1 SLC10A7 miR-296-3p Oncogenic Proliferation and invasion Li et al., 2021

circSFMBT2 MTSS1 miR-182-5p Tumor suppressive Proliferation, migration, and invasion Zhang S. et al., 2020

circFANCL HMGB1 miR-337-3p Oncogenic Proliferation and apoptosis Tao et al., 2020

has_circ_0012129 TGIF2 miR-761 Oncogenic Cell viability, proliferation, colony formation, migration,
invasion, and apoptosis

Xu et al., 2020

circ_0079593 KPNA2 miR-499a-5p Oncogenic Proliferation, migration, and apoptosis Yang et al., 2020

circ_0000215 CXCR2 miR-495-3p Oncogenic Proliferation, invasion, EMT, and apoptosis Mutalifu et al., 2020

circABCB10 FABP5 miR-620 Oncogenic Proliferation, migration, invasion, and apoptosis Sun W.Y. et al., 2020

hsa_circ_0076248 SIRT1 miR-181a Oncogenic Proliferation, invasion, and chemoresistance Lei and Huang, 2019

circ_0034642 BATF3 miR-1205 Oncogenic Proliferation, migratory, invasion, and apoptosis Yang M. et al., 2019

circU2AF1 NOVA2 miR-7-5p Oncogenic Proliferation migration, invasion, and apoptosis Li G. et al., 2019

circ_002136 SOX13 miR-138-5p Oncogenic Migration, invasion, and angiogenesis He Z. et al., 2019

circDICER1 ZIC4 miR-103a-3p and
miR-382-5p

Oncogenic Proliferation, migration, and angiogenesis He Q. et al., 2019

hsa_circ_0074362 HOXB7 miR-1236-3p Oncogenic Proliferation, migration, and invasion Duan et al., 2018

circELF2 MUC15 miR-510-5p Oncogenic Cell growth, migration, invasion, and apoptosis Zhang and Xu, 2020

hsa_circ_0000337 MAT2A miRNA-942-5p Oncogenic Proliferation, migration, and invasion Liu N.Z. et al., 2020

circ_0079586 MDM4 miR-183-5p Oncogenic Cell growth, migration, invasion, and apoptosis Chen J. et al., 2020

circENTPD7 ROS1 miR-101-3p Oncogenic Proliferation, migration, and invasion Zhu et al., 2020a

circEPHB4 SOX10 miR-637 Oncogenic Stemness, proliferation, and glycolysis Jin et al., 2021

circTOP2A SUSD2 miR-346 Oncogenic Cell viability, migration, invasion, and apoptosis Sang et al., 2021

circ_101064 PIWIL1 miR-154-5p Oncogenic Proliferation, invasion, and migration Zhou H. et al., 2020

circ_0000020 PIK3CA miR-142-5p Oncogenic Proliferation, migration, and invasion Wang and Zhu, 2021

?Undefined.
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CUEDC2 is an adapter protein with a CUE domain that is
involved in regulating protein stability via ubiquitination of
specific substrates (Shih et al., 2003). The PTEN/AKT/p21
pathway acts on downstream targets of CUEDC2 to mediate the
anti-tumor effect of BCYRN1 (Mu et al., 2020).

In contrast, Liu et al. (2015) showed that BCYRN1 is
significantly downregulated during genotoxic stress-induced
necrosis in human glioma cell lines, implying an oncogenic
function of lncRNA. In 2020, the same group reported that
BCYRN1 functions as an oncogene and promotes proliferation,
invasion, and migration (Yu et al., 2020). Mechanically, BCYRN1
sponges endogenous tumor suppressor miR-125a-5p to de-
depress the expression of TAZ (transcriptional coactivator
with PDZ-binding motif). TAZ has been shown to regulate
mesenchymal differentiation in GBM, i.e., TAZ is required for
self-renewal, invasion, and tumor formation of mesenchymal
glioma stem cells (Bhat et al., 2011). Future studies could
reconcile the difference between these studies and shed
light on the exact role of BCYRN1-mediated ceRNETs in
glioma progression.

EXAMPLES OF circRNA–miRNA–mRNA
ceRNETs IN GLIOMA

CircPOSTN/miR-361-5p/mRNA TPX2
Long et al. (2020) demonstrated in glioma cells that circPOSTN
(has_circ_0030018), as a ceRNA, is involved in the stimulation
of cell growth and aerobic glycolysis and inhibition of apoptosis
by upregulating the mRNA TPX2 (targeting protein for
Xenopus kinesin-like protein 2) through sponging miR-361-5p
(Figure 3 and Table 2). CircPOSTN (has_circ_0030018), located
at chr13:38136718–38161065 (2,656 nucleotides), was screened
by high-throughput circRNA microarray to be upregulated in
glioma tissues compared with normal tissues. A high level of
circPOSTN was significantly associated with larger tumor size,
higher WHO grades, and shorter overall survival (Yang Y. et al.,
2019). In the study of Long et al. (2020), the effect of circPOSTN
on apoptosis, proliferation, and aerobic glycolysis is mitigated
by silencing miR-361-5p. miR-361-5p is a tumor suppressor in
multiple types of cancers, including prostate cancer (Liu et al.,
2014), cutaneous squamous cell carcinoma (Kanitz et al., 2012),
hepatocellular carcinoma (Sun et al., 2016a), non-small cell
lung cancer (Chen et al., 2016), and breast cancer (Cao et al.,
2016). Zhang et al. (2017) reported that miR-361-5p inhibits
the migration, invasion, and epithelial–mesenchymal transition
of glioma cells via regulating the Twist1/Bmi-1 signaling axis.
Whether Twist1 is targeted by circPOSTN remains unknown,
while Long et al. (2020) found that TPX2 acts as a downstream
target of miR-361-5p/circPOSTN in glioma cells. Depletion of
circPOSTN or TPX2 significantly suppresses cell proliferation
and aerobic glycolysis while promoting the apoptosis of glioma
cells (Long et al., 2020). TPX2 is a cell cycle-regulated nuclear
protein that functions in proliferation and mitotic spindle
assembly (Heidebrecht et al., 1997; Kufer et al., 2002). As an
oncogene, TPX2 is involved in multiple cancers, including gastric
cancer (Tomii et al., 2017), colon cancer (Wei et al., 2013), lung

squamous cell carcinoma (Ma et al., 2006), pancreatic cancer
(Ludwig et al., 2017), and prostate cancer (Zou et al., 2018).
In glioma cells, TPX2 promotes cell proliferation and invasion
by activating the AKT signaling pathway (Gu et al., 2016). On
the other hand, Yang Y. et al. (2019) showed that CircPOSTN
promotes cell growth and invasion by sponging miR-1205, yet
the targets of miR-1205 have not been explored. Therefore,
these results illustrate that CircPOSTN play a crucial role in
the progression and invasion of gliomas as a miRNA sponger
and may be a useful new prognostic biomarker and therapeutic
target for gliomas.

circCPA4/miR-let-7/mRNA CPA4,
circCPA4/miR-760/mRNA MEF2D
Hsa_circ_0082374 was screened by Peng et al. (2019) in a
circRNA microarray analysis of glioma and matched normal
brain tissues as the most up-regulated one among the top 20
up-regulated circRNAs. It locates at chr7:129948146–129964020
and is named circCPA4 as it was assumed to be derived from
carboxypeptidaseA4 (CPA4) according to the human reference
genome (GRCh47/hg19). A high level of circCPA4 correlates
with a poor prognosis of glioma, and the knockdown of it
impedes cell proliferation and invasion in glioma. Mechanically,
circCPA4 acts as a ceRNA and sponges miR-let-7 to derepress
the expression of CPA4 (Peng et al., 2019). CPA4 is a member of
the metallocarboxypeptidase family and may be involved in the
regulation of peptide hormone activity and hormone-regulated
cell proliferation and differentiation (Huang et al., 1999; Tanco
et al., 2010). The expression of CPA4 is elevated in multiple types
of cancer tissues of patients, such as gastric cancer (Sun et al.,
2016b), pancreatic cancer (Sun et al., 2015), breast cancer (Handa
et al., 2019), lung cancer (Sun et al., 2016c), and esophageal
squamous cell carcinoma (Sun L. et al., 2017), and can be used
as a potential diagnostic and prognostic biomarker as well as a
therapeutic target.

Zhang Y. et al. (2020) further explored the circCPA4 function
in glioma cells and found that suppression of the circRNA
inhibits tumor cell proliferation, migration, and invasion while
promoting cell apoptosis and radiosensitivity in vitro and
repressing tumor growth in vivo. They pointed out that a higher
expression of circCPA4 is positively correlated with tumor size,
WHO grade, and poor prognosis in patients. Differently from
Peng et al. (2019) in the mechanism, Zhang Y. et al. (2020)
revealed that circCPA4 sponges MEF2D (myocyte enhancer
factor 2D)-targeting miR-760 to promote glioma progress.
Knockdown of miR-760 can reverse the antitumor effects
mediated by the suppression of circCPA4. MiR-760 is a well-
identified tumor-suppressive miRNA that functions in many
types of cancers, including hepatocellular carcinoma (Tian et al.,
2018), breast cancer (Han et al., 2016), and non-small cell lung
cancer (Zhu et al., 2019), via regulating the malignant properties
of tumor, such as cell proliferation, apoptosis, migration, and
drug resistance. Then, Zhang Y. et al. (2020) confirmed that
MEF2D is targeted by miR-760 glioma cells. MEF2D is a
transcription factor of the myocyte-specific enhancer factor 2
(MEF2) family involved in the regulation of the differentiation
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and development of muscle and neuronal cells (McKinsey et al.,
2002). Interestingly, miR-760 and MEF2D are also involved in
lncRNA LOC730100- and lncRNA DLEU1-mediated ceRNETs
in glioma cells, respectively (Feng et al., 2019; Li Q. et al.,
2019), implying the potential crosstalk between the circCPA4
and the lncRNAs. These results indicate the importance and
complexity of circCPA4-mediated ceRNETs in gliomagenesis,
providing potential biomarkers and targets for glioma treatment.

circ_0001946/miR-671-5p/mRNA CDR1
Circular RNA circ_0001946 (also known as CDR1as and CiRS-
7) that derives from chrX:139865339–139866824 is involved in
the progression of multiple cancer types, such as esophageal
squamous cell cancer (Fan et al., 2019), colorectal cancer (Deng
et al., 2020), lung adenocarcinoma (Yao et al., 2019), and
glioblastoma (GBM) (Li and Diao, 2019). Li and Diao (2019)
revealed that circ_0001946 suppresses GBM progression by
activating the expression of CDR1 through sponging miR-671-
5p. Circ_0001946 and its competing mRNA CDR1 can inhibit
the proliferation, migration, and invasion and promote the
apoptosis of GBM cells, while miR-671-5p has the opposite effect.
Microarray analyses showed that circ_0001946 and CDR1 were
down-regulated in GBM, while miR-671-5 was up-regulated.
The genomic region containing miR-671-5p gene is frequently
amplified in GBM (Barbagallo et al., 2016), and its regulatory role
on circ_0001946 and CDR1 expression was proven by Hansen
et al. (2011) earlier using HEK293 cells derived from human
embryonic kidney cells. CDR1 (cerebellar degeneration-related
autoantigen 1) is encoded by the CDR34 gene and is required
for neuronal–glial functions. Inhibition of CDR1 expression
leads to the loss of differentiation of neural cells and neoplastic
transformation (Chen et al., 1990; Satoh and Yamamura, 2004).
These results suggest that stimulating the circ_0001946/miR-
671-5p/CDR1 axis may be a potential therapeutic strategy
for GBM treatment.

circMMP9/miR-124/mRNAs CDK4 and
AURKA
CircMMP9 (hsa_circ_0001162) was screened as the circRNA
with the greatest differential expression in the GBM tissues
compared with the adjacent normal brain tissues in a microarray
analysis performed by Wang et al. (2018). It is derived from
exons 12 and 13 of MMP9 (matrix metalloproteinase-9), with 328
nucleotides in length. Overexpression of circMMP9 promotes
the proliferation, migration, and invasion of GBM cells through
sponging miR-124 (Wang et al., 2018). Thereafter, the oncogenic
effect of circMMP9 was demonstrated in osteosarcoma (Pan
et al., 2019) and oral squamous cell carcinoma (Xia et al.,
2019). Cyclin-dependent kinase 4 (CDK4) and aurora kinase A
(AURKA) are two downstream targets of miR-124/circMMP9
in GBM cells (Wang et al., 2018). Furthermore, Wang et al.
(2018) found that eukaryotic initiation factor 4A3 (EIF4A3)
binds to the MMP9 mRNA transcript to induce circMMP9
cyclization, which improves the circMMP9 level in GBM. EIF4A3
is a component of the exon junction complex involved in exon
splicing (Chan et al., 2004). The expression of EIF4A3 shows

prognostic significance in Chinese Glioma Genome Atlas but
not The Cancer Genome Atlas (TCGA) database, which may be
caused by the difference in sample size and ethnicity between the
two data sets (Wei et al., 2020).

circPITX1/Multiple miRNAs/Multiple
mRNAs
circPITX1 (hsa-circ-0074026) is another circRNA found to be
up-regulated in GBM tissues compared with the noncancerous
controls in the microarray analysis performed by Wang et al.
(2018). It locates in chr5:134363423–134365011, with 2,383 bp
in length. Recently, four groups reported different circPITX1-
mediated ceRNETs in glioma cells, i.e., circPITX1/miR-518a-
5p/IL17RD (Zhan et al., 2019), circPITX1/miR-1304/ERBB4
(Chen M. et al., 2020), circPITX1/miR-379-5p/mitogen-activated
protein kinase 2 (MAP3K2) (Lv et al., 2019), and circPITX1/miR-
329-3p/NIMA-related kinase 2 (NEK2) (Guan et al., 2020).

Zhan et al. (2019) further confirmed that circPITX1 is
upregulated in cancerous tissues of 52 patients and four glioma
cell lines, which is correlated with the patient’s tumor size
and WHO grade. Through gain- and loss-of-function assays,
they demonstrated that circPITX1 can promote the growth,
migration, invasion, and survival of glioma cells. Mechanically,
Zhan et al. (2019) proposed that circPITX1 promotes IL17RD
(interleukin 17 receptor D) expression by sponging miR-518a-
5p. miR-518a-5p also plays a tumor-suppressive role in colorectal
cancer (Rubie et al., 2014), diffuse large B cell lymphoma (Huang
et al., 2021), and gastrointestinal stromal tumor (Shi Y. et al.,
2016) but an oncogenic role in ovarian cancer (Zhang N. et al.,
2020). IL17RD can interact with the IL-17 receptor and mediates
IL-17 signaling (Rong et al., 2009). The oncogenic role of IL17RD
has been shown in colon cancer (Pekow et al., 2017) and
colorectal cancer (Yu et al., 2019).

Similar to the study of Zhan et al. (2019); Chen M. et al.
(2020) observed a clinical significance of circPITX1 in larger
tumor size and higher WHO grade of patients and an inhibitory
effect of circPITX1 knockdown on the proliferation, migration,
invasion, and survival of glioma cells. Mechanically, they
proposed that circPITX1 regulates ERBB4 expression to promote
glioma progression by sponging miR-1304. ERBB4 (HER4)
belongs to the epidermal growth factor (EGF)/ERBB family of
receptor tyrosine kinases, which also includes the EGF receptor
(EGFR/HER1/ERBB1), ERBB2 (HER2/Neu), and ERBB3 (HER3)
(Qiu et al., 2008). The abnormal expression of each ERBB is
associated with many human cancers (Hynes and Lane, 2005).

Lv et al. (2019) performed circPITX1 knockdown experiments
and observed reduced proliferation and increased apoptosis
of GBM cells. Mechanically, they proposed that circPITX1
promotes GBM progression by sponging miR-379-5p to increase
the expression of MAP3K2 (Lv et al., 2019). The effects of
circPITX1 knockdown on the proliferation and apoptosis of
GBM cells can be rescued partly by upregulating MAP3K2.
MAP3K2 is a member of the serine/threonine protein kinase
family (Mazur et al., 2014). It preferentially activates other
kinases of the MAP kinase signaling pathway and is frequently
overexpressed in multiple human cancers including non-small
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cell lung cancer (Yu et al., 2015), hepatocellular carcinoma (Shi
et al., 2020), cutaneous melanoma (Chen et al., 2019), and breast
cancer (Wu et al., 2017).

Guan et al. (2020) reported that the down-regulation of
circPITX1 leads to reduced viability, glycolysis, colony formation,
and radioresistance of glioma cells in vitro and suppresses tumor
growth in vivo. Mechanically, Guan et al. (2020) proposed
that circPITX1 promotes NEK2 expression by sponging miR-
329-3p. Depletion of miR-329-3p reverses the inhibitory effects
of circPITX1 knockdown on glycolysis and radioresistance. It
has been shown that miR-329-3p plays a tumor-suppressive
role in multiple cancers, including non-small cell lung cancer,
osteosarcoma, cervical cancer, and hepatocellular carcinoma,
through regulating the proliferation and migration of tumor cells
(Chang et al., 2017). Furthermore, Guan et al. (2020) demonstrate
that NEK2 acts downstream of miR-329-3p/circPITX1 to affect
the glycolysis and radiosensitivity of glioma cells. NEK2 is a
conserved centrosome kinase of the NIMA-related kinase family,
with abnormal expression in a wide variety of human cancers
(Hayward and Fry, 2006). NEK2 is widely upregulated in gliomas
and associated with WHO grades, proliferation, and prognosis in
malignant gliomas (Liu et al., 2017). An earlier study by Ye et al.
(2018) showed that NEK2 is overexpressed in the glioma tissues
and is targeted by miR-128 involved in regulating the apoptosis
of glioma cells.

Collectively, these studies solidly confirmed the crucial
roles of circPITX1-mediated ceRNETs in the regulation of
multiple hallmarks of gliomas, including proliferation, migration,
invasion, apoptosis, and treatment resistance. Considering that
circPITX1 knockdown or overexpression has no side effect on
the cell proliferation and apoptosis of normal human astrocytes
(Chen M. et al., 2020), targeting circPITX1 may be a valuable and
promising strategy for glioma treatment.

PSEUDOGENE-MEDIATED ceRNETs IN
GLIOMA

The finding of pseudogene-mediated ceRNETs laid the
foundation for the establishment of the ceRNA hypothesis
(Poliseno et al., 2010; Salmena et al., 2011), yet the description of
this type of ceRNETs in glioma is less than that of lncRNA- and
circRNA-mediated ceRNETs. PTEN pseudogene-1 (PTENP1),
the pseudogene of PTEN, acts through ceRNA mechanism to
inhibit cancer progression in prostate cancer (Poliseno et al.,
2010) and breast cancer (Gao et al., 2019). Although PTENP1
is also found to be involved in regulating the proliferation and
invasion of glioma cells, whether its anti-tumor effect is mediated
by ceRNA mechanism has not been reported (Hu et al., 2019).

ANXA2P1
Three annexin A2 pseudogenes, including ANXA2P1,
ANXA2P2, and ANXA2P3, are significantly upregulated,
along with their parent gene annexin A2 (ANXA2), which is
correlated with poor survival outcome of glioma patients (Li
et al., 2017b). Whether the co-expression of the pseudogenes
(ANXA2P1, ANXA2P2, and ANXA2P) and parent gene

(ANXA2) is caused by shared miRNA(s) or ceRNET(s) remain
unknown. Yu et al. (2019) identified five pseudogenes correlating
with glioma survival from the TCGA dataset and established a
complex ceRNET consisting of three pseudogenes (ANXA2P2,
EEF1A1P9, and FER1L4), 72 microRNAs, and 322 targeted genes
(Wang Y. et al., 2019). However, the computational ceRNET
and each ceRNA pair need further experimental validation.
Du et al. (2020) reported an experimentally validated ceRNET
involving ANXA2P2, in which ANXA2P2 functions as a ceRNA
to regulate the expression of lactate dehydrogenase A (LDHA) by
sponging miR-9 in GBM (Du et al., 2020). The ANXA2P2/miR-
9/LDHA ceRNET regulates glucose metabolism, proliferation,
and apoptosis of GBM (Du et al., 2020). LDHA catalyzes the final
step of aerobic glycolysis and is abnormally expressed in many
human cancers (Li et al., 2017a).

PDIA3P1
Wang S. et al. (2020) reported a new pseudogene-mediated
ceRNET in glioma, protein disulfide isomerase family A member
3 pseudogene 1 (PDIA3P1)/miR-124-3p/RELA. PDIA3P1 is
a 2,099-bp fragment mapped to chromosome 1q21.1. High
PDIA3P1 expression is correlated with EMT, extracellular matrix
disassembly, and angiogenesis and can promote the migration
and invasion of glioma cells (Wang S. et al., 2020). Mechanically,
PDIA3P1 sponges miR-124-3p to upregulate RELA expression
and, in turn, activates the downstream NF-κB pathway, which
promotes a highly invasive mesenchymal (MES) transition
of glioma cells (Wang S. et al., 2020). RELA (v-rel avian
reticuloendotheliosis viral oncogene homolog A) gene encodes
the major component of the NF-κB complex (Hashimoto
et al., 2011). Intriguingly, hypoxia inducible factor 1 (HIF1)
upregulates the transcription of PDIA3P1 by directly binding
its promoter, linking hypoxia to MES transition (Wang S. et al.,
2020). In addition, the ceRNA function of PDIA3P1 has also
been reported in oral squamous cell carcinoma (Sun C.C. et al.,
2017) as well as its oncogenic effect in hepatocellular carcinoma
(Kong et al., 2017). These results underscore the importance of
PDIA3P1-mediated ceRNET in cancer progression and suggest
it as a promising prognostic biomarker and therapeutic target in
glioma treatment.

CONCLUSION

Despite the improved surgical resection, radiotherapy, and
chemotherapy, the prognosis for patients with high-grade
gliomas is still poor. Understanding the molecular mechanisms
underlying gliomagenesis is urgently needed to “break the ice.”
Formally proposed in 2011 (Salmena et al., 2011), the ceRNA
hypothesis opens up new avenues for basic cancer research,
including glioma (Di Palo et al., 2020; Liu Z. et al., 2020;
Wang S. et al., 2020). Research in the past decade have shed
light on the dysregulated ceRNETs consisting of coding and non-
coding RNAs (miRNAs, lncRNAs, circRNAs, and transcribed
pseudogenes) in gliomas. As we have discussed here, various
hallmarks of gliomas, such as cell proliferation, growth, invasion,
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EMT, apoptosis, angiogenesis, chemo-resistance, and radio-
resistance, are associated with dysregulated ceRNETs. Illustration
of the different nature of the RNA interaction within the ceRNETs
will provide new insights into the initiation and progression
of gliomas and therefore novel biomarkers for the diagnosis,
prognosis, and targets for glioma treatment.
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