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Abstract: It is difficult to optimize the fault model parameters when Extreme Random Forest is used
to detect the electric pitch system fault model of the double-fed wind turbine generator set. Therefore,
Extreme Random Forest which was optimized by improved grey wolf algorithm (IGWO-ERF) was
proposed to solve the problems mentioned above. First, IGWO-ERF imports the Cosine model to
nonlinearize the linearly changing convergence factor α to balance the global exploration and local
exploitation capabilities of the algorithm. Then, in the later stage of the algorithm iteration, αwolf
generates its mirror wolf based on the lens imaging learning strategy to increase the diversity of the
population and prevent local optimum of the population. The electric pitch system fault detection
method of the wind turbine generator set sets the generator power of the variable pitch system as
the main state parameter. First, it uses the Pearson correlation coefficient method to eliminate the
features with low correlation with the electric pitch system generator power. Then, the remaining
features are ranked by the importance of the RF features. Finally, the top N features are selected to
construct the electric pitch system fault data set. The data set is divided into a training set and a test
set. The training set is used to train the proposed fault detection model, and the test set is used for
testing. Compared with other parameter optimization algorithms, the proposed method has lower
FNR and FPR in the electric pitch system fault detection of the wind turbine generator set.

Keywords: wind turbine generator set; electric pitch system; extreme random forest; grey wolf
optimization; fault detection

1. Introduction

As a renewable energy source, wind energy has many advantages, such as being
pollution-free and renewable. It also has a wide distribution and large reserves, which lead
to broad application prospects [1]. Because of poor working conditions, it is easy to cause
damage to the components of the fan. If there is an accident, such as a shutdown caused by
a fault, it will not only affect the normal operation of the wind turbine generator set, but
also cost a lot in maintenance [2,3]. Therefore, it is of great significance to accurately detect
the fault location of the wind turbine generator set.

As a subsystem of a large wind turbine generator set, the electric pitch system can
maintain the rated power output and protect the system by controlling the adjustment
of the pitch angle. Since the electric pitch system has a high failure rate, which can
result in a long downtime, the fault detection becomes particularly important. Currently,
the wind turbine fault detection (FD) methods can be divided into model-based fault
detection and supervisory control and data acquisition (SCADA). The model-based fault
detection method focuses on the combination of the internal models of the wind turbine,
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while the data-based fault detection method processes the original data, and obtains the
correlation analysis of the processed data by different methods. Castellani, F. [4] established
the relationship between wind turbine power, voltage, and current based on principal
component analysis and support vector regression. The results show that the occurrence of
fault can be individualized as the change of residual behavior between model estimation
and measurement. Zhao, Y.Y. [5] designed an integrated prediction and diagnosis method,
which can predict the service life of wind turbines through the SCADA system and diagnose
the state of wind turbines when faults occur. Li, M. [6] used multiple Small-World Neural
Networks (SWNNs) and the weighted integration method to train and classify the data
collected by the system. The experimental results showed that the effective accuracy rate
of this integration strategy can exceed 93.8% in a short time. Shi Yiran [7] proposed a
pitch angle control system for the variable-speed wind turbine generator set based on
an adaptive neural network with FD and fault tolerance. As for the failure of the pitch
actuator of wind turbines, Wang [8] developed a multi-scale spatio-temporal convolution
deep belief network to perform feature learning and classification tasks in order to address
the difficulty of the SCADA system in fault detection due to multivariate time series with
spatio-temporal correlation characteristics. In view of the faults of the electric pitch system,
the above method integrates multiple learning strategies to analyze and detect a specific
feature, but ignores the relationship between multiple sub-components in the electric pitch
system, which has certain limitations.

The FD methods based on machine learning include the Artificial Neural Network [9,10],
Random Forest [11–13], LightGBM [14], Deep Learning [15,16], and the Large Margin
Distribution Machine [17,18]. J. H. Pan [9] designed a data-driven method based on a
deep convolutional neural network (DCNN) for the gain error, position deviation, and the
faults of sensors and actuators. This method can not only reduce the model training time,
but also achieve a high fault recognition accuracy. To solve the problem of low efficiency
and accuracy of traditional improvement algorithms during the processing of the large
data of wind turbines, Tang, M.Z. [14] proposed an adaptive LightGBM FD model of
the gearbox, whose results showed that the gearbox FD method based on the adaptive
LightGBM had a low FPR and a low FNR. Considering the shortcomings of traditional
fault diagnosis methods, Tang, S.N. [16] summarized the rotating machinery—such as
bearing, gear/gearbox, and pumps FD methods based on deep learning—and carried out
its prospect forecast. Because the FD method based on machine learning can analyze and
process fuzzy faults without establishing an accurate model, it can better deal with the
uncertainty and suddenness of random faults in the wind turbine generator set.

Random Forest is often used for classification and regression tasks in FD models.
L.J. Wan [19] proposed a high-efficiency rolling bearing FD method based on Spark and
improved random forest, which can increase the detection speed and obtain a higher
accuracy. Ma, S.L. [20] developed an effective identification system based on wavelet
packet technology and random forest by observing that high voltage circuit breakers
are prone to mechanical faults in long-term operation. Ma, Suliang [21] focused on the
problem that the vibration signal of a high voltage circuit breaker is easy to ignore, and
subsequently proposed a hybrid feature transformation method to optimize the fault
diagnosis performance of HVCB. Firstly, a random forest binary code is designed. Secondly,
the feature depth is compressed by a laminated self-coding neural network, and is finally
substituted into the data set for experiments. Qin, S.Y. [22] focused on the input/output
and feature selection of the SCADA system, based on the general CMDF model. The
random forest algorithm is used to find the best input feature, wavelet analysis is used for
noise reduction, and an RLS filter is used to reduce the False Alarm Rate. Yan, Xiangwu [23]
designed a fault diagnosis method combining multi-layer neural network and random
forest based on the SCADA system. Wang, X.D. [24] focused on the difficult and time-
consuming problem of the DOWF short-distance transmission line location, proposing
a two terminal fault location method combining ST and RF. In order to do so, the fault
features are first extracted from the collected wind turbine current signal through ST
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transform, and then the data are processed and transformed into the Random Forest model
for diagnosis. The results show that this location method has a high fault identification rate.
Mansouri, M. [25] focused on the shortcomings of the traditional random forest algorithm,
and proposed a new random forest algorithm based on simplified Gaussian regression
for the detection and diagnosis of the wind energy conversion system. Z.H. Xie [26] not
only used RF for feature selection, but also proposed an improved cuckoo search (CS)
algorithm to optimize the neural network parameters to avoid local optimum, which
can significantly improve the accuracy of FD. To solve the problem of unbalanced data
types in the wind turbine generator set, M.Z. Tang [10] proposed a cost-sensitive extreme
random tree algorithm. Because of the randomness of RF, the actual operation of the model
cannot be accurately known, and it is difficult to find a reasonable explanation for the
assignment of different parameters. Therefore, the grey wolf optimization algorithm, which
has a strong optimization ability, is combined with extreme random forest to optimize the
FD model.

The grey wolf optimization is a swarm intelligence optimization algorithm proposed
by Mirjalili in 2014, which has the advantages of a strong convergence, fewer adjustment
parameters, and an easy implementation which are shown in some classical benchmark
test function [27]. According to the NFL (No Free Lunch) [28] theorem, the grey wolf
optimization has the shortcomings of slow convergence and easy local optimum, like the
other optimization algorithm [29]. At present, the improvement of grey wolf optimization
mainly includes four aspects. First, change the variation rule of parameter α. In the GWO
algorithm, a decreases linearly from two to zero as the number of iterations increases.
Long [30] used a logarithmic decay function to dynamically reduce the value of α to
enhance the exploitation capability of the algorithm. Luis Rodriguez [31] proposed an
improved grey wolf optimization based on fuzzy logic, which had obvious advantages as
compared with traditional dynamic algorithms. Second, change the position update equa-
tion. Inspired by the PSO algorithm, Long [32] made full use of the location information of
the remaining individuals in the wolf pack to update the location, thus enhancing the global
survey capability of the algorithm and avoiding local optimum. M. Malik [33] replaced the
simple arithmetic average with the weighted sum of the optimal position, finding that the
multimodal function optimization effect was better. Third, change the regeneration strategy
of the population. Gupta, S. [34] designed a GLF–GWO algorithm in which the alpha
wolves update their position through the Levy-flight search mechanism and introduce
a greed mechanism to prevent the population from falling into local optimum. Fourth,
mix with other algorithms. There are many types of metaheuristic algorithms based on
intelligent groups. Various algorithms have different search capabilities. Therefore, mixing
with other algorithms is also an improved method. For example, Shaheen [35] proposed
to integrate the particle swarm algorithm with the GWO algorithm, which can effectively
find the global optimal solution of an optimization problem. Daniel, E. [36] used the
cuckoo search algorithm to improve the traditional grey wolf optimization, and applied it
to the field of medical image fusion. Compared with the traditional method, there was a
significant improvement.

In order to solve the problem that the parameters of the electric pitch system FD
of the wind turbine generator set are difficult to optimize, an extreme random forest
FD model based on improved grey wolf optimization is proposed. First, the Cosine model
is introduced to nonlinearize the linearly changing convergence factor α based on the
model. Then, the lens imaging principle in physics is introduced. The mirror wolf of the
αwolf is generated and compared with the fitness value of the αwolf, thus avoiding the
local optimal solution when the population tends to gather towards the α wolf in the later
stage of the algorithm. The grey wolf algorithm optimized based on the above two learning
strategies is called the improved grey wolf optimization (Improved Grey Wolf Optimizer,
IGWO). IGWO integrates with the extreme random forest electric pitch system FD method
of the wind turbine generator set through the fitness function, and defines the accuracy of
the binary-classification confusion matrix as the fitness function. IGWO will calculate the
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minimum value of the fitness function at each iteration until the accuracy requirements are
met, or the maximum number of iterations is reached. Then, the optimal parameters are
outputted to the Extreme Random Forest model. The data set is divided into a training
set and a test set. The training set is used to train the model, and the test set is used to test
the model and output the predicted value. The value is compared with the test value to
calculate the FPR and FNR of the electric pitch system FD of the wind turbine generator set
for Extreme Random Forest optimized by the improved grey wolf optimization.

2. Materials and Methods
2.1. Grey Wolf Optimization
2.1.1. Algorithms Description

Grey Wolf Optimization is a group metaheuristic algorithm [37] which simulates the
predation strategy and hierarchy of wolves in nature, and continuously searches for the
optimal value in an iterative method [38]. During the predation process, the distance D
between the wolf pack and the prey can be expressed by Equation (1). The wolf pack
updates its position according to the distance from the prey, expressed by Equation (2):

D =
∣∣CXp(t)− X(t)

∣∣ (1)

X(t + 1) = XP(t)− A · D (2)

where X(t) is the position vector of the wolf, Xp(t) is the position vector of the prey, t is the
current iteration steps, and A and C are coefficient vectors. By adjusting these two vectors,
the wolf can reach different positions around the prey. The calculation methods can be
represented by Equations (3) and (4):

A = 2ar1 − a (3)

C = 2 · r2 (4)

where a linearly decreases from 2 to 0 during the iterative process, and r1 and r2 are random
vectors between (0, 1).

Suppose that α wolf, β wolf, and δ wolf have strong observation abilities to the
potential escape position of the prey. The whole predation process is dominated by α, β,
and δ wolf. The position of α wolf is the best, followed by β and δ wolf. First, determine
the distances between α, β, and δ wolf and the prey according to Equations (5)–(7), and
then move to the next position according to Equations (8)–(11). Finally, ω wolf updates
their position according to the α, β, and δ wolf. On the basis of the above methods, the
optimal solution of the optimization objective can be obtained by continuous iteration until
the termination condition is satisfied.

Dα = |C1 · Xα − X| (5)

Dβ =
∣∣C2 · Xβ − X

∣∣ (6)

Dδ = |C3 · Xδ − X| (7)

X1 = Xα − Dα A1 (8)

X2 = Xβ − Dβ A2 (9)

X3 = Xδ − Dδ A3 (10)

X(t + 1) =
X1 + X2 + X3

3
(11)

where Dα, Dβ, Dδ represent the distances between α, β, and δ wolf and the current candidate
wolf, respectively. Xα, Xβ, Xδ represent the position vector of the current population of α
wolf, β wolf, and δ wolf, X represents the position vector of the grey wolf, and X(t + 1)
represents the position vector of the next iteration.
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2.1.2. Cosine Model-Based Constriction Factor Change Equation

From the Section 2.1. Equation (3), the contraction factor α in GWO changes linearly. In
the GWO algorithm, the value of α determines whether the algorithm is in the development
or exploration stage in the iterative process. For performance better intelligent algorithms,
they should have strong exploration abilities in the initial stage of iteration and find as many
global best points as possible. Therefore, the value of α should be large, and the decreasing
trend should be steep. In the latter stage of the iteration, it should have strong exploitation
capabilities to ensure the quality and convergence speed of the optimal solution, so the
value of α should be small, and the decreasing trend should be gentle. The change trend of
the cosine function can be seen from the analysis of the change trend. The dynamic cosine
function model of contraction factor is shown in Formula (12):

a(t) = 1 + cos(t/Maxiter · π) (12)

where t is the current number of iterations, and Maxiter is the maximum number of iterations.

2.1.3. Grey Wolf Optimization based on Lens Imaging Learning Strategy

The principle of lens imaging is that an object is refracted by a convex lens, and an
image that is opposite to the original object is generated at the other end of the convex
lens. Its position and size are determined by the object distance and image distance of the
convex lens, as shown in Figure 1.

1
u
+

1
v
=

1
f

(13)

where u is the object distance, v is the image distance, and f is the focal length of the lens.

Figure 1. Schematic diagram of lens imaging.

Definition 1. Mirror point: the sample of M-dimensional space is X = (x1, x2, · · · , xM),
xi ∈ [Ai, Bi], i = 1, 2, · · · , M. According to the principle of lens imaging, it can generate
the mirror point X′ =

(
x′1, x′2 · · · , x′M

)
and x′i = Ai + Bi − xi.

Definition 2. Base point: The Euclidean distance between the sample point and the mirror point
and a certain point O in the M-dimensional space is d and d′. If d/d′ is an integer, the point O is
called the base point.

Suppose that the optimal solution is X∗ =
(
x∗1 , x∗2 · · · , x∗M

)
. According to Definitions

1 and 2, it can be found that the mirror image point of X∗ is X∗′ =
(
x∗′1 , x∗′2 · · · , x∗′M

)
.

Suppose that the base point oj is
(
aj1, aj2, · · · , ajM

)
. In this case, the mirror point X∗′ can be

calculated according to Equation (12). Figure 2 shows the reverse learning strategy based
on lens imaging in one-dimensional space.
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Figure 2. One dimensional inverse learning strategy diagram based on lens imaging principle.

During the iterative process of the grey wolf optimization, the population of wolves
tends to converge toward the head wolf and fall into the local optimal solution. The reverse
group is generated through the lens imaging learning strategy, which increases the diversity
of the group and avoids the local optimum solution, thus improving the local exploitation
ability in the later stage of the algorithm.

2.2. Random Forest

Random Forest (RF) is an ensemble model composed of multiple decision trees
{h(x, θk)|k = 1, 2, 3 . . . ntree}, where θk is an independent and identically distributed ran-
dom vector. The basic ideas and steps of the RF model are as follows.

First, RF randomly selects K times from the sample set D(X, Y) through sampling
with replacement, and obtains K sample subsets with the same dimensions as the sample
set [D1, D2, · · · , Dk].

Then, RF uses the CART decision tree as the weak learner. For each sample in the
N ×M dimensional sample set D(X, Y), there are M attributes, which are selected based
on the Gini coefficient. The criterion for the selection of the Gini coefficient is that each
child node achieves the highest purity. In this case, the Gini coefficient is the smallest, the
purity is the highest, and the uncertainty is the smallest. The calculation equation of Gini
coefficient is as follows:

Gini(D) =
|y|

∑
k=1

∑
k′ 6=k

pk pk′ = 1−
|y|

∑
k=1

P2
k (14)

where pk indicates that the proportion of the k-th sample in the current sample set D(X, Y).
The Gini coefficient of the attribute α is defined as:

Gini_index(D, a) =
V

∑
ν=1

|Dv|
|D| Gini(Dν) (15)

Therefore, in the candidate attribute set A, the optimal partition attribute minimizes
the Gini index after partitioning, namely a∗ = argminGini_index(D, a).

Finally, repeat the above steps to build multiple decision trees to form a random forest.
Input the prediction data into the constructed RF model where multiple decision trees
make decisions at the same time, and make category decisions based on the principle that
the minority obeys the majority.

2.3. Extreme Random Forest

Extreme random trees (ERT) is a derivative algorithm of RF. It is a machine learning
algorithm proposed by Pierre geurts and other scholars after a lot of experimental research
in 2006. Extreme random forest (ERF) is also a classifier integrated by multiple decision
trees, but compared with RF, ERF is better in classification accuracy and training time,
which is mainly due to its two differences from RF:
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(1) The training set of decision tree is obtained in different ways. RF adopts bagging
model, which has put back randomly selected equal dimensional training set, and
its training set is random, but there may be duplicate samples in the training set,
which can not ensure that all samples are fully utilized, and there may be similarity
between two arbitrary training sets, resulting in that the trained classifiers can not
play their respective functions. The training set of ERF does not use random sampling,
but uses all the original training sets, that is, each decision tree applies the same all
training samples, which ensures the utilization of training samples and reduces the
final prediction deviation to a certain extent.

(2) Characteristics are divided in different ways. The decision tree of RF will select an
optimal eigenvalue for division based on the principles of information gain, Gini
coefficient and mean square deviation. For example, in candidate attribute set A,
select the attribute that minimizes the Gini index after division as the optimal division
attribute, argminGini_index(D, a). ERF has strong randomness for the acquisition of
splitting features and segmentation values. It randomly selects an eigenvalue for
division, so that each decision tree presents structural differences

The algorithm principle of ERT is the same as RF except that the acquisition of training
set and feature division are different. It scores by integrating multiple decision trees and
votes according to the average value of the predicted value of each decision tree. The
process is as follows:

(1) Sample selection. Each decision tree is trained with the original data set.
(2) Select the partition feature. ERT randomly selects an eigenvalue to divide the decision

tree. For N*M dimensional sample set D (x, y), given sample xi use m dimensional
eigenvector fi represents the characteristics of the sample. Then, a partition value ac is
randomly selected between at the maximum value of the variable aK

max and minimum
variable of aK

min partition. If the value of variable k less than the split value ac sample
(a < ac), then put them in the left leaf node, and if the value of variable k is greater
than or equal to the split value ac sample (a ≥ ac), then put them in the right leaf node.

(3) Build the decision tree. The formation of the decision tree is divided and split accord-
ing to the division rules in step (2) until it can no longer be split.

(4) Extreme random tree prediction. Repeat steps (1), (2) and (3) to establish a large
number of decision trees and gradually form a forest until the number of iterations is
met. Input the prediction data into the constructed forest, calculate the output results
of each decision tree for classification or regression, and get the final classification or
regression prediction results.

The selection of feature K and threshold ac in N* M dimensional sample set D (x, y)
according to Formula (16). Calculating the score measurement of each feature, and selecting
the highest score as the splitting feature and splitting threshold of the leaf node.

Scorec(k, S) =
2Ik

c (S)
Hk(S) + Hc(S)

(16)

where Ik
c (S) indicates that node S was splitted based on characteristic K and threshold ak

c ,
the two subsets have mutual information about categories. Hk(S) represents the splitting
entropy of characteristic K. Hc(S) represents the information entropy of node S about
the category. Compared with Gini index and information gain, this index introduces
Hc(S) and Hk(S) symmetry reduces the influence of class distribution on node splitting.
Formula (15) represents the fractional measure of feature K on leaf node S. The final
probability of each sample is the probability average of all trees, which is defined as follows:

P(c| fi)
=

1
M

M

∑
t=1

Pt(c|fi ) (17)

ĉ = argmaxc P(c|fi ) (18)
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where M is the total number of trees, fi represents eigenvector of sample xi, Pt is expressed
conditional probability that the sample belongs to category C under the condition of in
vector fi. Formula (17) defines the classification probability of samples in the decision tree.
Finally, on the extreme random forest, Formula (18) uses the voting principle to determine
the category of the sample.

2.4. Wind Turbines Pitch System FD of Random Forest based on Improved Grey
Wolf Optimization

Because the SCADA system records various historical data of the wind turbine during
operation—including normal data and various fault data over a period of time, before
the model is trained—operations such as preprocessing and feature selection should
be performed on the extracted data to remove redundant variables and to reduce the
complexity of model training. The steps in the solid box on the left in Figure 3 represent
the preprocessing process. First, data cleaning, then Pearson correlation analysis is used
to eliminate redundant variables, then Random Forest is used to sort the importance,
and the features of the first N are selected to construct the data set. The steps in the
light green solid box on the right in Figure 3 represents the extreme random forest fault
detection model. The input of the model includes the parameters optimized by IGWO,
training set and test set, and the output includes the evaluation index of FNR, FPR and
fitness function ACC. Figure 4 is the fault diagnosis flow chart of wind turbine pitch
system. Firstly, the steps of population initialization, parameter initialization and data
preprocessing are used as the input of ERF fault detection model, and then the fitness
function ACC is output to calculate the fitness function value of each individual of gray
wolf population, and assign the top three to α, β, andω wolf. Then update the position of
grey wolf individual according to Formulas (1)–(11). Then, according to the lens imaging
reverse learning strategy, the learning strategies were reversed to generate α’ wolf and to
calculate its fitness value as compared with αwolf’s fitness value. If the α’ wolf’s fitness
value was lower than the α wolf, α’ Wolf was substituted for α wolf and participated in
the population iteration process, A, C were updated by the original grey wolf algorithm,
and a was updated according to the Cosine model. After updating the parameters, the Xα

and the preprocessed data are substituted into the ERF fault detection model, calculating
the fitness of grey wolf population individuals, updating the positions of α, β and δ wolf,
and the above steps are repeated until the maximum iteration requirements are met.

2.4.1. Data Preprocessing

The SCADA system records the operating status of each system of the wind turbine
generator set. The records mainly include wind speed, wind direction, temperature of
each component, power, rotor speed, etc. Since the wind turbine operating environment is
relatively harsh, the data recorded by the SCADA system has problems such as null values
and abnormal values. The electric pitch system has many internal parameters: there are
differences in the nature, dimension, and unit of each parameter. Therefore, after the initial
cleaning of the original data extracted by the SCADA system, the Z-score method is needed to
scale the data proportionally, and the data of the same parameter is processed into the interval
(−1, 1) with the mean u = 0 and the variance σ = 1. The Equation (19) is the mathematical
expression of the Z-score, and the variance calculation is shown in Equation (20).

z =
x− u

σ
(19)

σ =

√√√√ 1
N

N

∑
i=1

(xi − µ)2 (20)
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Figure 3. The flow chart of Data Preprocess and ERF Fault Detection Model.

During the optimization of the Extreme Random Forest parameters using the im-
proved grey wolf optimization, the above two parameters (Table 1) are set into a two-
dimensional vector X(t + 1) (n_estimators, min_samples_leaf). The fitness of each indi-
vidual is calculated during each iteration of the algorithm. If the fitness after iteration is
better than the current stage, replace it. Otherwise, discard the current state vector and
proceed to the next iteration until the maximum number of iterations is met or the accuracy
requirement is met. The pseudo code of the optimized Extreme Random Forest parameters
based on improved grey wolf optimization is shown in Algorithm 1.
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Algorithm 1. IGWO algorithm optimizes Extreme Random Forest

Input: N, Maxiters, k, t
Output: Xα

1. Xα, Xβ, Xδ, Xw ← X0
2. repeat
3. Surround, The parameters A and C are calculated according to Formulas (3) and (4)
4. Hunting, Xt+1 is calculated according to Formulas (3) and (4),

Xt+1(n_estimators, min_samples_lea f )← Xt

(
Xα, Xβ, Xδ, Xw, A, C

)
5. RF← Xt+1, training set
6. f (Xα)← ACC ← RF ← test set
7. Track, Assign according to the greed criterion,
BestXα, BestXβ, BestXδ ← Xα, Xβ, Xδ, XP

8. X’
α ← BestXα

9. ERF← (X′α, training set)
10. f (X′α)← ACC ← RF ← test set
11. If f (X′α) < f (Xα) then
12. BestXα ← X′α
13. end if
14. until Maxiter
15. print Xα

16. ERF(n_estimators, min_samples_lea f )← BestXα

17. ERF(n_estimators, min_samples_lea f ) ← training set
18. Y_pred← RF(n_estimators, min_samples_lea f )← test set
19. FPR, FNR← con f usion_matrix (Y_pred, Y_test)

Table 1. RF parameter: n_estimators and min_sample_leaf.

Parameter Meaning Value Range

n_estimators The number of weak classifiers parameter, which is
used to adjust the number of trees (4200)

min_sample_leaf
Minimum leaf node sample number, which is used
to adjust the minimum sample number of leaf nodes
of the base classifier

(1300)

2.4.2. Fault Detection Performance Evaluation Index

To verify the effectiveness of the optimized Extreme Random Forest model based
on the improved grey wolf, the optimized Extreme Random Forest based on the Particle
Swarm Optimization (PSO) [39], Sine and Cosine Optimization Algorithm (SCA) [40],
Harris Hawks Optimization (HHO) [41], and Improved Grey Wolf Optimization (IGWO)
are applied to the electric pitch system FD model of wind turbines for comparison. The
research objects are the high temperature fault of the pitch super capacitor, the high
temperature fault of the pitch shaft box, and the main power supply fault of the pitch.
For the binary-classification problem of the electric pitch system FD of wind turbines, a
confusion matrix is introduced, as shown in Table 2. The false positive rate and the false
negative rate of the model are used as evaluation indexes. Equation (21) represents the
false positive rate, and Equation (22) indicates the false negative rate.

FPR =
FP

TN + FP
(21)

FNR =
FN

TP + FN
(22)
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Figure 4. FD flow chart of wind turbine electric pitch system based on IGWO-ERF.
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Table 2. Confusion matrix of dichotomies problem.

The Actual Category
The Predict Category

Normal Fault

Normal TP FN
Fault FP TN

2.5. Experimental Analysis
2.5.1. Data Description

The experiment selects the actual operating data of a wind farm in Inner Mongolia
from January to June 2021. There are 33 sets of 1.5 MW double-fed wind turbines in the
wind farm, and the data sampling interval is 60 s. Partial operation data is shown in Table 3.
Because the working conditions of the wind turbine generator set are easily affected by the
surrounding environment—especially the uncertainty of wind speed changes [42]—the
electric pitch system should automatically adjust the angle between the blades and the
wind direction in accordance with the wind speed, so that the generator has a rated output
power and to ensure the safe operation of the entire wind turbine generator set.

Table 3. Partial operation data of fan No. A16 on 1 February 2021.

State
Parameter

Time

00:00:00 00:01:00 00:02:00 . . . 08:27:00 08:28:00 08:29:00 . . . 08:48:00 08:49:00

rotor_speed/(r·m−1) 17.383 17.338 17.586 . . . 16.88 17.492 17.538 . . . 17.567 17.246
converter_motor_speed/(r·m−1) 1746.6 1751 1744.8 . . . 1696.1 1757.6 1762.2 . . . 1765.1 1732.9

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
pitch_ssb_motor_current_2/A 15.686 4.412 9.314 . . . 19.1176 3.9216 4.4118 . . . 2.9412 13.725

2.5.2. Sample Feature Selection

First, the collected data is performed with data processing to delete the data whose
state quantity is “0” and unchanged. The Z-score [43] is used for normalization processing.
The Pearson correlation coefficient is used to conduct the correlation analysis with Con-
verter_power. The results are shown in Table 4. Because the electric pitch system controls
the speed of the wind wheel by controlling the angle of the blades, thus controlling the
output power of the wind turbine, the output power of the electric pitch system is selected
as the main electric of the Pearson correlation analysis.

Table 4. Pearson correlation coefficient between each parameter and Converter_power.

State Parameter Pearson Correlation
Coefficient State Parameter Pearson Correlation

Coefficient

rotor_speed/(r·m−1) 0.83827 generator_winding_temperature_u1/◦C 0.67398
converter_motor_speed/(r·m−1) 0.83846 pitch_ssb_motor_current_1/A 0.47505

. . . . . . . . . . . .
nacelle_temperature/a −0.75862 hydraulic_main_sys_pressure/N −0.35687

The analysis of Table 4 shows that the correlation between different characteristic
variables and Converter_power is different. The characteristic variables with an absolute
value of a Pearson correlation coefficient greater than 0.6 (such as the bolded part in Table 4)
are retained, and redundant variables with a lower correlation are eliminated. The RF is
used to conduct the importance ranking of the data set after the Pearson screening. The
top N = 8 features are selected as the main influencing factors of the electric pitch system
failure. The feature importance ranking of RF is shown in Figure 5.



Sensors 2021, 21, 6215 13 of 17

Figure 5. Random forest feature importance ranking diagram.

3. Results

To compare IGWO with SCA, HHO, and PSO, these algorithms are substituted into
the wind turbine generator set electric pitch system FD. The initial populations of the four
optimization algorithms are all set to 30, the maximum number of iterations is set to 500, and
the experiments are performed 10 times. The FPR and the FNR of the overall experiment
are used to draw a box plot. The high temperature fault of the pitch supercapacitor are
shown in Figure 6a,b. The high temperature failures of the pitch shaft box are shown in
Figure 6c,d. The main power supply failures of the pitch are shown in Figure 6e,f.

From the box diagrams of FPR and FNR of the three types of faults, it can be known
that the FD model of the wind turbine pitch system with four optimization algorithms
optimized with Extreme Random Forest parameters has lower false positive rates and false
negative rates and, compared with GWO, IGWO has a better optimization effect. The false
negative rates of the three types of faults are all smaller than 10%, and the false positive
rates are all smaller than 2.5%. For the high temperature fault of the pitch supercapacitor,
the false positive rates of SCA, HHO, and PSO optimization algorithms are within 6–8%,
and the false negative rates are within 1.5–2%. The false positive rate of IGWO is within
4–5% and the false positive rate is within 1.3–1.5%. The experimental results of the high
temperature fault of the rotor axle box show that the Extreme Random Forest effect of
PSO optimization is not obvious, the optimization effect is very weak, and the overall
optimization performance of IGWO is good. The results of the FD of the main power
supply of the pitch change show that, compared with SCA, HHO, and PSO optimization
algorithms, the false negative rate of IGWO is reduced by 1–5%, and the false positive
rate is reduced by 0.2–0.4%. Based on the above analysis, it is evident that IGWO has a
lower false positive rate and false negative rate as compared with SCA, HHO, and PSO,
indicating that the wind turbine generator set electric pitch system FD model of Extreme
Random Forest, whose parameters are optimized by the IGWO, has a better performance.
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Figure 6. (a) The FNR box diagram of the supercapacitor fault; (b) the FPR box diagram of the supercapacitor fault; (c) the
FNR box diagram of electric pitch axle box fault; (d) the FPR box diagram of electric pitch axle box fault; (e) the FNR box
diagram of electric pitch main power; and (f) the FPR box diagram of electric pitch main power.
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4. Conclusions

It is difficult to optimize the parameters of a double-fed wind turbine generator
set electric pitch system fault model in Extreme Random Forest detection. To solve this
problem, an improved double-fed wind turbine generator set electric pitch system FD
model that optimizes the parameters of the Extreme Random Forest is proposed. The main
contributions of this paper are threefold. First, it introduces the Cosine model. Based on the
change of the convergence factor α in the algorithm iteration process, the Cosine model is
integrated with the GWO to balance the exploitation and exploration capabilities. Second,
it introduces the lens imaging reverse learning strategy. The optimal solution of α wolf
will generate its mirror wolf based on the lens imaging learning strategy. This strategy
compares the fitness values to avoid the algorithm falling into a local optimal solution at the
later stage of the iteration. Third, the above two learning strategies are combined to propose
an improved grey wolf optimization, which is combined with Extreme Random Forest and
applied to the wind turbine generator set electric pitch system FD model. The improved
grey wolf optimization, sine cosine optimization algorithms, Harris hawks optimization
algorithm, and particle swarm optimization algorithm are combined with Extreme Random
Forest, respectively. The accuracy of the confusion matrix is used as the fitness function,
and the false positive rate and false negative rate are used as the evaluation index. The
experimental results show that the improved grey wolf optimization has a lower false
positive rate and a lower false negative rate, indicating that the wind turbine generator set
electric pitch system FD method of Extreme Random Forest optimized by the improved
grey wolf optimization has good performance. The reason why the IGWO–RF model has
good performance in the fault detection of the wind turbine electric pitch system is that the
RF model has a reasonable logical design, and the RF without any optimization algorithm
can achieve good results in the field of fault detection. After the IGWO–RF model optimizes
Extreme Random Forest, the model performance has been improved, but the qualitative
change of magnitude has not necessarily been reached. The original data in the SCADA
system is subject to a high degree of processing to use it, and the data preprocessing method
is more, which cannot unite a measure. In view of the above problem, we still need to
spend more time studying and formulating conforms to the engineering practice of the
electric pitch system fault detection model. There is still a long way to go.
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