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Does temporal irregularity drive prediction failure in
schizophrenia? temporal modelling of ERPs

Maria Karanikolaou

'™ Jakub Limanowski? and Georg Northoff (&?

Schizophrenia subjects often suffer from a failure to properly predict incoming inputs; most notably, some patients exhibit impaired
prediction of the sensory consequences of their own actions. The mechanisms underlying this deficit remain unclear, though. One
possible mechanism could consist in aberrant predictive processing, as schizophrenic patients show relatively less attenuated
neuronal activity to self-produced tones, than healthy controls. Here, we tested the hypothesis that this aberrant predictive
mechanism would manifest itself in the temporal irregularity of neuronal signals. For that purpose, we here introduce an event-
related potential (ERP) study model analysis that consists of an EEG real-time model equation, eeg(t) and a frequency Laplace
transformed Transfer Function (TF) equation, eeg(s). Combining circuit analysis with control and cable theory, we estimate the
temporal model representations of auditory ERPs to reveal neural mechanisms that make predictions about self-generated
sensations. We use data from 49 schizophrenic patients (SZ) and 32 healthy control (HC) subjects in an auditory ‘prediction’
paradigm; i.e., who either pressed a button to deliver a sound tone (epoch a), or just heard the tone without button press (epoch b).
Our results show significantly higher degrees of temporal irregularity or imprecision between different trials of the ERP from the Cz
electrode (N100, P200) in SZ compared to HC (Levene’s test, p < 0.0001) as indexed by altered latency, lower similarity/correlation of
single trial time courses (using dynamic time warping), and longer settling times to reach steady state in the intertrial interval. Using
machine learning, SZ vs HC could be highly accurately classified (92%) based on the temporal parameters of their ERPs’ TF models,
using as features the poles of the TF rational functions. Together, our findings show temporal irregularity or imprecision between
single trials to be abnormally increased in SZ. This may indicate a general impairment of SZ, related to precisely predicting the

sensory consequences of one’s actions.
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INTRODUCTION

The brain is governed by continuously changing dynamics that
has a strong impact on perception, decision-making, cognition
and behavior'2. How such dynamics shape and are manifested in
neural activity remains largely unknown, though; therefore, we
also do not know whether and how they can be linked to
abnormal neuronal processes as observed, for instance, in
schizophrenia. One issue is that methodologically, we tend to
conceive of dynamics as mere noise that needs to be eliminated
from the data. For instance, differences in the timing of different
single event-related trials are often neglected and considered
pure noise that is to be eliminated from the data®. This neglects
that the very same temporal differences between single trials may
contain important information® including temporal precision.
Importantly, temporal precision has been shown to be impaired
on the behavioral level of schizophrenia with its neural correlates
remaining unclear, though®’. Addressing temporal precision on
the neural activity level and how it affects the prediction of
auditory event-related potentials in healthy and schizophrenia
subjects is the main goal of our study.

Prediction is a key of the brain’s neural activity®'°. Neural
response metrics of sensory attenuation may provide us with the
most flexible model basis to connect our dynamic mechanisms
with Laplace transformation and Transfer Function equations to
extract feature information’". In a nutshell, there is a neural signal
related to the prediction of an incoming external stimulus, this is

called the empirical prior or predicted input. The latter is
subsequently compared with the actual input with the degree
of their difference resulting in the prediction error. Subjects
suffering from schizophrenia are well known to suffer from a
prediction failure’>'® as they remain unable to yield a proper
empirical prior or predicted input'* 'S, We here address the
question whether such prediction failure is related to temporal
imprecision between different single trials: if subsequent single
trials are temporally heterogeneous and hence imprecise, it may
be difficult to yield the predicted input or empirical prior at the
“right” point in time relative to the time point of the incoming
actual input. Accordingly, we are interested in probing whether
schizophrenia subjects distort the “normal prediction process”
through temporal imprecision in their neural activity.

How can we detect the temporal basis of prediction failure in
schizophrenia?'”-22 Investigating the effects of predicted input or
empirical prior in EEG is ideally suited to investigate its temporal
precision (or lack thereof); this is the main goal of our study. For
that purpose, we develop a novel Transfer Function model (TF)
that allows us to map the temporal precision or imprecision of
single trials in event-related potentials (ERP) of EEG (See Methods
for details). Combined with a typical auditory ‘prediction’
paradigm (Ford et al., 2014; see Methods), this allows us to
investigate temporal imprecision on a neural level and how it
impacts and shapes prediction:

In this task, Ford et al. (2014)%3 had shown that SZ have reduced
N1 suppression and smaller LRPs preceding button presses to
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Fig. 1 Schizophrenic Patients and Healthy Controls, during Button-press tone (A) and Playback passive tone (B). The descriptives in the
temporal domain are supported by our findings which detect the differences in the temporal domain.

deliver tones, which the authors interpreted as evidence for
abnormal predictive mechanisms. Here, we hypothesize that
schizophrenia subjects exhibit temporal imprecision in their single
trial event-related potentials (ERP) during specifically those
moments in the single trial where prediction is required. More
generally, we suppose that prediction failure in schizophrenia is, at
least in part, related to temporal irregularity or imprecision
between individual trials.

RESULTS

Timing of ERP—temporal irregularity of single trials in SZ

In a first step, we plotted all single trials in both groups (see Fig. 1).
It can be seen that especially in the feedback component (P200),
SZ subjects show higher variability between single trials which,
visually, seems to largely result from different temporal courses
among the different trials—this strongly suggest higher temporal
irreqularity or imprecision from trial to trial in SZ. In our
subsequent analyses, we aim to operationalize and quantify such
temporal imprecision following the measures introduced in the
method. Therefore, we focus on the timing rather than the
amplitude of the typical ERP components like N100 and P200 as
elicited in our paradigm?*?* (see Supplementary material for
epoch-averaged results on amplitude).
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Table 1. Time characteristics (ms) calculated by TF models [mean +
SD].
Epoch SZ patients Controls
N1 latency a 90.4+7.7 91.0+78
b 90.1+75 88.4+3.7
P2 latency a 1654+ 17.5 185.4+20.0
b 158.5+18.1 187.5+22.0

The visual observations of temporal imprecision between single
trials are confirmed in quantitative analysis (Table 1). Our findings
about the timing or latency of Healthy Controls and Schizophrenic
patients show a N100 latency [mean + SD] of HC [90.1 + 6.7 ms] vs
SZ [90.2+7.4 ms], a P200 time of HC [185.8+21.2 ms] vs SZ
[161.4+17.8 ms], where in the P200 latency we obtained a
significant difference between Healthy Controls and Schizophrenic
patients (Levene’s test: p <0.0001), while N100 timing was not
significantly different. This is in accordance with previous findings
showing similar dissociation of N100 and P200 in SZ which
concerned the amplitude, though?5-°, Hence, our observation
extends this N100-P200 dissociation to their timing, with shorter
P200 latency in Schizophrenia®'~=>,
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Fig.2 Dynamic Time Warping (DTW) (left) and Delay (right) results of ERP signals’ alignment. Inter-trial group comparison for HC group of
32, SZ group of 49 during a epoch (Button-press). The color bars show the DTW distance of each signal pair comparison and the color bars of
Delay show the degree of timing correlation of each signal pair. We observe significantly higher DTW distance values in SZ (p = 0.005) and also
higher Delay in SZ (p <0.0001). DTW sz =677.1 (Cl =652.0, 702.1, p = 0.005). DTW yc = 600.7 (Cl =567.3, 634.1, p = 0.005). Delay yc =74 ms

(CI =65, 84, p<0.0001). Delay sz=119ms (Cl=112, 126, p <0.0001).

More specifically, comparing epochs a and b, i.e., Button-press
Tone vs Playback Tone, we again obtained significant difference in
the timing of P200: epoch a showed a P200 time of HC [185.4 +
20.03 ms] vs SZ [165.4 + 17.5 ms]. While for epoch b, we obtained
a P200 time of HC [187.5 £22.03 ms] vs SZ [158.5 + 18.15 ms]. In
contrast to P200, N100 latency was not significantly different,
either when comparing a and b epochs, or when comparing HC vs
SZ groups. These differences of the timing or latency strongly
suggest larger temporal imprecision between single trials in the
P200 of schizophrenia.

Probing temporal irregularity—temporal course of different
trials

HC showed significantly higher correlation (DTW) in the time
courses among their single trials when compared to SZ. Figures 2
and 3 present the DTW and delay results show differences (along
with the 95% Confidence Intervals and p values) between HC and
SZ, with the latter presenting greater DTW distance, thus indexing
lower degrees of temporal similarity between their ERP signals.
Spatial metrics indeed capture the temporal discontinuity in the
SZ graphs, as we can see from the most close-to-zero values on
the right graph of Healthy Controls and the less dense contour on
the left graph. Together, these results further confirm that the
time courses of the single trials and their delays were more
different among each other in SZ than in HC—SZ are more

Published in partnership with the Schizophrenia International Research Society

temporally irregular or imprecise in the time courses and the
delays of their single trials than HC.

At first, we aimed to study the Inter-Trial Coherence (see
Supplementary Material for ITC EEGLAB results), where we noticed
a lower temporal similarity among SZ group successive trials in
low gamma frequencies compared to HC subjects®6-3°, Thus, we
used DTW metrics to further demonstrate the similarity between
the signal sequences.

DTW performs latency contrasts by a stretching algorithm that
gives us the time-domain distance distortion path needed to align
the signals in terms of phase and speed. While DTW finds the
matching relationship between every subject’s ERP with one
another (group inter-trial greater similarity means minimum DTW
distance), the finddelay function reveals again the best temporal
alignment within the HC and SZ groups trials, where it simply
measures the temporal correlation in the samples series signal of
the group combinations. In the Figs. 2, 3 below we present the
visualization of the DTW and delay matrices of the two groups.

Is temporal imprecision between trials related to their relation-
ship, that is, the temporal carry-over of the previous trial to the
subsequent one? In that case, one would expect that the time
between the trials, i.e., the inter-trial interval is affected as it is key
in mediating the temporal relationship from one trial to the one—
this has also been designated as stimulus-rest interaction*®. For
that, we simply calculated in MATLAB the “Isiminfo” of our TF
models to get what we describe as “settling time”, that is, the time
neural activity needs to settle into a steady state in the intertrial

Schizophrenia (2022) 23
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Fig.3 Dynamic Time Warping (DTW) (left) and Delay (right) results of ERP signals’ alignment. Inter-trial group comparison for HC group of
32, SZ group of 49, during b epoch (Playback Tone). We again observe significantly higher DTW distance values in SZ (p < 0.0001) and also

higher Delay in SZ (p = 0.046). DTW sz =528.2 (Cl =
(C1=57.5, 76.9, p=0.046). Delay s; =78 ms (Cl =

interval following the exposure to the stimulus (see Methods for
details and Fig. 4).

Settling times exhibited a significant difference among HC and
SZ [mean+SD], with p<0.0001 through a Levene's t-test.
Specifically, HC showed shorter settling time [1.02+£0.18 s] than
SZ [1.20+0.28 s].

Hence, SZ reveal a longer “latency” in the intertrial interval's
return to a steady-state. That is further supported by the
observation of greater ST variance in SZ than in HC (HC ST
Variance of 0.03 while SZ ST Variance was 0.08) (Fig. 5).

The longer settling time in SZ and its higher variability across
trials strongly suggest that neural activity in SZ takes longer and
more variable time durations to return to a steady state after the
exposure to the external stimulus. Given that the time interval
between different stimuli (e.g., the intertrial interval) is key for the
subject to predict the next incoming stimuli, longer and more
variable settling times related to the previous stimulus may dent
into and thus impair the prediction, including temporal precision,
of the subsequent stimulus.

Temporal irregularity—high classification accuracy

Does the temporal irregularity allow to classify SZ as distinct from
HC? To construct the classifiers, after we have obtained the
frequency model representations of each signal, of all HC and SZ
subjects, we use the component vectors in the denominator,
whose magnitude in the s-plane describe the distance of the point
s from the pole—(see Methods for details).

Schizophrenia (2022) 23

507.7, 548.8, p < 0.0001). DTW pc =444.6 (Cl =
73.5, 82.7, p = 0.046).

413.4, 475.8, p < 0.0001). Delay yc =67 ms

Looking up to the Egs. 3 and 4, we can analytically observe the
correspondence between the Inverse Laplace solved time
equation and the TF frequency equation. The poles of the latter
contain the temporal information as seen in the exponential
constant of Eq. 4 (real part of poles feature) and the frequency
information as seen in the argument of the sin and cos functions
of Eq. 4 (imaginary part of poles feature).

To classify the two groups, SZ and HC subjects, we only chose
those with whose frequencies are above 5 Hz, in order to avoid
“noise” in our features. Classifiers, based on our feature selection,
estimate for each target instance, 0 for HC, 1 for SZ, depending on
the classification kernel, the greatest probability. Consequently,
they decide about the point origin, among the two groups,
successfully classifying ~92% of the data if all features are used
(Table 2). The classification methods used are KNN (K-Nearest
Neighbors), Bagged trees and SVM (Support Vector Machines),
while their ROC (Receiver Operating Characteristic) curves
demonstrate their results (Fig. 6). Together, the high classification
accuracy means that temporal imprecision really signifies the ERP
in SZ as distinguished from HC.

DISCUSSION

We took a novel, multi-methodological approach to analyzing ERP
data related to abnormal predictive mechanisms in SZ*'=%3, by
looking at their temporal features; i.e., their temporal regularity or
precision from trial to trial. Our data show significantly higher
temporal irregularity across trials in SZ, especially in the P200, a

Published in partnership with the Schizophrenia International Research Society
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Fig. 4 Transfer Function model simulation allows for temporal characteristics calculations (Settling Time and N100 peak time) of
attenuation ERP components. The figure is produced by the “impulse” function of every TF model that has been calculated to fit each ERP.
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Fig. 5 SPSS chart boxplot of Settling Time (ST) variance in each
group. Schizophrenic patients reveal longer Settling time as well as
higher SD [1.20 + 0.28 s] than Healthy Controls [1.02 + 0.18s].

component that is closely related to prediction, i.e., empirical prior.
The assumption of temporal imprecision is further supported by
the correlation of the time course between the different trials, i.e.,
dynamic time warping, which showed higher distance between
trials in SZ than HC.

In order to probe whether the temporal imprecision of single
trials is related to dynamic features extending across the single
trial itself, we calculated the settling time in the intertrial interval,
that is, the time needed to get back to a steady-state. This yielded
indeed significantly longer settling times and higher variability in
SZ than HG; that, in turn, strongly impacts the empirical prior of
prediction as required in our paradigm in the intertrial intervals.
Finally, we show that temporal imprecision between single-trial
ERP yield high classification accuracy with values over 90%.
Together, our findings demonstrate that temporal irregularity or
imprecision is a key factor in mediating prediction failure in SZ.

Published in partnership with the Schizophrenia International Research Society

Table 2. Classifiers’ accuracy and confusion matrices.
Classification technique Confusion matrix
Validation accuracy
Weighted KNN 2/3 features 0 387 47 0919
139 587 92%
0 1
Bagged Trees 2/3 features 0 385 49 0.898
159 567 90%
0 1
Support Vector Machines 1/3 0 217 95 0.801
features 1 58 398 80%
0 1

SZ showed higher temporal irregularity in particular the P200
which, given our paradigm, is closely related to prediction and its
empirical priors. Such temporal imprecision between trials is
further confirmed by our DTW analyses. This marks temporal
imprecision in ERP of SZ which corresponds well to temporal
imprecision as observed on the behavioral level®. Future analyses
are needed to investigate whether such temporal imprecision of
ERP is related to abnormal intrinsic neural timescales, like Trial-to-
trial variability (TTV) investigating the prestimulus and poststimu-
lus neural responses dynamics**.

A recent study observed prolonged intrinsic neural timescales in
SZ during task states and, importantly, during the transition from
rest to task’. If the intrinsic neural timescales are too long, they
may render the timing or temporal course of ERP-related
components imprecise as for enhanced temporal precision shorter
timescales are needed. Hence, future studies may want to relate
the intrinsic neural timescales to the time course of ERP, i.e,, their
temporal precision across trials.

We demonstrated that neuronal activity during the intertrial
interval showed longer and more variable settling times in SZ after
exposure to the stimulus*. This suggests a yet unclear dynamic
deficit in SZ as they are no able to return to their initial steady

Schizophrenia (2022) 23
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Fig. 6 Receiver Operating Characteristic (ROC) curves of our
Classifiers. They successfully classify the data of our TF models in
the groups of HC or SZ.

state (or resting state) in proper time. Their neural activity does
not seem to susceptible to change as it can also be observed on
the opposite side during the transition from rest to task’. At the
same time, the intertrial interval also provides the prestimulus
period for the next time; this is relevant as predicted inputs (or
“empirical priors”) are generated during the prestimulus period.
Prolonged and more variable settling times in the intertrial
interval may consecutively affect the timing of the empirical prior
which, analogously may then also be more imprecise and variable.

Given that our paradigm included a strong predictive compo-
nent, the empirical prior itself may be strongly affected by the
partial overlap from the preceding stimulus. Over time, this may
lead to an incorrect and temporally imprecise empirical prior with
a high subsequent prediction error—the SZ subjects thus lose
their adaptive capacities to flexibly predict and react to novel
stimuli.

In sum, we have demonstrated that SZ show higher degrees of
temporal irregularity across single trials of ERP. This is related to
abnormalities in latency, dissimilarity between time courses, and
longer and more variable settling times in the intertrial period. We
conclude that temporal imprecision across single trials may be a
key factor in driving the well-known prediction failure in
schizophrenia.

METHODS

Subjects
We process the auditory ERP signals of 32 Healthy Controls (HC) and 49
Schizophrenic patients (SZ), data which were retrieved from the Kaggle
database, from the following dataset: “Basic Sensory Task in Schizophrenia”
[https://www.kaggle.com/broach/button-tone-sz]. Some of the patients
were diagnosed with DSM-IV schizophrenia (N=23) and some with
schizoaffective disorder (N = 3), based on the Structured Clinical Interview
for DSM-IV (SCID). Additional data were analyzed from the 2nd dataset of
the study [https://www.kaggle.com/broach/buttontonesz2].

University of California at San Francisco Institutional Review Board and
San Francisco Veterans Affairs Medical Center approved the study, and all
participants provided written informed consent.

EEG task

The analysis was performed on two conditions acquired by Ford et al.
2014, reflecting a typical auditory prediction task. In the first condition
(Button tone), 100 tones (80 dB sound pressure level, 1000 Hz) were self-
generated through button-press by the subjects, every 1-2 s. This temporal
sequence of tones was preserved and reproduced during the second
condition (Playback tone); i.e., participants only listened to tones but did
not press any buttons. In Ford et al.’s study, subjects also completed a third
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condition (button press without tone), which was irrelevant to the present
question and therefore omitted.

EEG data acquisition and processing

EEG data had been recorded from 64-scalp sites and 8 external sites using
a BioSemi ActiveTwo system, digitized with a sampling frequency of
1024 Hz. EEG time series of 81 subjects (~9216 ms) were separated into the
three conditions of 3000 ms epoch’s duration each one, time-locked to
button presses (coincident with tone onset). The EEG epochs were
corrected from artifacts for voltages exceeding +100 pV at all scalp sites
[Ford et al. 2013]. The experiment was conducted by Ford et al. with
funding from the National Institute of Mental Health (NIMH grant number
ROTMH058262).

In this paper, we use the Cz channel data (in the future we will analyze
the other channels as well), and we deconstruct the 3000 ms epochs to
new intervals of 700 ms epoch’s duration for a and b condition,
corresponding to Button press sound tone (epoch a) and Playback tone
(epoch b), since in the 3rd condition (Button alone) no evoked potentials
were present. We apply a lowpass Butterworth filter to smooth our ERPs in
order to be able to apply properly the mathematical calculations (Transfer
Function transformation, Dynamic Time Warping processing) described
analytically in the following section. While we were interested in EEG inter-
trial coherence (ITC) as well, along with our ERP simulations in MATLAB
(ver. R2018a), in order to study the signals’ coherence, we used EEGLAB,
the results of which were compared to pseudotrials’ ITC. SPSS has also
been used for our statistical analysis (IBM Corp. Released 2015. IBM SPSS
Statistics for Windows, Version 23.0. Armonk, NY: IBM Corp.).

Transfer Function model (TF)

We develop the Transfer Function models (TF) by applying the Laplace
transform to analyze this input-output relationship and we aim to detect
differences between the waveforms (Fig. 4). The system (output is
represented by ERP) receives a disturbance (input is modeled by a delta
Dirac function, coincident with the trigger onset), changing the variables
that describe it, and then returns to the natural steady state, like Rest-
Stimulus modulated activity*®4’. Based on mathematical control theory,
receiving as input, X(s), a time series with only initial t, onset value, and as
output, Y(s), the ERP response of each subject, the computational
mechanisms provide us with a TF model for every subject’s response of
our EEG concatenated epoch arrays. With the appropriate MATLAB Laplace
and TF functions we can efficiently calculate for every subject’s dynamical
system a unique TF simulated response, each one of 12th degree, in order
to have consistent fitting models (see Figs. 1-3 in Supplementary Material
for details). The TF model is a ratio of two polynomials, in frequency
domain, which as complex numbers, the Numerator and Denominator,
have the following mathematical parameters: Real part, Re(z), Imaginary
part, Im(z), and Magnitude, ||z||, of each complex number. These frequency
characteristics of the complex s-plane are later translated to time domain
characteristics, like settling time (ST), and also the time envelope constant
in EEG(t) equations below.

In this model, we present the TF filter-form equation in our time series
analysis, and we use the formula characteristics to further analyze how
patients with schizophrenia and healthy controls process and filter
repetitive stimuli and reveal any existent deficit. Without loss of generality,
the TF provides a transformation basis of the unknown complicated
differential equation of our neurophysiology system to a solvable algebraic
equation. Through the damping ratio of the Inversed-Laplace solved time
wave equations we can detect differences in the attenuation ERP
components (Fig. 4).

The concept of the Transfer Function block diagrams represents the
input-output relation for complex systems’ dynamics and describes high-
order dimensional systems governed by differential equations, while it is a
rational function of the complex variable, s. The Transfer Function is
defined as the ratio of Output to Input, providing us itself with the notion
of “gain”, being a measure of how the system amplifies or attenuates a
signal that is impressed upon it. Thus every ERP dynamic’s Output system
is simply the product of the Input plus the Transfer Function, where input
is simulated as a Dirac function trigger on the onset of the stimulus time
series. Taking into account the impulse input, we can simulate it as a delta
function 6(t), therefore the Impulse Response will be calculated, from Y(s)
= X(s)» H(s) (see Figs. 1, 2 in Supplementary Material for details).

Published in partnership with the Schizophrenia International Research Society
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When we have a multisensory input, the outcome of our action is
“tuned”, in order to discriminate between self-Button press (active, self-
initiated) and externally generated (passive) auditory triggers'9-212448-57,

We can see in Fig. 4 the use of our ERP TF model simulation that allows
high temporal precision in analysis. We will present our results about how
it calculates the N100 and P200 latencies for every model, and along with
the Settling Time parameter (see below), the model provides all the
temporal characteristics of every ERP waveform, enhanced or attenuated,
after the trigger auditory impulse. Latency variability is provided by our TF
model in a threefold manner, calculating at first N1/P2 latencies of every
ERP model, then Settling Time of every ERP and then all the model
parameters (time constants of envelope EEG(t) signal, see Egs. 4, 5 in the
following section) will be used in the classifier.

In electronic circuit analysis, a high-order control system undergoes a
transient phase when it receives an input disturbance. Similarly, our
“tuned” system has its own TF function, characterized by its settling time
until it returns to its steady state, and presents a peak amplitude as well.
The Transfer Function is defined as the ratio of Laplace transform of output
response to Laplace transform of input (excitation). Equation (1) is a
rational function with m poles and n zeros expressed in the complex
variable s,

s = o+ jw as follows:

H(s) = Num(s)  bps" +byp_1s"" 4+ 4+ bis+ bo
"~ Den(s)  AmS™ 4 dm_1S" 1 +---+ajs+ao

m

The transfer function provides a basis for detecting important system
response characteristics without solving the complete complex differential
equation, as demonstrated below in Eq. 2.

y<”) + Ch1 y(”’” +-Fayt+ay+ay= dmu'™

C v oF <o) @
+dmoq U™ - ol + dh U+ dou

We need high precision, in order to obtain the most realistic simulation
of our system by the transfer function. We confirm that the fit of our
properly smoothed ERPs is in absolute accordance with the N1 and P2
evoked potentials. The increasing number of poles increases the
complexity of our modeling transfer function, and ensures the suitability
of the model dynamics. The algorithm is solved repeatedly, until the
solution reaches the desired accuracy.

Once the expression of the Transfer Function for each subject is found in
s-domain, we decompose the equation, in terms of Partial Fraction
Expansion, where z, are the zeros and p,, the poles of our transfer
function, as shown in Eq. 3.

H(s) = i o @3)

i S—Pm

Settling Time and EEG(t) model

Every TF model Impulse Response supply us with the temporal
characteristics of P200 and N100 time information and the Settling Time
(ST) as we can see in Fig. 4. We also present the simulation of two random
models, one for a SZ subject, one for a HC subject, with a Transfer Function
of 12th degree, (~95% fitting percentage of model) in order for the
comparison of the real ERP and the fitting model to be demonstrated (see
Fig. 2 in Supplementary Material).

Temporospatial dynamics of rest and task states metrics are suggested
for abnormalities in Schizophrenia in analogy with task-related activity and
resting state’. The resting-state activity (RSA) of the system is related to ST
as also rest-stimulus modulated activity of brain regions (auditory,
cerebellum) is driven by auditory cues, given with passive listening or
beeping tapping (tapping task with auditory sound)*®8, Transfer function
models relate the rise time of the oscillation with the settling time of the
actual “settling down” of the transient oscillation, while computationally
they are calculated by a simple function where response is settled down
when |y(t) - yfinal| becomes less than 2%. Settling time (ST) reflects the
power by which the attenuation takes place, defined in circuit analysis as
the time that the system needs to reach to its steady state again, after the
damping caused by an external trigger. Greater settling time means that
the system presents greater “resistance” in restoring energy. For an EEG
neural network model that is conducting the input external signals and
goes through a transient response we obtain each TF model which also
gives us its Settling Time. In control systems theory, it is a measure of the
quality of “control” of the system, as it clearly calculates the time it needs
to integrate the “filtering” of the triggering energy it receives, and finally
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bounces or shifts back to its intrinsic or ‘natural frequencies'’. The stability
of the “control circuit” is well-reflected in the ST parameter that indexes the
time the system needs to return to its natural steady-state oscillations.

Now, we can present an innovative temporal model as well, introducing
a unique time-dependent expression for each ERP signal, for HC and SZ
subjects correspondingly, which can be obtained by applying the Inverse
Laplace transform and solving each H(s) equation in time domain. For our
system, the zeros and poles, of which most are complex conjugates,
effectively define the components of our system differential equation,
while the denominator polynomial in terms of s of the transfer function is
known as the characteristic polynomial.

We decompose our TF functions from the “z, complex plane” of Eq. 3
form, by applying the inverse Laplace transform and thus extract the time
dependent signal expression for one HC subject, where we can also
observe the cosine and sine arguments in Hz, in terms of the EEG B, a, §
rhythms (Eq. 4), which can be plotted in a time interval (Eq. 4, successfully
represents Fig. 3 in Supplementary Material as an EEG(t) solution-
expression of its unique TF ERP model):

EEGeontrol(t) = €7234[0.576 - cos(30.6t) + 1.53 - sin(30.6t)]
+e776[0.45 - cos(15.5t) + 0.18 - sin(15.5¢)]
+e *9[—1.36 - cos(9.2t) + 2.4 - sin(9.2t)]
+14.4. 7548t 1 e=41t[3.7 . cos(5.8t) + 3.2 - sin(5.8t)]
+e 25[—5.1- cos(2.5t) + 4.3 -sin(2.5t)] — 12.7 - e~ 3%
4)

In order to see the solution’s steps of an H(s) equation part and its
passage to the EEG(t) equation we hereby describe the Inverse Laplace
application:

a+bj a—bj
o) Ted)
Inverse )
Laplace

e [+ 2a - cos(dt) +2b - sin(dt)]

Dynamic Time Warping (DTW)

In order to measure temporal regularity/irregularity ore precision/impreci-
sion of ERP’s in the empirical data, we compare their time course by
measuring their distance. For that purpose, we use dynamic time warping
(DTW). Roughly, DTW allows to correlate the time courses between single
trials at each time point: similar and thus more regular and precise time
courses of single trials should yield higher correlation and thus less
temporal distance between trials. Combined with the delay metric that
measures the temporal delays obtained in DTW, this provides insight into
the degree of temporal regularity/irregularity of single trials of the ERP.

DTW is applied in the first 300ms of our signal, in order to minimize the
noise of our results as well as the pinching effect. We perform DTW, which
is using chess moves, to find the optimized minimum mapping distance of
the time series points (warping path). Each two ERP signals compared will
be distorted so that they are almost aligned on a common time axis, and
that way DTW provides us with the similarities between the signals. The
lowest cost optimal path gives the minimum DTW distance, and the best
possible alignment.

Dynamic Time Warping (DTW) allows probing and validating the
assumption of temporal irregularity in the ERP of schizophrenia. For that
specific temporal purpose, we use DTW in combination with a samples
delay metric (finddelay MATLAB function as to calculate how advanced is
one signal from another, and then samples (lags) are transformed to ms).
Inter-trial coherence is studied by us in EEGLAB before we performed DTW
measures, and greater coherence was found indeed in healthy controls
than in Schizophrenia patients (see Supplementary Material for details)
while we also cross-checked our findings using pseudotrials, that is, trials
without stimulus as derived from intertrial intervals to control for the
impact of spontaneous activity fluctuations over the course of time>>°,

Classification

Machine learning identification of EEG features is using signal processing
approaches and mathematical modeling techniques to predict and make a
decision in diagnostic classification®®®'. For that purpose, we constructed
classifiers to capture specifically the temporal features of ERPs. We probed
whether all our Transfer Function measures together (TF model is
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characterized by its Settling Time, in the time domain, whereas in the
frequency domain TF is defined by its complex numbers’ real part and
imaginary part) provide high classification accuracy and also tested each of
them by itself. This yielded the highest classification accuracy for all
temporal measures being put together—that reached a value larger than
0.9 reflecting high accuracy (Table 2). Together, our classification results
show the importance of the temporal components of the ERP in classifying
and distinguishing HC and SZ, both in time domain (see Results for details
in ST) and s-domain (classifiers’ accuracy). More generally, it demonstrates
the high relevance of temporal irregularity/imprecision across trials in ERP
of SZ as distinct from HC.
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